Introduction to
 Learning Classifier Systems

 (mostly XCS)Stewart W. Wilson
Prediction Dynamics

On the original classifier system...

- Holland, J. H. (1986). In Machine Learning, An Artificial Intelligence Approach. Volume II.
- Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
- Lashon Booker
- Larry Bull
- Stephanie Forrest
- John Holmes
- Tim Kovacs
- Rick Riolo
- Robert Smith
- Stewart Wilson
- Many others
- Learning machine (program).
- Minimum a priori.
- "On-line".
- Capture regularities in environment.

To get reinforcements ("rewards", "payoffs")

(Not "supervised" learning-no prescriptive teacher.)

What inputs and outputs?

Inputs:

Now binary, e.g., 100101110
—like thresholded sensor values.
Later continuous, e.g., <43.0 92.17 .4 ... $0.32>$

Outputs:

Now discrete decisions or actions,

$$
\begin{aligned}
& \text { e.g., } 1 \text { or } 0 \text { ("yes" or "no"), } \\
& \text { "forward", "back", "left", "right" }
\end{aligned}
$$

Later continuous, e.g., "head 34 degrees left"

XCS contains rules (called classifiers), some of which will match the current input. An action is chosen based on the predicted payoffs of the matching rules.

<condition>:<action> => <prediction>.

Example: 01\#1\#\# : 1 => 943.2

Note this rule matches more than one input string:

$$
\begin{aligned}
& 010100 \\
& 010110 \\
& 010101 \\
& 011111 \\
& 011100 \\
& 011101 \\
& 011110 \\
& 011111 .
\end{aligned}
$$

This adaptive "rule-based" system contrasts with "PDP" systems such as NNs in which knowledge is distributed.

- For each action in [M], classifier predictions p are weighted by fitnesses F to get system's net prediction in the prediction array.
- Based on the system predictions, an action is chosen and sent to the environment.
- Some reward value is returned.

How do rules acquire their predictions?

1. By "updating" the current estimate.

For each classifier C_{j} in the current [A],

$$
p_{j} \leftarrow p_{j}+\alpha\left(R-p_{j}\right),
$$

where R is the current reward and α is the learning rate.

This results in p_{j} being a "recency weighted" average of previous reward values:

$$
\begin{gathered}
p_{j}(t)=\alpha R(t)+\alpha(1-\alpha) R(t-1)+\alpha(1-\alpha)^{2} R(t-2)+ \\
\cdots+(1-\alpha)^{t} p_{j}(0) .
\end{gathered}
$$

2. And by trying different actions, according to an explore/exploit regime.

A typical regime chooses a random action with probability 0.5 .

Exploration (e.g., random choice) is necessary in order to learn anything. But exploitation-picking the highest-prediction action is necessary in order to make best use of what is learned.

There are many possible explore/exploit regimes, including gradual changeover from mostly explore to mostly exploit.

Where do the rules come from?

- Usually, the "population" [P] is initially empty. (It can also have random rules, or be seeded.)
- The first few rules come from "covering": if no existing rule matches the input, a rule is created to match, something like imprinting.

Input: 11000101
Created rule: 1\#\#0010\# : 3 => 10
Random \#'s and action, low initial prediction.

- But primarily, new rules are derived from existing rules.

How are new rules derived?

- Besides its prediction p_{j}, each classifier's error and fitness are regularly updated.

Error:

$$
\varepsilon_{j} \leftarrow \varepsilon_{j}+\alpha\left(\left|R-p_{j}\right|-\varepsilon_{j}\right) .
$$

Accuracy: $\quad \kappa_{j} \equiv \varepsilon_{j}^{-n}$ if $\varepsilon_{j}>\varepsilon_{0}$, otherwise $\varepsilon_{0}{ }^{-\mathrm{n}}$
Relative accuracy: $\quad \kappa_{j}^{\prime} \equiv \kappa_{j} \prime\left(\sum_{i} \kappa_{i}\right)$, over [A].

Fitness: $\quad F_{j} \leftarrow F_{j}+\alpha\left(\kappa_{j}^{\prime}-F_{j}\right)$.

- Periodically, a genetic algorithm (GA) takes place in [A].

Two classifiers C_{i} and C_{j} are selected with probability proportional to fitness. They are copied to form $\mathrm{C}_{\mathrm{i}}{ }^{\prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime}$.
With probability $\chi, \mathrm{C}_{\mathrm{i}}{ }^{\prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime}$ are crossed to form $\mathrm{C}_{\mathrm{i}}{ }^{\prime \prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime \prime}$, e.g.,

10\#\#11:1 $\quad \Rightarrow \quad 10$ \#\#1\#: 1
\# 0001\#:1 \rightarrow \#00011: 1
$\mathrm{C}_{\mathrm{i}}{ }^{\prime \prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime \prime}$ (or $\mathrm{C}_{\mathrm{i}}{ }^{\prime}$ and $\mathrm{C}_{\mathrm{j}}{ }^{\prime}$ if no crossover occurred), possibly mutated, are added to [P].

Can I see the overall process?

What happens to the "parents"?

They remain in [P], in competition with their offspring.

But two classifiers are deleted from [P] in order to maintain a constant population size.

Deletion is probabilistic, with probability proportional to, e.g.:

- A classifier's average action set size a_{j}-estimated and updated like the other classifier statistics.
- a_{j} / F_{j}, if the classifier has been updated enough times, otherwise $a_{j} / F_{\text {ave }}$, where $F_{\text {ave }}$ is the mean fitness in [P].
-And other arrangements, all with the aim of balancing resources (classifiers) devoted to each niche ([A]), but also eliminating low fitness classifiers rapidly.

Basic example for illustration: Boolean 6-multiplexer.

$\begin{array}{r}101001 \\ \square \\ \hline\end{array}$

$$
F_{6}=x_{0}{ }^{\prime} x_{1}^{\prime} x_{2}+x_{0}{ }^{\prime} x_{1} x_{3}+x_{0} x_{1} x_{4}+x_{0} x_{1} x_{5}
$$

$$
l=k+2^{k} \quad k>0
$$

$$
F_{20}=x_{0} x_{1}^{\prime} x_{2}^{\prime} x_{3} x_{4}+x_{0}^{\prime} x_{1}^{\prime} x_{2}^{\prime} x_{3} x_{5}+
$$

$$
x_{0}^{\prime} x_{1}^{\prime} x_{2} x_{3}^{\prime} x_{6}+x_{0}^{\prime} x_{1}^{\prime} x_{2} x_{3} x_{7}+
$$

$$
x_{0} x_{1} x_{2} x_{3} x_{8}+x_{0}{ }^{\prime} x_{1} x_{2} x_{3} x_{9}+
$$

$$
x_{0} x_{1} x_{2} x_{3} x_{10}+x_{0}{ }^{\prime} x_{1} x_{2} x_{3} x_{11}+
$$

$$
x_{0} x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} x_{12}+x_{0} x_{1} x_{2}^{\prime} x_{3} x_{13}+
$$

$$
x_{0} x_{1} x_{2} x_{3} x_{14}+x_{0} x_{1} x_{2} x_{3} x_{15}+
$$

$$
x_{0} x_{1} x_{2}^{\prime} x_{3}^{\prime} x_{16}+x_{0} x_{1} x_{2} x_{3} x_{17}+
$$

$$
x_{0} x_{1} x_{2} x_{3} x_{18}+x_{0} x_{1} x_{2} x_{3} x_{19}
$$

$$
01100010100100001000 \rightarrow 0
$$

XCS
 What are the results like?-2

Population at 5,000 problems in descending order of numerosity (first 40 of 77 shown).

					PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TS
0.	11	\#\#	\# 0	1	0.	. 00	884.	30	. 50	31.2	287	4999
1	00	1\#	\#\#	0	0.	. 00	819.	24	. 50	25.9	286	4991
2	01	\#1	\#\#	1	1000.	. 00	856.	22	. 50	24.1	348	4984
3.	01	\#1	\#\#	0	0.	. 00	840.	20	. 50	21.8	263	4988
4	11	\#\#	\#1	0	0.	. 00	719.	20	. 50	22.6	238	4972
5.	00	1\#	\#\#	1	1000.	. 00	698.	19	. 50	20.9	222	4985
6.	01	\# 0	\#\#	0	1000	. 00	664.	18	. 50	23.9	254	4997
7.	10	\#\#	1\#	1	1000.	. 00	712.	18	. 50	22.4	236	4980
8	00	0\#	\#\#	0	1000.	. 00	674	17	. 50	21.2	155	4992
9	10	\#\#	0\#	0	1000.	. 00	706.	17	. 50	19.9	227	4990
10.	11	\#\#	\# 0	0	1000.	. 00	539.	17	. 50	24.5	243	4978
11.	10	\#\#	1\#	0	0.	. 00	638.	16	. 50	20.0	240	4994
12.	01	\# 0	\#\#	1	0.	. 00	522.	15	. 50	23.5	283	4967
13.	00	0\#	\#\#	1	0	. 00	545.	14	. 50	20.9	110	4979
14.	10	\#\#	0\#	1	0.	. 00	425.	12	. 50	23.0	141	4968
15.	11	\#\#	\#1	1	1000.	. 00	458.	11	. 50	21.1	76	4983
16.	11	\#\#	11	1	1000.	. 00	233.	6	. 33	22.1	130	4942
17.	0\#	00	\#\#	1	0.	. 00	210.	6	. 50	23.1	221	4979
18.	11	\#\#	01	1	1000.	. 00	187.	5	. 33	21.1	86	4983
19.	01	10	\#\#	1	0.	. 00	168.	4	. 33	19.1	123	4939
20.	11	\#1	\# 0	0	1000.	. 00	114	4	. 33	26.2	113	4978
21.	10	\#\#	11	0	0	. 00	152.	4	. 33	23.9	34	4946
22.	10	1\#	0\#	1	0.	. 00	131.	3	. 33	21.7	111	4968
23.	00	0\#	0\#	0	1000.	. 00	117.	3	. 33	22.8	57	4992
24.	11	1\#	\#0	0	1000.	. 00	68.	3	. 33	28.7	38	4978
25.	10	\#1	0\#	0	1000.	. 00	46.	3	. 33	20.6	4	4990
26.	10	\#\#	11	1	1000.	. 00	81.	3	. 33	23.9	113	4950
27.	\#1	\#0	\# 0	0	1000.	. 00	86.	3	. 50	23.6	228	4981
28.	01	10	\#\#	0	1000.	. 00	61.	2	. 33	22.5	16	4997
29.	01	00	\#\#	0	1000.	. 00	58.	2	. 33	22.2	46	4981
30.	10	0\#	0\#	1	0.	. 00	63.	2	. 33	22.8	22	4866
31.	11	0\#	\#1	1	1000.	. 00	63.	2	. 33	23.2	35	4953
32.	00	1\#	\#0	1	1000.	. 00	77.	2	. 33	20.7	7	4985
33.	10	\#1	0\#	1	0.	. 00	93.	2	. 33	24.5	28	4968
34.	11	\#1	\#1	1	1000.	. 00	59.	2	. 33	21.8	12	4983
35.	01	\#1	\# 0	1	1000.	. 00	75.	2	. 33	23.1	21	4944
36.	01	\# 0	\#1	0	1000.	. 00	36.	2	. 33	21.7	3	4997
37.	11	\#\#	01	0	0.	. 00	92.	2	. 33	19.7	41	4948
38.	10	\#\#	\#\#	1	703.	. 31	8.	2	. 67	22.3	10	4980
39.	\#1	1\#	\#	0	856.	. 22	11.	2	. 50	27.4	22	497

Action sets [A] for input 101001 and action 0 at several epochs.

247

			PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST	
0.	\#\# \#\# \#\#	0	431.	.440	8.	2	1.00	17.2	76	244	
1.	\#\# 10	\#\#	0	245.	.362	109.	2	.67	10.6	14	236
2.	\#\# 10	$0 \#$	0	893.	.146	504.	5	.50	11.2	8	200

					PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST
0.	\#\#	\# 0	\#1	0	519.	. 419	1.	1	. 67	16.5	11	1134
1.	\#\#	\#0	0\#	0	510.	. 390	27.	2	. 67	16.8	15	1119
2.	\#\#	1\#	\#\#	0	125.	. 261	0.	1	. 83	21.7	18	1132
3.	\#0	\#\#	0\#	0	1000.	. 021	4.	1	. 67	17.7	0	1117
4.	\#0	10	\#\#	0	454.	. 433	2.	1	. 50	14.8	53	1106
5.	\# 0	10	0\#	0	735.	. 343	27.	2	. 33	14.4	13	1106
6.	1\#	\#\#	\#1	0	169.	. 282	2.	1	. 67	24.4	12	1119
7.	1\#	\#\#	0\#	0	445.	. 418	13.	5	. 67	18.6	27	1119
8.	10	\#\#	\#\#	0	1000.	. 000	135.	2	. 67	24.2	3	1117
9.	10	\#\#	0\#	0	1000.	. 000	451.	3	. 50	23.4	17	1117

1333

					PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST
0.	\#0	1\#	0\#	0	761.	. 336	1	1	. 50	10.6	10	1325
1.	1\#	\#\#	0\#	0	652.	. 387	5.	1	. 67	10.9	11	1325
2.	1\#	\# 0	\#1	0	107.	. 197	6.	1	. 50	22.0	8	1308
3.	1\#	10	0\#	0	829.	. 228	26.	2	. 33	14.3	9	1325
4	10	\#\#	0\#	0	1000.	. 000	490.	4	. 50	11.6	26	1325

2410

			PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST	
0.	$1 \# \# \#$	$0 \#$	0	360.	.394	0.	1	.67	18.1	14	2404
1.	10 \#\#	$0 \#$	0	1000.	.000	478.	10	.50	20.1	95	2392

2725

					PRED	ERR	FITN	NUM	GEN	ASIZ	EXPER	TST
0.	\# 0	\#\#	0\#	0	863.	. 237	0.	3	. 67	21.1	18	2714
1.	10	\#\#	0\#	0	1000.	. 000	630.	13	. 50	22.6	117	2714
2.	10	\#0	0\#	0	1000.	. 000	49.	1	. 33	22.4	9	2638
3	10	1\#	0\#	0	1000.	. 000	58.	1	. 33	18.4	8	2693

Consider two classifiers C1 and C2 having the same action, and let C 2 be a generalization of C 1 . That is, C 2 can be obtained from C1 by changing some non-\# alleles in the condition to \#'s. Suppose that C1 and C2 are equally accurate. They will therefore have the same fitness. However, note that, since it is more general, C 2 will occur in more action sets than C1. What does this mean? Since the GA acts in the action sets, C 2 will have more reproductive opportunities than C 1 . This edge in reproductive opportunities will cause C 2 to gradually drive C 1 out of the population.

> Example: $p \quad \varepsilon \quad F$
> C1: 10\#001:0 $\Rightarrow 1000$. 001920
> C2: 1 0 \# \# 0 \# : $0 \Rightarrow 1000$. 001920

C2 has equal fitness but more reproductive opportunities than C 1 .

C 2 will "drive out" C 1

Does XCS scale up?

-_ Fraction correct
System error/payoff range

- - - . Pop size M/1000

What about complexity?

20m $\sim 5 \mathrm{x}$ harder than 11 m
$11 \mathrm{~m} \sim 5 \mathrm{x}$ harder than 6 m .
$\Rightarrow D=c g^{p}$,
where $D=$ "difficulty", here learning time, $g=$ number of maximal generalizations, $p=$ a power, about 2.3
$c=$ a constant about 3.2
Thus " D is polynomial in g ".

What is D with respect to l, string length?
For the multiplexers, $l=k+2^{k}$,
or $l \rightarrow 2^{k}$ for large k.
But $g=4 \cdot 2^{k}$, thus $l \sim g$,
So that " D is polynomial in l " (not exponential).

What about deferred reward?

Apply ideas from multi-step reinforcement learning.
Need the action-value of each action in each state.
What is the action-value of a state more than one step from reward?

Intuitive sketch:

$$
p_{j} \leftarrow p_{j}+\alpha\left[\left(r_{\mathrm{imm}}+\underset{a^{\prime} \in A}{\gamma \max } P\left(x^{\prime}, a^{\prime}\right)\right)-p_{j}\right]
$$

where p_{j} is the prediction of a classifier in the current action set [A],
x^{\prime} and a^{\prime} are the next state and possible actions, $P\left(x^{\prime}, a^{\prime}\right)$ is a system prediction at the next state, and r_{imm} is the current external reward.

Can I see the overall process?

- Previous action set $[\mathrm{A}]_{-1}$ is saved and updates are done there, using the current prediction array for "next state" system predictions.
- On the last step of a problem, updates occur in [A].

What are the results like?- 1

Fbb

QDF. .QOG. .QDF. .ODF..DOG. .QOG.

- Coding of each object:

$$
\begin{aligned}
& \mathrm{F}=110 \text { "food } 1 " \\
& \mathrm{G}=111 \text { "food } 2 " \\
& \mathrm{O}=010 \text { "rock1" } \\
& \mathrm{Q}=011 \text { "rock } 2 " \\
& \mathrm{~b}=000 \text { "blank" }
\end{aligned}
$$

- "Sense vector" for above situation: 000000000000000011010110
- A matching classifier: \#\#\#\#0\#00\#\#\#\#00001\#\#101\#\# : 7

Two generalizations discovered by XCS in Woods1.

$$
\begin{aligned}
& \text { (Food }=11=\text { "Tasty", "Opaque" } \\
& \text { Rock }=01=\text { "Bland" "Opaque" } \\
& \text { Blank }=00=\text { "Bland" "Clear") }
\end{aligned}
$$

What about non-binary inputs?

Each input variable x_{i} may be real or integer valued.
Classifier: $\left.<\left(x_{11}, x_{1 u}\right) \ldots\left(x_{n l}, x_{n u}\right)\right\rangle:\langle$ action $>\Rightarrow p$

- Condition consists of "interval predicates" int $_{i}=\left(x_{i l}, x_{i u}\right)$.
- Classifier matches iff $x_{i l} \leq x_{i}<x_{i u}, \forall i$.
- Crossover occurs between and within predicates.
- Mutation adds $\pm \operatorname{rand}\left(m_{1}\right)$ to allele. [m_{1} is real or integer as appropriate.]
- Covering creates a classifier with condition in which

$$
\begin{aligned}
& x_{i l}=\max \left[\left(x_{i}-\operatorname{rand}\left(m_{2}\right)\right), x_{i M I N}\right] \\
& x_{i u}=\min \left[\left(x_{i}+\operatorname{rand}\left(m_{2}\right)\right), x_{i M A X}\right]
\end{aligned}
$$

Example: Wisconsin Breast Cancer dataset

- Sample instances (699 in all).

1070935,3,1,1,1,1,1,2,1,1,2
1071760,2,1,1,1,2,1,3,1,1,2
1072179, 10, 7, 7, 3, 8, 5, 7, 4, 3, 4
1074610,2,1,1,2,2,1,3,1,1,2
1075123,3,1,2,1,2,1,2,1,1,2
1079304,2,1,1,1,2,1,2,1,1,2
1080185,10,10,10,8,6,1,8,9,1,4
1081791,6,2,1,1,1,1,7,1,1,2
1084584,5,4,4,9,2,10,5,6,1,4
1091262,2,5,3,3,6,7,7,5,1,4
1096800,6,6,6,9,6,?,7,8,1,2

- Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, Mitoses.
- 458 Benign +241 Malignant $=699$ Cases.
- Stratified 10 -fold cross-validation result:

Correct	Incorrect	Not Matched	Fraction Correct
68	2	0	0.9714
69	1	0	0.9857
65	5	0	0.9286
66	4	0	0.9429
65	3	2	0.9286
64	3	3	0.9143
70	0	0	1.0000
69	1	0	0.9857
65	3	1	0.9420
67	2	1	0.9571
		MEAN \Rightarrow	0.9556

- Performance similar to best other systems.

What about generalization?

Increasingly general, accurate classifiers were found by continuing the evolution.

If clump thickness is 7 or above and uniformity of cell size is 5 or above, malignancy is indicated.

If normal nucleoli is 10, then malignant.
If uniformity of cell shape is 8 or above and marginal adhesion is not 1, then malignant.

If uniformity of cell size is 1 and bare nuclei is 4 or less, then benign.

What if generalizations are not conjunctive?

"Standard" classifier condition is a conjunction of variable values or ranges:

```
#10#1# or (3,7)(0,2) ... (4,9) etc.
```

What about "if $x>y$ for any x and y, and action a is taken, payoff is predicted to be p " ?

Cannot be represented by a single conjunctive condition, since it's a relation.

However, it can be represented using an S-classifier:

$$
(x>y): a \Rightarrow p
$$

I.e., a classifier whose condition is a Lisp S-expression.

With appropriate elementary functions, S-classifiers can encode an almost unlimited variety of conditions.

They can be evolved using techniques drawn from genetic programming.

What about Non-Markov environments?

Example (McCallum's Maze):

Arrows indicate aliased states-each has the same local view. The optimal action is not determinable from the sensory input.

Approaches:

- "History window"-remember previous inputs
- Search for correlation with past input events
- Adaptive internal state

Adaptive internal state?

$<$ Environmental condition $><$ Internal condition $>$: $<$ Internal action $><$ External action $>\Rightarrow p$

Example: \#\#\#1\#\#0\# \# : 10 \# 504
Internal action modifies an internal register \mathbf{R}. Internal condition reads (must match) R. Internal state $=$ current contents of \mathbf{R}.

For a 1-bit register:
If internal action $=1$, set \mathbf{R} to 1
$=0$, set \mathbf{R} to 0
$=\#$, leave \mathbf{R} unchanged

Will classifiers evolve that set and read \mathbf{R} so as to distinguish aliased states and achieve high performance?

Woods101 (= McCallum's Maze)

Woods101.5

T	T	T	T	T	T		T			
T		T	F	T			T			
T		T		T			T			
T	T		T		T		T			
T		T		T			T		T	
T	T	T	T	T	T		T	T		T
T		T		T			T		T	
T	T		T		T		T		(b)	
T		T		T			T			
T		T	F	T			T			
T	T	T	T	T	T		T			

Optimum reached with register redundancy (4 bits vs. 2).

Woods102

(a)

Uses 8-bit register.

Directions - 1

- Generalized classifier (GCL) architecture:

$$
t(x): r(a) \Rightarrow p(x, a)
$$

"For x in the subdomain given by $t(x)$ and a satisfying the action restriction $r(a)$, the prediction is given by $p(x, a)$ "
GCL opens way to continuous (non-discrete) actions and maybe to continuous time.

- Anticipatory classifier systems that predict the next state. Individual classifiers predict entire state, or individual classifiers predict state components.
- Continue Non-Markov work to create Hierarchical LCS with sub-behaviors selected and controlled by higher behaviors. Based on extensions of the register idea.

Directions - 2

- Theory of XCS learning complexity. Time to performance, memory required. Hypothesis is that complexity is a low-order polynomial in target function complexity-in contrast to other learning methods.
- Improvements to XCS mechanisms. More sophisticated accuracy measures. Tournament selection. Long-path techniques.
- Comparison of XCS and strength-based (traditional) classifier systems. Does the traditional system have a niche? Where is accuracy-based weak?

How is XCS different from other RL systems?

- Rule-based, not connectionist or rbf-like
- Structure is created as needed
- Learning may often be faster because classifiers are inherently non-linear
- Learning complexity tractable
- Classifiers can keep and use statistics; difficult in a network
- User can "see the knowledge"
- Hierarchy and reasoning may be easier, since knowledge is in the form of discrete rules
- Powerful generalization ability, if syntax suits the problem domain

