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The idea of the “virtual polywell” came up on talk-polywell.org recently so I decided to try to create a
very simple model in that vein. The essence of a polywell fusor is a set of coils in a vacuum chamber
which are held at high enough potential along with a high current to help confine electrons and ions to
help bring about fusion reactions in the center. The purpose of this report is to describe a fluid model
which might be used to determine various parameters to help with the construction of a real polwell fusor.

The first step in the model is the creation of the magnet coils. Since this is a virtual device, the size of
the coils is taken to be physcially zero - clearly unreal, but simple to compute. There are only a few con-
figurations which lead to a uniform magnetic field: four, six or 12 coils is all that will work. Six coils is
the typical polywell configuration, so this model will be based on uniform size and spacings around the x,
y and z axis.

The fundamental formulas for magnetic fields from coils can be found in text books like “Classical Electro-
dynamics”, J.D. Jackson, Wiley and “Electromagnetic Fields and Waves”, P. Lorrain and D. Corson,
Freeman. The introduction of scale factors by use of dimensionless constants makes plotting more useful.
A dimensionless magnetic field is:
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where L is the distance from the center of the fusor to the center of any coil, Iy is the amp-turns in a coil,
to is the permiability of free space and B is the magnetic field (normally in units of Tesla). I also use
dimensionless position vectors:
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Assuming the coils are pure circles we have the following for the field components of any arbitrary coil:
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where uy, is position in the volume, uy, is position on the coils, ry = ux — uj, and j; is a dimensionless cur-
rent value. Since there are six coils and three field values for each coil, there are 18 integrals for every
point in the volume of interest. The coils are symmetric so only 1/8th of the volume actually needs to be
computed (less if one is careful). The integrals are listed below, with superscripts indicating the coil
number. Coils 1 and 2 are on the x axis, coils 3 and 4 on the y axis and coils 5 and 6 are on the z axis.



The radius of each coil is taken as RL.
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Each coil is also set to a high voltage. The entire system is placed inside a spherical vacuum chamber
which is grounded. We can easily find the electric field from any single point charge inside a grounded
sphere using the method of images. Then by principle of superposition, we can sum over all the charges



on a coil. This again gives rise to 18 integrals.

Let a be the radius of the grounded sphere and b be the distance from the center to the charge in ques-
tion, then the potential for a point inside a sphere is given by
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If the charge is a differential element on the coil, we can take dq = 4mweggVdl where dl is an element of
length along the coil. Since we seek a dimensionless representation of the electric field, I divide out the V
and since electric field is in terms of volts/meter, I multiply through by L, then compute the gradient of
the result relative to dimensionless u;.

The general formulas for the electric field are found by taking the gradient of & with the knowledge that a
is the radius of the ground sphere in units of L, b is distance from center of the fusor to the coil and is

easily found to be b=+/R2+1 also in units of L. I find
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Once I had computed the magnetic fields using the above 18 equations, I modified the code to use the
same 18 subroutines with similar denominators. The parameter % was passed as an argument and both
terms at the same d¢ step were added to the integral. The plots of these dimensionless electric and mag-

netic fields are seen below:
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Figure 1. Electric field



Figure 2. Magnetic field

To approach the physics of the polywell fusor one has a lot of approximations to choose from. I choose to
use the basic plasma physics fluid model because it has a lot of history in electric and magnetic field envi-
ronments which shows how useful the model can be. The basic equations are taken from “Principles of
Plasma Physics”, N.A. Krall and A.W. Trivelpiece, McGraw-Hill. In SI units we have
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Here, f. is the electron distribution function, ¢ is the velocity vector, e is charge and m is the mass of an
electron, ﬁv is gradient with respect to velocity, n. is the average electron density, pext is external elec-
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tron distribution (not moving), Jext is the moving external current density and |. refers to collisions. This
last term will be ignored from here on out, but it should be noted this is where collisions enter the pic-
ture.

To make use of the external fields described above we can easily separate the total electric and magnetic
fields into several components. The external fields are given by
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To start with, we take the fields in the coils as steady state and voltage on them as steady state as well so
there is no electromagnetic coupling. The POPS design can include these terms later, and by writing
everything fully it is easy to see where to put the fluctuating fields back in.

Using E and B as the fields created from the electrons it is easy to find the equations that show the con-
nections between the electron fluid distribution and forces acting on it. subtracting the external equa-
tions from the particle distribution equations gives
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If we assume (for the moment) that the fields created by the electrons is much weaker than the fields cre-
ated by the coils, then we can make some very crude estimates of the behavior of the fluid. While it is
obviously inaccurate for a real fusor, it does give some ideas on where to mount electron guns for injection
and where not to mount electron guns as well.

With the weak field assumption the particle motion equation becomes
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What I'd like to do now is transform this from a unit equation to a unitless equation to make a clear con-
nection between the computed fields for the electrostatic and magnetostatic external fields already
described. The units on the distrbution function are length™2 times velocity 3. The units on ¥ is
velocity, Eexq is Volt /length, and the magnetic field is described in the first equation in this article (Tesla
in SI units). To make this formula dimensionless, I multiply by (length? times velocity®) along with
writing the electric and magnetic fields in their dimensionless forms. I use f for the dimensionless par-
ticle distribution function, & and B for the dimensionless electric and magnetic fields, i for dimensionless

velocity and ¥ for dimensionless postion. The result of all this machination is
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where vg is some arbitrary velocity which makes the terms dimensionless (inverse time actually, but I'll fix
that in a minute). First I want to define the arbitrary velocity in terms of other variables which the
problem has control over, then I’'ll work on moving terms around to a more convienient description.

The most obvious choice for a fundamental velocity is to assume that an electron which accelerates from
dead still to the voltage on the grid has converted all its potential energy to kinetic energy. This gives
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Putting this in for the arbitrary velocity and moving terms around we get
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is what I call the “confinement parameter”. This parameter is dimensionless so the whole equation can be
scaled independent of real world constraints. Understanding the fluid distribution this way allows us to
find reasonable combinations of voltages and currents which will create a workable fusion device, possibly
of different sizes. It also helps to point out obvious combinations which simply can not work.

It is interesting that the time scale which makes the equation dimensionless is independent of the grid
voltage. The time scale is given by the coefficient of the left hand side:
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The Larmor frequency of an electron in a magnetic field is given by
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where B is the magnetic field in Tesla. Comparing these two equations we see that the fundamental mag-
netic field strength can be related to the Larmor frequency if we take
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The dimension of the device thus give us a fundamental scale for the Larmor frequency along with the
current in the coil and the voltage on the grid. Plots of Cpf + 1 x B for several values of Cp give us an
idea of what the forces are on an electron fluid at various points in the polywell. Since this is a multidi-
mensional space (3 dimensions for space, 3 for velocity and 1 (or two) for C,) it is non-trivial to get a feel
for what is going on inside a polywell.

It should be clear that computing electron distributions over time is straight forward. Some assumptions
on where to inject electrons in the first place need to be made using real physical devices, but a study of
the “force volume” C,& + 1 x B will help to define the ideal electron gun locations.

It is clear that even simple models are fairly complicated. Only building a polywell device will tell us the
real story. Models can help us find the best bet on what will work, and can certainly tell us what to
avoid.



