
S. W. Wilson 7 Mapping

Error for u = x
2

 (average of 4 runs)

Trials (1000s)

E
rr

or
 (

fr
ac

tio
n

of
 r

an
ge

)

0 2 4 6 8 10 12 14 16 18x103
0.00

0.02

0.04

0.06

0.08

0.10

Figure 1

S. W. Wilson 6 Mapping

as yet little further analysis.

Our work on the mapping problem has reached a level well beyond the starting point, but has

not much dented the basic questions: can a classifier system adapt its effective resolution to the

mapping’s curvature; will the resources required for high-dimensional mappings exhibit the in-

creasing efficiency predicted by theory (not discussed here)? The second question is to some ex-

tent dependent on the first. We hope by the time of the Workshop to have some better answers.

References

Albus, J. S. (1975). A new approach to manipulator control: the cerebellar model articulation
controller (CMAC). Journal of Dynamic Systems, Measurement, and Control, Trans. ASME,
Series G, Vol. 97, No. 3, Sept. 1975.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the Theory of Neural Computation.
Redwood City, CA: Addison-Wesley.

Hinton, G. E. (1981). Shape representation in parallel systems. Proceedings of the Seventh Inter-
national Joint Conference on Artificial Intelligence (pp. 1088-1096). Los Altos, CA: William
Kaufmann, Inc.

Poggio, T. & Edelman, S. (1990). A network that learns to recognize three-dimensional objects.
Nature, 343, 263-266.

Valenzuela-Rendón, M. (1991). The fuzzy classifier system: a classifier system for continuously
varying variables. Proceedings of the Fourth International Conference on Genetic Algorithms
(pp. 346-353). San Mateo, CA: Morgan Kaufmann.

S. W. Wilson 5 Mapping

smallest level within a few thousand trials. Match sets tended to have 10-15 members. Most

classifiers had receptive fields of three resolution units (field widths of 1, 3, 5,...,R are possible).

The receptive fields of a match set were typically centered on two or three adjacent input resolu-

tion intervals. The system seems to drive toward “narrow” (field) classifiers that each contain a

close approximation to the correct answer, rather than toward “broad” field classifiers that pro-

duce an accurate answer collectively (by averaging outputs) but are not individually very accu-

rate. This quite pronounced tendency toward individual accuracy would seem due to the

essentially competitive nature of the GA coupled with our payoff algorithms: individually accu-

rate classifiers appear to have the best survival chances.

In step (2) we set out to determine whether classifier field sizes and degree of overlap (i.e.,

placement of centers) would vary with the curvature of the mapping. To maintain a constant er-

ror, the system should employ narrower and/or more highly overlapping classifiers where the cur-

vature is steeper. Unfortunately, our experiments up to now have not demonstrated such a

variation to a significant extent, despite several modifications of the payoff algorithm. For exam-

ple, for the function u = x2, and an evolved population that had learned under the payoff algorithm

above, a scan of x from 0.0 to 1.0 shows a linearly increasing error in u. This is consistent with

absence of field-size variation over the domain, since the slope of the function is 2x.

It is of course important to get varying field sizes, since that is the basic point of evolving the

classifiers. We would like the system to produce broad classifiers—and thus need fewer of

them—where the mapping is only slightly curved, concentrating its resources in the steep parts

which are harder to approximate. The matter is currently in thought.

We have done a few step (3) experiments. On the 2-D mapping u = (x2 + y2)/2 the system

produces results similar to and consistent with those on u = x2. The error goes rapidly to a level

about twice that of the 1-D case; this is consistent with the fact that inputs x and y are independent.

Error also appears to rise over the domain proportional to the partial derivatives, indicating that

field sizes are again not adjusting to curvature. The system works for 2-D problems, but we have

S. W. Wilson 4 Mapping

thus each classifier asserts directly what the system’s output should be. Second, we found that a

strength-weighted average of the weights produces significantly better results than an unweighted

average. Third, it is better to adjust weights gradually, that is, to change a weight toward but not

all the way to, the correct value each time the weight is adjusted. This causes the weights to settle

more or less optimally with respect to the mapping and the receptive field size, indirectly reducing

strength fluctuations to which the GA is sensitive.

Choice of a good strength-adjustment technique proved rather subtle. Each classifier in a

match set makes its own assertion as to the correct output for that input. Since the correct output

is known, one can immediately calculate each classifier’s absolute error for that trial and use the

inverse—call it the accuracy—as a payoff. We found that more stable performance results from

dividing the individual payoffs by the number of classifiers in the match set: the sharing discour-

ages population takeover drives by the currently best classifiers, a technique employed in other

classifier systems. In this system, because a classifier’s error can be arbitrarily small (if it’s

“lucky”), the payoff can be extremely large. We found it advantageous, also for stability, to place

a ceiling on the inverse of the error approximately equal to the underlying resolution R.

The best performance, however, was not found until the strength-adjustment contained some

form of “punishment”. An effective algorithm, employed in Figure 1, gives payoff as above just

to the *top* most accurate classifiers in the match set, where *top* is a constant (e.g., 5) and is

also the divisor used for sharing. The rest of the matchset sustains relatively large (e.g., 50%)

strength reductions.

The genetic algorithm was applied on each input trial with a probability of 0.5. If invoked,

two classifiers were selected based on strength, crossed with probability 0.6 and mutated with

probability .01 per bit, then inserted into the population with a very low initial strength. Two clas-

sifiers were deleted based on the inverse of their strength.

The results in step (1) are exemplified by Figure 1. Error reached roughly twice the optimally

S. W. Wilson 3 Mapping

and each matching classifier also received a strength adjustment. A genetic algorithm step was in-

voked periodically in which two offspring were produced and two population members were de-

leted. The population size was 200.

The measure of performance was the absolute difference between the system’s output and the

correct value, expressed as a percentage of the output range, averaged over the last fifty trials.

Figure 1 shows a performance curve for the mapping u = x2. Note that the error rapidly falls to

0.02 (or 2%). What is the minimum possible error? In this experiment the input domain was

quantized into R = 32 equal parts, so that with random inputs, each quantized interval represented

the true input value with an average absolute error of 1/4R, or in this case 1/128 = .008, or about

1%. This assumes that an interval represents its center value; if inputs occur randomly over the

interval, their average absolute difference from the center value will be one-fourth of the interval

length. In the experiment of Figure 1, the minimum possible error is then the average interval er-

ror times the function slope (i.e. 2x) integrated over the domain, or again, 0.008.

Our experiments have three stepwise objectives: (1) first get it to work, i.e., produce results

with low errors on simple 1-D mappings; (2) on non-linear 1-D mappings, see what is required

for the system to assign, e.g., small-field, closely spaced classifiers to regions of high curvature to

maintain accuracy in those regions; (3) test on non-linear 2-D mappings for curvature following,

and compare the number of classifiers required for a given average error to the size of a look-up

table solution having the same average error. This last is a measure of coding—actually coarse-

coding—efficiency which the work of Albus and others (Hinton 1981) suggests can rise dramati-

cally as dimensionality increases.

In step (1) we learned a number of things. In the first place, we found that it is not desirable

simply to add up the weights to produce the output (as occurs in, e.g., the perceptron). In contrast

to systems that are not undergoing structural evolution, in our system the number of classifiers in

the matchset for a given input is in general constantly changing, which introduces spurious noise

if the weights are simply added up. The problem was solved by taking the average of the weights;

S. W. Wilson 2 Mapping

an output value. For example, let one device match (become active) if (0.0 < x < 0.1) and (0.8 < y

< 0.9), and let its output assertion be “0.9”; this “classifier” (as we shall call them) could be part of

a system that performed the mapping {x, y −> u ∋ u = x + y}. Over its sub-region, the classifier

could have been trained to assert an approximation to the mapping’s correct output. A population

of such devices could handle the whole mapping. But—how should the receptive field sizes and

positions of the population’s many “classifiers” be set in order to satisfy criteria of accuracy and

efficiency? The hypothesis of this work is that this can be done by treating the population as a

kind of classifier system which determines the field sizes and positions adaptively.

In our approach we define a classifier whose condition part contains a binary representation of

the position of a receptive field center and its size (or “spread”), for each of the domain variables

in the mapping to be approximated. Real-valued centers and spreads could have been used, but

instead we quantized the input domain and used binary encoding because binary GA methods are

better known. The classifier’s output is a scalar weight that is adjustable by standard error correc-

tion methods, such as the Widrow-Hoff algorithm. (The weights could have been evolved, too,

but we wished to concentrate on evolution of receptive field structure.) When presented with an

input vector, the output of the system as a whole is just some linear combination of the output

weights of all classifiers that match that input.

To standardize, we used a unit input domain. The output range could have any extent. How-

ever, error on a given output dimension was measured as a percentage of that dimension’s output

range. A mapping {ℜm → ℜn} was conceived as a set of m separate mappings from ℜn → ℜ.

The reason is that the functions involved in the separate component mappings are in general dif-

ferent, with different curvature characteristics, so that optimal receptive field sizes and positions

will also be different.

In a cycle of the basic experiment, random inputs were provided, a match set determined, and

the weights of the matching classifiers combined linearly to produce the system output. The

weights were then adjusted depending on what the correct output was (“supervised” learning),

S. W. Wilson 1 Mapping

Classifier System Mapping of Real Vectors

Stewart W. Wilson
The Rowland Institute for Science

100 Cambridge Parkway
Cambridge, MA 02142

(wilson@smith.rowland.org)

Submitted to the International Workshop on Learning Classifier Systems

Extended Abstract

Mappings from real vectors to real vectors {ℜm → ℜn} are important for sensory-motor con-

trol in natural and artificial systems, and even play a role in certain models of higher cognitive

function. Such mappings have been studied using neural networks (Hertz, Krogh & Palmer

1991), and the topic is important in the field known as approximation theory (Poggio 1990). As

early as 1975, Albus introduced a learning technique for mappings known as CMAC (Albus

1975) that was inspired by the wiring of the cerebellum and is applicable to robotic control.

Valenzuela’s (1991) fuzzy classifier system learns real vector mappings.

While the training of real vector mappings is now quite well understood, most systems start

with a fixed structure or fixed structural parameters, then modify weights. A largely missing in-

gredient is automatic methods of obtaining efficiency in the sense of minimizing the structure or

number of working elements subject to an error criterion. Since nearly every mapping, however

tortuous, has a piecewise-linear approximation, one can imagine a system that automatically

adapts its structure to the mapping’s curvature, using fewer and coarser elements where the curva-

ture is small but more and narrower elements where it isn’t. Our approach to this objective is to

try to combine the approximation philosophy of CMAC with the adaptive possibilities of a classi-

fier system.

Consider a device with “receptive fields” that can match a sub-region of a domain and assert

