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Abstract 

Perceptrons were evolved that computed a rather difficult nonlinear Boolean            function.
The results with this early and basic form of emergent computation suggested that when
genetic search is applied to its structure, a perceptron can learn more complex tasks than is
sometimes supposed.  The results also suggested, in the light of related work on classifier
systems, that to hasten the emergence of an emergent computation it is desirable to provide
evaluative feedback at a level as close as possible to that of the constituent local computa-
tions. 
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* “redux…2. Brought back, restored…”  Oxford English Dictionary.
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1.  Introduction 

This paper investigates the application of genetic search to the generation of effective emergent
computation.  We shall say that a system embodies an emergent computation if it has global
information processing behavior that arises from the interaction of many small, local
computations.  The emphasis is on “local”: no aspect of the system sees more than a fraction of the
rest of the system or the environment, yet significant overall behavior results.  Within this
definition, many variations are possible, from cases where the local computations and their
interaction are linear, e.g., the simplest linear associator, to human society, where both the
component individuals and their interactions are highly nonlinear.  Our focus will be on the three-
layer perceptron [1-2], an early and basic example of emergent computation in which a global
decision is reached by weighing and combining the results of many small computations each
looking at only a part of the input (Figure 1).  Note that while the decision computation receives
the results of the others, it, too, is local and limited in that it sees none of the system’s environment.
Related to the perceptron is the Pandemonium model [3], in which lower-level “demons” shout
their computational results to higher-level demons.  We shall apply genetic search to the problem
of evolving perceptron structure, a process that itself forms an emergent computation. 

In Minsky and Papert’s [2] terminology, the perceptron computes a global predicate, i.e., a
truth function with respect to the bits of its input.  They showed that certain global predicates such
as connectedness and parity could not be computed by a perceptron whose local computations, or
partial predicates, were of restricted order, i.e., were based on fewer than the total number of input
bits. However, there remain, as Minsky and Papert also showed, many useful and sometimes
surprising global predicates that can be computed by order-restricted perceptrons. 

The perceptron’s attractiveness as a computing device is further enhanced by the perceptron
convergence theorem, which states that if for a given perceptron there exists a choice of weights
on its partial predicate outputs that would permit it to compute a certain global predicate correctly,
then a weight adjustment procedure called the perceptron learning algorithm (PLA) will bring the
system to perfect performance in a finite number of input trials.  The drawback, of course, is that,
for a given task, no such set of weights may exist, and therefore the PLA will be of no use.  The
existence of appropriate weights is itself a function of the perceptron’s partial predicates—that is,
do the local computations or experiments on the input sufficiently recode it so that a linear
weighting scheme can compute the global predicate?  While the PLA could modify the partial
predicates’ output weights, at the time of Perceptrons no scheme was known for modifying the
predicates themselves.  One proposal was to modify weights placed within the partial predicates,
but no technique for this was widely available until the PDP group [4] introduced back-
propagation. 

In this paper we investigate a quite different approach to the predicate modification problem,
namely, genetic search over the space of possible perceptron structures.  In proposing that the
demons might “mutate” and undergo “fusion” to form new demons, Selfridge [3] made a related
proposal for Pandemonium.  Our approach will be to evolve a population of perceptrons under a
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version of the genetic algorithm [5] in the context of a specific task. A general characteristic of the
GA is that partial solutions to a problem, called schemata, are distributed throughout the
population, implicitly tested, and gradually combined to form the superior individuals that
eventually emerge.  Thus our approach has a two-fold emergence: (1) that of the GA in finding
good structures through distributed testing and interaction of their constituent schemata; and (2)
that of the perceptron computation itself. 

Since the perceptron is a fundamental example of an artificial neural network, our investigation
is related to several others in which network characteristics were evolved genetically. In some (e.g.,
[6-7]), the emphasis was on evolving connection weights.  Others (e.g., [8-9]) addressed the
question of evolving general network structure and are thus more related to the present work. 

We shall offer some answers to the following questions: (1) Can genetic search over
“perceptron space” indeed lead to higher performance?  (2) Will the predicates in the evolved
perceptrons have an interesting form?  (3) How efficient is the evolutionary process in this case?
(4) More generally, what do the results say for the generation of goal-oriented emergent
computation?  In the present example of evolution under the GA, the evaluated entity is an entire
perceptron so that we are in effect designing by providing feedback solely at the top or system
level.  Such a regime puts “emergence” to the test, so we are interested in its efficiency relative to
schemes in which evaluation is more local. 

2.  Chromosome representation 

Genetic search takes place over a space of genotypes or chromosomes that encode relevant
characteristics of the phenotypes or organisms whose worth or fitness is to be optimized. In the
present problem, the phenotype is the perceptron itself, consisting of partial predicates, predicate
output weights, and threshold decision unit.  For the predicates (which he called association cells),
Rosenblatt [1] generally used units that summed and thresholded inputs that could be excitatory or
inhibitory—that is, positive or negative.  We have simplified this somewhat by assuming that the
inputs to the perceptron’s input layer are binary variables, and that each predicate computes the
logical conjunct (AND) of some subset of the set of those variables and their complements (given
the right predicates, such a perceptron can compute any Boolean function of its inputs).  However,
there is no reason why threshold units, or any other fixed computation should not also be
investigated. We assume that when a predicate is True, its output is +1; when False, its output is -
1.  The weights multiplying these values are allowed to be any real numbers.  The threshold
decision unit sums the weighted predicate outputs and itself outputs a 1 (True) if the sum is greater
than or equal to 0, otherwise 0 (False). 

This specification of the phenotype permits a straightforward genotype encoding.  Notice that
all such perceptrons have identical decision units.  Notice also that the weights are not inherent to
the perceptron structure, but result from training in a certain problem environment.  Thus only the
number and structure of the predicates need be encoded.  We encode a particular predicate using
an ordered string in which “1” means the predicate unit is connected to the corresponding input bit,
a “0” means connected but through an inverter (the bit is complemented), and “#” means that bit
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is not involved in the predicate’s computation.  Thus if there were six input bits in all, the string
“01#10#” would encode a predicate that computed the conjunct   x’0 x1 x3 x’4 , where the primes

signify negation.  As another example, the predicate second from the top in Figure 1 would have
the encoding “0##1###1#...#” and computes   x’0 x3 x7   (reading input bits from the top down, the

circled tilde indicating an inverter).  To encode a whole perceptron, we simply concatenate, in any
order, the encodings of its predicates. 

3.  Evolution under the genetic algorithm 

The major steps of the standard genetic algorithm are shown in Figure 2.  The initial population
P(0) usually consists of N fixed length chromosomes generated at random.  In the Evaluation step,
each chromosome is decoded to its phenotype and the phenotype is subjected to a procedure that
determines or estimates its fitness with respect to the task or other problem environment at hand.
The same fitness value is then attached to the underlying chromosome.  In the Selection step, a new
population of N members is formed by copying (reproducing) chromosomes by some procedure in
which the fitter chromosomes receive more offspring. In the Genetic Operators step, some
members of the new population exchange substrings (crossover) or undergo random changes at
random string positions (mutation).  Then the overall process iterates until the Stop condition is
satisfied, which may occur after a predetermined number of generations, or after some condition
within the population has occurred, etc.  For details on the genetic algorithm, see Goldberg [10].
Our experiments followed most of this pattern, with parameters and variations to be described later. 

The GA’s evaluation step is the task-dependent part of the algorithm.  In the present case, we
wish to determine “how good” is the perceptron encoded by a given chromosome.  To do so, we
construct the phenotype and train it in the problem environment, using some measure of
performance as the fitness (Figure 3). “Training” means presenting the perceptron with random
input strings, obtaining its decision, then adjusting the weights according to the degree to which
the decision matches the desired or correct decision for the global predicate that the trainer has in
mind. 

4.  Task description 

As a task or global predicate for the perceptrons to compute, we chose the six-bit Boolean
multiplexer.  This function is highly nonlinear, and has been used as a task with several different
machine learning systems [11-16], providing a basis for comparing them.  The six-multiplexer
belongs to a family of progressively harder multiplexer functions, so that scale-up effects can be
examined. In disjunctive normal form (DNF), the six-multiplexer is as follows: 

F6   =  x’0 x’1 x2  +  x’0 x1 x3  +  x0 x’1 x4 +  x0 x1 x5  . 

Bits x0 and x1 can be thought of as forming an address that selects one of the remaining bits as the

function’s value.  In general, there is a multiplexer function for strings of length           L = k + 2k,
with k > 0. 
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5.  Results 

After a series of experiments incorporating several changes that produced improvements, we
obtained results of the sort illustrated in Figure 4.  The graph plots population average score versus
the total number of chromosome evaluations. The population contained 100 chromosomes, so that
100 evaluations constituted one generation.  The score or individual performance of a perceptron
was its percentage of correct decisions on the last 40 of 100 training trials, and these individual
scores were averaged over the population. The quantity plotted is the average of three runs of the
experiment. By about 40 generations, the population performance was close to 100%, meaning that
essentially all of the 100 chromosomes encoded perceptrons that, once trained, easily solved the
problem.  Note that the performance of the initial population was about 64%, indicating that
training a perceptron with random predicates produced better than random performance, but
clearly did not solve the problem. 

Besides performance, it was interesting to know what kinds of predicates were being evolved.
Figure 5 shows a typical set of predicates from one of the chromosomes at the end of a run. For
purposes of illustration, the predicates have been sorted into two groups. The upper group consists
of predicates that turn out to correspond exactly to the DNF terms of F6 and its complement. The

lower group contains the remaining predicates from the chromosome.  With each predicate is its
weight after training.  Note how strong are the weights of the upper group vs. the lower—the latter
predicates appear to be “chaff” resulting from the GA’s stochastic nature.  Ignoring the chaff and
the duplicates in the upper group, it can be seen that the system discovered the most efficient
possible solution in the sense that (1) when a predicate is True, the global predicate is either always
True or always False, and (2) the predicates form a minimal non-overlapping cover of the input
space. 

One of the important experimental changes that helped lead to these results was to make the
chromosome longer than needed. A chromosome eight predicates long has just enough room for
the eight predicates corresponding to the DNF terms of F6 and its complement.  In fact, we used a

chromosome that had room for 16 predicates, as is clear from Figure 5.  With an eight-predicate
chromosome, the system typically did not evolve more than about four of the DNF predicates
before converging, and performance was lower.  Of course, in an arbitrary environment, one would
not so conveniently know in advance how long to make the chromosome, but a more sophisticated
system might employ chromosomes of variable length, along the lines of Smith’s [17] work, so that
the proper length could be found adaptively. But we are not sure just why extra length is needed.
There was some informal evidence that evolving predicates compete for chromosomal “slots”
during the early part of a run.  With fewer slots, it is more likely that a proto-predicate that loses
such a competition would later be unable to establish itself elsewhere.  The effect deserves greater
study, and may be related to Holland’s [5] discussion of gene variation through intra-chromosomal
duplication.

A second improvement in basic GA technique was to use so-called reduced surrogate



Wilson 6 Perceptron Redux

crossover [18].  Instead of picking the crossover point at random, this technique picks at random
but only among sites where the offspring are guaranteed to be different in at least one position from
the parents.  The result was to raise performance in the middle part of the evolution, so that the final
level of performance was arrived at more quickly.  The technique had no effect in the early stages,
where totally random crossover is almost sure to be fruitful.  It also did not raise final performance
over that of standard crossover. 

Two improvements resulted from changes in the evaluation procedure.  In the first place, we
were unsure just how to base fitness on a perceptron’s performance during training.  Initially, the
fitness was the same as the performance measure: the average score on the last 40 of 100 training
trials.  It seemed reasonable to let the creature learn for a while before grading it. Eventually,
however, we discovered that better results came from setting fitness equal to the average score over
the entire training period, or all 100 trials.  Perceptrons with superior predicates probably learn
faster, and averaging from the very beginning may help detect them. 

The largest single improvement came from changing the training algorithm from PLA to the
Widrow-Hoff algorithm [19]. The difference was to move final performance levels from
approximately 95% to 100%.  In PLA, no weight adjustment occurs if the perceptron is correct,
whereas Widrow-Hoff adjusts whenever the output of the decision unit summer differs from either
+1 or -1, and the adjustment is such as to make the error zero.  Because W-H is essentially always
active, it may in some cases cause faster learning than PLA [20].  We did not observe this, but did
observe the above final performance increase.  Hinton [21] suggests that W-H yields weight
settings closer to optimal when the predicates are suboptimal.  That would produce more accurate
fitnesses in our case, and may explain the improvement. 

Several more mundane aspects of the experiments should be included for completeness.  The
chromosomes were not encoded directly in the ternary {1,0,#} vocabulary described in Section 2,
but were instead pure binary, 11 standing for the 1, 00 standing for 0, and both 01 and 10 standing
for #.  This was based on the idea that binary encodings maximize the number of schemata
processed by the GA [10]; empirical observations of the superiority of binary over ternary
encodings were made by Schaffer [22], among others.  The crossover rate in our experiments was
0.8, meaning that pairs of offspring were recombined with that probability.  The mutation rate was
0.005 per allele (bit), the rate that gave the best results in an experiment with crossover turned off.
The selection method used was a version of Wetzel’s tournament selection [10] as modified by
David Goldberg and the author.  Tournament selection has a relatively simple implementation, and
automatically eliminates problems of fitness scaling that can occur early and late in a run under
more traditional selection methods.  No direct comparison was made with traditional stochastic
selection and its variants, but a version of Whitley and Kauth’s [23] GENITOR algorithm was found
to give performance similar to tournament selection along with somewhat less interesting final
predicates. 

6.  Discussion 

The basic impression gained from these experiments is that excellent performance and internal
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representation were achieved on a rather difficult problem, but the process was very lengthy. If, in
Figure 3, we take 40 generations as the point at which a criterion performance was reached, then
this required (40 generations) x (100 evaluations per generation) x (100 trials per evaluation) =
400,000 input trials.  In comparison, classifier systems have been shown to solve the six-
multiplexer problem much more quickly.  A classifier system also employs genetic search, but the
population consists of individual classifiers, somewhat analogous to a population of individual
predicates.  Results like the present ones have typically been achieved within approximately 5,000
input trials or fewer [13, 16] and have been extended to as few as 500 trials [15].  A neural network
system using back-propagation [12] solved the six-multiplexer in approximately 5,000 input trials.
Quinlan’s [14] system learned the six-multiplexer rapidly, but that system cannot be described as
emergent. 

These comparisons are not quite fair to the present approach because the performance measure
in Figure 4 is the population average performance, whereas high-performing individuals appeared
in the population much earlier.  In the runs of Figure 4, for example, the populations contained
individuals scoring over 99% before 2,000 evaluations, or about twice as quickly as the population
average.  Such individuals, however, did not yet have the clear DNF representation of Figure 5. 

The question of evolution times looms especially large in connection with scale-up to bigger
problems.  Among other things, a “bigger” problem usually means a longer input string, and the
size of the input space grows exponentially with string length. Consequentially, an exponentially
growing number of trials per evaluation are required in order to sample a fixed fraction of the input
space.  Grefenstette & Fitzpatrick [24] presented evidence that the GA can sample a relatively
small fraction of possible inputs and still get good results.  We experimented with this concept on
the six-multiplexer, trying as few as 16 random trials for evaluating fitness.  Results held up quite
well for 64 and 32 trials, but fell off sharply for 16.  Since there are 64 possible input strings for
the six-multiplexer, this may indicate that one should not sample less than about half of the input
space. The input space of the 11-multiplexer has 2048 members, so this would indicate sampling
at least 1000 points, which in itself would mean learning times for the 11-multiplexer an order of
magnitude longer than for the six-multiplexer.  Very long times were indeed found in preliminary
experiments with the 11-multiplexer. In the best experiment, a population average score of 87%
required (80 generations) x (200 evaluations per generation) x (300 trials per evaluation) =
4,800,000 trials.  By contrast, in unpublished work of the author, a classifier system reached a 90%
score on the 11-multiplexer within 3,000 random trials. We do not know of any neural net
investigation (using, e.g., back-propagation) of the 11-multiplexer. 

7.  Conclusion 

Perceptrons competent to solve quite difficult problems appear to be evolvable by genetic
search—suggesting greater versatility for the perceptron architecture than is sometimes thought—
but the process is long and does not scale up well.  A clue to the shortcomings may lie in the
comparison with classifier systems.  There, each classifier receives evaluation whereas in the
present work a single evaluation applies to a whole perceptron, and the individual predicates
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making up the perceptron are evaluated only indirectly.  Since a predicate corresponds logically to
a classifier, this would suggest the hypothesis that evaluation at the whole-system level, for
systems as large as these perceptrons, is simply too diffuse—and is therefore less efficient than—
evaluation at the level of the system’s principal components.  Of course, there may be situations
where a component interaction more complex than simple linear summation requires that the
whole system be evaluated as a unit.  An example may be recent work on a control problem [25]
in which each population member is a set of rules.  But in that case, too, the evolution times were
long, on the order of one million trials. 

An emergent system is one that produces a global result through interaction of strictly local
computations.  Given an interaction scheme, design of such a system means design of the local
computations. Such a process is suitable for genetic search, as has been illustrated by the
perceptron example, because the GA is good at altering and recombining pieces of solutions.  An
emergent system designed by a GA may in fact be one of the best approaches to maximizing
performance in an incompletely understood environment.  However, the present results plus those
on classifier systems suggest broadly that the “design time” of an emergent system will be
significantly improved if evaluation occurs not at the system level but at the level of the system’s
component computations.  Sic semper credit assignment! 
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Figure 1.   A 3-layer perceptron with binary input layer and predicates that compute
the AND of subsets of the set of the inputs and their complements.
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Figure 2.      A basic genetic algorithm (after a diagram in [26]).
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Figure 3.    Inside the GA’s Evaluate box for the perceptron problem.
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Figure 4.   Population performance.   Average over the population of the score of
each chromosome’s perceptron on the last 40 of 100 training trials versus number
of chromosome evaluations.   Curve averages over three runs, each starting with a
different random initial population.
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Figure 5.   Evolved predicates (left column) from a chromosome in one of the pop-
ulations of Figure 4.   Weights (right column) are after training.

000###     -.244
000###     -.244
001###     +.269
001###     +.269
01#0##     -.424
01#1##     +.410
10##0#     -.441
10##1#     +.262
10##1#     +.262
11###0     -.399
11###1     +.487

Reflect DNF terms of F6  and its complement.

0##0##     -.063
0111##     +.104
1####0     -.087
101###     -.003
11##10     -.084

Other predicates.  Note
  small weights.


