ENOWLEDGE GROWTH IN AN ARTIFICIAL ANIMAL

by

Stewart W. Wilson

Rowland Institute for Science, Cambridge MA 02142

ABSTRACT

Results are presented of experiments with a sim-
ple artificial animal model acting in a simulated en-
vironment containing food and other objects. Proce-
dures within the model that lead to improved perfor-
mance and perceptual generalization are discussed.
The model is designed in the light of an explicit
definition of intelligence which appears to apply to
all animal life. It is suggested that study of artifi-
cial animal models of increasing complexity would
contribute to understanding of natural and artificial
intelligence.

INTRODUCTION

The science of understanding and realizing in-
telligence in artificial systems needs a definition of
intelligence. Every science needs good definitions
of the problems it addresses. But in the artificial
intelligence field there has been a hesitancy about
defining intelligence. For example, on the first page
of a recent, widely used Al textbook we find: “A
definition in the usual sense seems impossible be-
cause intelligence appears to be an amalgam of so
many information-representation and information-
processing talents.” [1] For many Al goals, this omis-
sion 1s not important. But the lack of a good work-
ing definition can lead to uncertainty in evaluating
progress toward understanding intelligence per se,
even though results are in other respects substan-
tial.

This paper reports work using an artificial, be-
having, animal model to study intelligence at a
primitive level. An explicit definition of intelligence
is adopted, and guides construction of the model.
The definition has intuitive appeal and apparent ap-
plicability to the range of life from human beings to
very primitive animals. Because of this range, some
results with the primitive animal model should pro-
vide insight into intelligence in general.

A DEFINITION OF INTELLIGENCE

A good definition should be relatively simple and
yet cover most of the things we regard as belonging
to the concept and few we regard as not belong-

16

ing. The psychological literature offers a number of
useful similar efforts but the best definition of in-
telligence we have found is the following, from the
physicist van Heerden:

Intelligent behavior is to be repeatedly successful
in satisfying one’s psychological needs in diverse,
observably different, situations on the basis of
past experience.|2]

This definition (vH) is suitable for the computer
study of intelligence because it is comprehensive and
its terms are not difficult to define computationally
for experimental purposes. A high rate of receipt
of certain reward quantities can correspond to “re-
peatedly successful in satisfying one’s psychological
needs” (on the simplest level, somatic needs). To
“diverse, observably different, situations” can corre-
spond sets of distinct sensory input “vectors” with
each set having a particular implication for optimal
action. To “past experience” can correspond a suit-
able internal record of earlier interactions with the
environment, and their results.

THE ANIMAT MODEL

Computer modeling of human levels of intelli-
gence is complex. VH’s apparent applicability to
both simple animals and human beings (assuming
appropriate translations of its terms) suggests the
usefulness of the easier course of considering basic
problems that simple animals must solve, and con-
structing behaving models aimed at solving them.
Observation of the models should aid understand-
ing of all intelligence, and the construction of more
complex models.

To define our model, we abstract four basic char-
acteristics of simple animals:

1) The animal exists in a sea of sensory signals. At
any moment only some signals are significant;
the rest are irrelevant.

2) The animal is capable of actions (e.g. movement)

which tend to change these signals.

Certain signals {e.g. those attendant on con-
sumption of food), or certain signals’ absence
(e.g. absence of pain) have special status for him.

4) He acts, both externally and through internal
operations, so as approximately to optimize the
rate of occurrence of the special signals.

An animal’s sensory-motor situation is described
in very general terms by (1) and (2). Characteristics
(3) and (4) are assumptions which provide a way
of making definite the notion of “needs” and their
satisfaction. Together, the four characteristics form
the basis of our artificial animal model. For brevity,
we call such a model an “animat”.

We take as the animat’s basic problem the gen-
eration of rules which associate sensory signals with
appropriate actions so as to achieve the optimiza-
tion of (4), above. For this, the major questions are
adaptive, namely:

1} How to discover and emphasize rules that work,

2) Get rid of those that don’t (since memory space
is limited and noise is undesirable), and

3) Optimally generalize the rules that are kept (since
space is limited).

There is some previous work along these lines.
Notable were Grey Walter’s: machina speculatriz,
which was a sort of sub-animat which chose actions
based on needs and the sensory situation, but did
not adapt its rules; and m. doctlis, which could be
taught a conditioned response|3]. More recently,
Holland and Reitman{4] exhibited successful perfor-
mance by a rule-adaptive animat-like system which
optimized its rate of satisfaction of two distinct
needs. Booker[5] experimented with an animat-like
“hypothetical organism” which adapted its rules in
a simple environment that contained both attrac-
tive and aversive stimuli; he also provides a review
of earlier systems. The present investigation is in-
debted to the last two works.

IMPLEMENTATION

Within the above framework we make the model
definite by defining the animat’s: environment, sen-
sory channels, repertoire of actions, its association
rules, and then its performance and adaptation al-
gorithms.

Environment:

A rectangle on the computer terminal screen 18
rows by 58 columns and continued toroidally at its
edges defines the environmental space. Alphanu-
meric characters at various positions represent ob-
jects; the animat itself is denoted by *. Some, pos-
sibly many, positions are just blank.

Sensory Channels:

In studies so far, * has been given the ability to
pick up sensory signals from objects which happen
to be one step (row and/or column) away, in any of

17

the eight (including diagonal) directions; nothing is
detected from more distant objects. Thus the “sense
vector” has eight positions. With * located, for ex-
ample, as shown below left, the sense vector would
be as shown at the right:

TT
*F TTFbbbbb,

where b stands for blank. To form the sense vec-
tor, the circle of positions surrounding * is mapped,
clockwise starting at 12 o’clock, into a left-to-right
string.

But this vector is not the final sensory input. We
imagine that an object is ultimately sensed as the
outcome of measurements upon it by one or more
feature or attribute detectors. Without loss of gen-
erality we assume each detector produces either a O
or 1 output. If there are d detector types, an ob-
ject translates into a binary string d bits in length.
The sense vector as a whole thus translates into a
“detector vector” of 8d bits. Detector translations
or encodings of objects are fixed in *’s “low-level”
sensory hardware. They are assigned at the begin-
ning of an experiment. For example, in experiments
discussed here, “F” (food) is encoded as “117; “T”
{tree or obstacle} as “017; and “b” {open space) as
“00”. |[The first bit might be thought of as the out-
put of a “food smell?” detector; the second, of an
“opacity” detector.] Thus the above sense vector
translates into the detector vector:

01 01 11 00 00 00 00 00

The associative apparatus takes the detector vector
as input.

Repertoire of Actions:

*’s actions are restricted to single-step moves
in each of the eight directions. The directions are
numbered 0-7 starting at 12 o’clock and proceeding
clockwise; for example, a move in direction 3 would
be south-easterly.

The animat may move, or attempt to move, to a
position occupied by an object. The environment’s
response for each kind of object is predefined. In
present experiments, if the move is into a position
whose encoding is 00 (the blank object), there is
no response (though the new sense vector will in
general be different). If * steps into a space occupied
by an object whose encoding has the first bit equal
to 1, * is regarded as having eaten the object and
receives a reward signal. If * tries to step toward an
adjacent object whose encoding 1s 01, the step is not
permitted to occur (a collision-like banging may be
displayed).

The foregoing establish a semi-realistic situation
in which sensory signals carry partial, but uncertain,
information about the location of food, and avail-

able actions permit exploration and approach. En-
vironmental predictability can be varied through the
choice and arrangement of the objects. The number
of object types which may be experimented with is
limited only by the number of bits in the detector
encoding scheme.

Association Rules:

For its association rules, the animat uses a rudi-
mentary form of Holland’s[6] “classifier” rule. The
animat’s rules each consist of a “taxon” and an “ac-
tion”. The taxon is a sort of template capable of
matching a certain set of detector vectors. The ac-
tion is some one of the available actions. The ani-
mat’s classifier says, in effect, “if my taxon matches
the current detector vector, then consider taking
this action.” It is a kind of hypothesis about what
to do given a certain sensory situation (class of de-
tector vectors). An example of a classifier would be:

04 01 1# O# 00 00 04 0% /2

The matching rule requires that for any taxon
position having a 0 or 1, the same value must occur
in the detector vector; taxon positions with # (don’t
care) match unconditionally. Because of the #’s,
which confer a kind of generality on the classifier,
the above taxon, for example, will match 32 possible
detector vectors, including the one discussed earlier.

It is worth making a few further observations
about this classifier. First, it i1s a pretty good one
because if food is present in direction 2 and the clas-
sifier matches the detector vector, the action rec-
ommended is to move in direction 2 and not some
other direction! Second, in directions 0, 3, 6, and 7,
the taxon only requires that the object be, in effect,
non-food, it being irrelevant whether these direc-
tions have obstacles or are blank. Directions 1, 4,
and 5 have not been so generalized. Broadly speak-
ing, a classifier is more useful to the animat to the
extent it is general (matches many detector vectors)
without being so general that it makes too many
errors (l.e., that in certain matching situations its
recommended action is inappropriate).

Besides taxon and action, each classifier pos-
sesses a “strength”, a quantity serving as the prin-
cipal measure of a classifier’s value to the animat.
There may be other associated quantities, as well.

The animat keeps a classifier population [P} of
fixed size. Usually, [P] is initialized by filling all
the taxa with 0, 1, and # according to some ran-
dom rule; actions are similarly filled in. As the an-
imat’s CRT “life” evolves, the classifier population
changes, as will be described.

PERFORMANCE ALGORITHM

*’s basic cycle is one “step”, within which events
having purely to do with immediate behavior are

18

very simple. First, the current detector vector is cal-
culated. Second, [P] is searched for classifiers which
match it; these form the “match set” [M]. Third, a
classifier is selected from [M] using a probability dis-
tribution over the strengths of [M]’s classifier’s; that
is, the probability of selection of a particular clas-
sifier is equal to its strength divided by the sum of
strengths of classifiers in [M]. Fourth, * moves ac-
cording to the action of the selected classifier, or
tries to. The environment’s response to the move
will be as described earlier.

It can be seen that *’s move choice tends to be
the one having the greatest total strength among the
M| classifiers advocating it. Thus, overall, * first
asks which classifiers of |P] “recognize” the current
sensory situation, then from these tends to pick the
move with the greatest associated strength. The
subset of [M] consisting of classifiers whose action is
the same as the chosen action is called the “action

set” [A}

ADAPTATION ALGORITHM

The adaptation algorithm has three distinct as-
pects: 1) reinforcement of classifier strengths; 2)
“genetic” operations on classifiers yielding new clas-
sifiers; and 3) direct creation of classifiers.

Reinforcement:

As discussed in the last section, a classifier’s
strength is a major determinant of its ability to influ-
ence *’s action and therefore performance. We con-
sequently want strength to reflect the performance
which tends to result when this classifier is in [A].
That would be straightforward if every step were
rewarded: we could, for example, adjust the clas-
sifier’s strength by an amount proportional to the
reward. Classifiers which got bigger rewards would

be stronger, thus more likely to be an [A], etc.

Realistically, however, it is usually the case that
only some of an organism’s actions receive a def-
inite reward from the environment. Actions lead-
ing up to, or setting the stage for, a rewarded ac-
tion are themselves not directly rewarded, but they
must somehow be encouraged or the final payoff
will not occur. Holland[7] addressed this problem
in proposing a “bucket-brigade” algorithm in which,
very briefly, 1) classifiers make payments out of their
strengths to classifiers which were active on the pre-
ceding cycle, and 2) the same classifiers later corre-
spondingly receive payments from the strengths of
the next set of active classifiers. External reward
goes to the final active set in the chain. In effect, a
given amount of external reward will eventually flow
all the way back through a reliable chain, reinforcing
every precursor classifier.

Our basic implementation of this idea is as fol-
lows. On each step:

1) all classifiers in [A] have a fraction e of their
strengths removed;

2) the total strength thus removed from [A] is dis-
tributed to the strengths of any classifiers in |A-

1], defined as the action set in the previous step;

3) * then moves and if external reward is received
it is distributed to the strengths of [A]; if exter-
nal reward is not received, the classifiers of [A]
replace those of [A-1].

Thus every [A] participates in general in two trans-
actions, one paying out, the other receiving. We can
write

Sh=Sa-eSatp |

where S4 is [A]’s total strength on one step, S, its
total on the next, and p is the total payoff received
{either external reward or from the next [A]). If p is
the same over time, S, approaches a constant value
given by p/e, so that under reasonably steady pay-
off conditions, S4 is an estimator of typical payoff.
Similarly, the strength of any individual classifier is
an estimator of its typical payoff.

The total payoffs to [A] and |A-1] are in the sim-
plest case shared equally by the recipient classifiers.

This has the consequence that the more classifiers
are in, say, [A], the less payoff each gets.

Genetic Operations:

Consider two classifiers which match similar sit-
uations:

0# 01 14 O# 00 00 O# O% | 2
O# O# 1101 00 0% O# 04 / 2

Each is good, but each still lacks something in gener-
ality since, for example, the matching requirements
for O in bits 2-3 and 6-7, respectively, of each are
perhaps unnecessarily restrictive. Suppose we make
a new classifier by combining. bits 5-9 of the first
with bits 0-4 and 10-15 of the second. The result
would be the slightly more general classifier:

O# O# 14 0# 00 O# O# O# | 2

The above operation on two classifiers resembles a
kind of crossing-over or recombination of chromo-
some parts in genetics. It is an operation in which
two “parent” classifiers produce an offspring that is
possibly an improvement over both of them. An-
other “genetic” operation, this time using just one
parent, would first clone the parent, then mutate one
or more of the clone’s taxon positions. Other types
of operations on classifier structure can be imagined
(one will be discussed later). In each case the at-
tempt is to use existing classifiers as the starting
points for improved classifiers.

and

But the crossover points above were chosen quite
carefully; otherwise the offspring might have been no

19

lmprovement, or even a retrogression (to a classifier
more specific than either parent). We do not expect
the animat to know where best to cut and mutate.
How can we expect genetic operations to be of any
use?

Holland|[8] presents a mathematical theory show-
ing that a population of individual symbol strings,
in which each string can be assigned a numerical
worth, will progressively increase in average worth
as its members undergo reproduction, genetic oper-
ations on or among the offspring, and deletion of in-
dividuals to maintain constant population size. The
key requirement is that an individual’s probability
of reproduction be proportional to its worth. Hol-
land extended the theory to include classifier sys-
tems. In employing genetic operations, our animat
constitutes an exploration and test of the theory.

The specific algorithm employed is as follows:

1) A first classifier c1 of [P is selected with proba-

bility proportional to its strength;

2) If ¢1 is merely to be reproduced, a copy of it
1s made and added to [P]. To make room. some

classifier is deleted;

If ¢l is to be crossed with another classifier, a
second, ¢2, is selected, also with probability pro-
portional to strength, but from the subset of |P]
of classifiers having the same action as ¢1. Two
cut points are chosen as above, but at random,
and an offspring ¢3 constructed out of the parts.
c3 is added to [P| and some classifier is deleted.

Note that the parents are kept (unless one happens
to suffer the deletion, but this is unlikely). The
offspring, in effect, go into competition for payoff
with the parents. Better (higher strength) offspring
should proliferate more rapidly than their parents,
driving them out; for worse offspring, the reverse
should be the case.

“Create” Operations:

Occasionally, as * executes the performance algo-
rigthm, a detector vector may occur that no classi-
fier of [P] matches, i.e., the situation is unrecognized.
The animat’s response is to create a new, match-
ing, classifier. A taxon is made by adding some #’s
at random to the detector vector; an action is cho-
sen randomly. The created classifier is added to {P]
and one is deleted. The new classifier immediately
matches the previously unrecognized situation and
action occurs by the normal mechanism.

EXPERIMENTAL PROCEDURE

The animat model was designed with the vH-
intelligence definition as a guide. In experiments
with the model we are interested in finding pro-
cedures and parameter values that seem to give *

greater rather than less vH-intelligence. For this
two measures have been adopted. One is a perfor-
mance measure: given an environment, how many
steps does * take, on average, to find food objects?
The other is a generality measure: does * evolve
classifiers each tending to be useful in a number of
distinct situations? Generality is important because
it suggests that a high level of performance devel-
oped in one environment will carry over to a some-
what different environment.

The experimental procedure is to fix *’s methods
and parameters, then have him do a large number
of “problems” in a particular environment E. The
measures of performance and generality are tracked.
A “problem?” always consists of starting * at a ran-
domly selected blank position in E; then * moves
until he eats some food, at which point the problem
ends. The number of steps between start and food is
recorded; a moving average of this quantity over the
previous 50 problems is the performance measure,

STPSAV.

To track generality, we calculate a histogram
over the “periods” of all classifiers in 'P!. The pe-
riod of a classifier is a moving average of the number
of steps by * between occurrences in | Al of this clas-
sifier. Thus a frequently used classifier will have a
low period. |P] will then be general to the extent the
histogram of periods is largest at low period. As {P]
evolves we expect the histogram peak to move to-
ward lower period, if [P)’s generality is increasing.

TFT

T T T
F - F T F FT
T 7 F
T T F T
TFT TFT F T F
T T
T T T T
F TF F TFT F
T
T T TT T
F T FT F TF TFT
T 2
T T T T
F F FT F L3
T T T
T T
TFT F F F TF
T 7 T T

Figure 1. The Environment “WOODST7”.

An environment used for many of the exper-
iments 1s “WOODS7”, shown in Fig. 1. Although
WOODS7 may look easy, it actually contains a to-
tal of 92 distinct sense vectors, so *’s need to dis-
cover and generalize is substantial. To obtain per-
formance baselines, we can start * randomly, then
let him also move completely randomly until food
(F) is bumped into. For WOODS7, the long-term
average of the number of steps this takes is about 41

20

steps. We may also ask [9]: what is the best possible
performance (if, say, the animat had human capa-
bilities)? For every starting position, the number of
steps to the nearest F can be found and averaged
over all starting positions. The result for WOODS7
1s 2.2 steps.

RESULTS AND DISCUSSION

Fig. 2 shows a performance curve for a combi-
nation of procedures and parameter settings that is
among the best so far found. There is an initial rapid
improvement within the first 1000 problems (un-
typically good during the first 100 problems, where
STPSAV usually stays above 15), followed by very
gradual improvement thereafter. The performance
at 8000 problems, between 4 and 5 steps, is quite
respectable compared with “perfect” (2.2 steps), es-
pecially since * has no information whatsoever until
he is next to a nonblank object.

ro
-
10

12

AN

N
.

w© S~
\"\G

Average steps to food

T
-
-
e
o
-
-3
9

[\Y)
[
~n
w
-y
()]
[
~

Number of problems x 1600

Figure 2. STPSAV (ragged line) and Period Av-
erage (broken line) for * to 8000 prob-
lems. Period values as marked.

For the same animat, Fig. 3 shows the histogram
of periods of [P] at 8000 problems. There is a defi-
nite bulge for low periods; the average period is 116.
For comparison, the broken line in Fig. 2 shows the
trend of the period averages at earlier epochs, indi-

cating gradual generalization in the sense we have
defined.

Qualitatively, a * such as this one gives the im-
pression of “knowing” the Woods quite well. When
next to F, * nearly always takes it directly; occa-
sionally he will move one step sideways and take it
from that direction. When next to one or more T’s,

*

but with no F immediately in sight, * quite reliably
steps around the obstacle(s) and finds the F. When
*Is “out in the open”, i.e., the sense vector consists
of blanks, he has no information about the best way
to go, as in a thick fog. One might expect *’s be-
havior to resemble a random walk but this is not the
case. Instead, the movements look more like a gen-
eral “drift” in some direction, with some superim-
posed randomness. After several problems the drift
may shift to another direction.

49 €0 79
¥

Number of Classifiers

20

10
¥

A 4 fom = o1 a

@ S0 180 150 200 250 388 352 400 45@

Period

Fi‘gure 3. Histogram of classifier periods for the
* of Figure 2 at 8000 problems.

Parameter Values:

Parameter values for the animat of Fig. 2 were
arrived at by experiment. Three basic parame-
ters are discussed in this section, with observations
about setting them reasonably.

For Fig. 2, |P] contained 400 classifiers. A suit-
able value for this number appears related to the
number of distinct sense vectors or “scenes” (here,
92) in the environment. Too small a ratio of clas-
sifiers to scenes results in “forgetful” behavior in
which * keeps losing good moves that appeared well
learned. A small ratio means that for some scenes
deletion has a high probability of eliminating all
matching classifiers. For ratios above about four,
the forgetting is much less noticeable. To the extent
* generalizes, more and more classifiers match each
sense vector, further reducing the problem.

The “estimator fraction”, e, was set at 0.2, i.e.,
a classifier lost 20 percent of its strength each time
it entered |A]. In general, smaller values of ¢ mean
that a classifier’s strength reflects a weighted av-

21

erage of payoffs that reaches farther into the past.
Conversely, a larger value makes the strength more
sensitive to recent payoffs. It was found that e = 0.4
produced a noticeably more erratic STPSAV curve,
whereas changing from e = 0.2 to 0.1 did not affect
the curve significantly. Strength should accurately
estimate a classifier’s typical payoff. In this problem,
payoff fluctuations are apparently large enough so
that e = 0.4 results in too short an averaging interval
for good estimation. If e is too small, though, newly
formed classifiers may get evaluated too slowly; we
therefore kept e at 0.2.

The rate at which genetic operations occurred
was set proportional to the problem rate. Specif-
ically, at the end of each problem, a single genetic
event (as described earlier} took place with probabil-
ity RGPROB. Given the event, crossover occurred
with probability XPROB. Settings were typically
0.25 and 0.50, respectively. These seemed to ensure
that, on average, classifiers would be fully evaluated
by the reinforcement process by the time they were
selected for a genetic operation (or deleted). Typ-
ically, a problem took five steps in which each set
[A] had about 10 members, giving about 50 evalu-
ations. The above value for RGPROB then implies
200 evaluations per genetic event. This seems ex-
cessive except that some classifiers are much more
frequently used than others and we wanted to allow
for the well-rewarded but infrequently called-upon
classifier. It is possible our results would have been
speeded up, without adverse side effects, by a higher
genetic rate.

Distance Estimation:

Performance in the earliest animat experiments
was far below the level of Fig. 2. One defect was a
kind of “dithering” in which while * would tend to-
ward F’s, the path would have unnecessary sidesteps
and wanderings. It was then realized that the ba-
sic reinforcement algorithm does not care whether a
path from point A to food is long or short; there is
nothing which preferentially reinforces the most ex-
peditious classifiers. Any path, even a looping one,
will come to equilibrium at a high strength level in
its constituent classifiers.

The solution had to be more subtle than simply
penalizing long paths. What is required is a tech-
nique that, at every position, tends to prefer the
most direct of several possible moves, but does not
prevent the setting up of a long path if that is ac-
tually the shortest path available. Our solution was
twofold. First, each classifier was made to keep an
estimate of its distance (in steps) to food. This did
not require elaborate look-ahead. Instead each clas-
sifier in [A-1] adjusted its distance estimate accord-
ing to an average of the distance estimates of [A];
when reward was received, the members of |A] were
similarly adjusted, using the quantity 1. This tech-

nique, with each estimate an average over the last
few updates, is quite satisfactory.

The distances are employed as follows. In the
performance cycle, selection from [M] is based on
probability proportional to strength/distance instead
of just strength. Consequently, a move tends to be
selected that is not only strong, but also “short”.
Now comes the second part of the solution. At the
same time as [A] is formed, the set NOTIA] of the re-
maining classifiers in [M} is taxed by a small amount
(typically five percent): the “longer” classifiers thus
tend to incur a loss by not being selected. This
“lateral inhibition” induces a sort of catastrophe in
which the shorter classifiers become even more likely
to be picked and the longer become ever weaker, and
can disappear entirely. Note that the competition is
purely local and does not work against the setting
up of minimal long paths.

This technique is very effective against “dither-
ing”; the progressive takeover of a match set by
a discovered shorter move has been repeatedly ob-
served. Our solution is not perfect, however, be-
cause to suppress the special case of occasional loop-
ing situations we had to impose a small tax (five
percent) on [A]. Since [A] is the set which receives
payoff, the tax has little effect except if a loop is
taking place, and then the tax is soon very effective.
Still, in principal, even a small tax on [A] reduces
the strength flow in very long chains, putting them
at a reproductive disadvantage. This residual prob-
lem may be an indication that as paths grow, they
should be “condensed” into units of behavior longer
than one step.

Extensions to “Create”

A second area of changes which improved perfor-
mance had to do with the “Create” operations. As
discussed, Create at first only occured when [M] was
empty. It was found that * sometimes also got stuck
looping among situations with nonempty [M|’s. The
tax on [A] enabled recognition of these loops because
the total strengths in each [A] would tend to zero.
We put in a threshold that triggered Create if the
strength of any [M] got too low. This suppressed
looping dramatically and improved performance.

It was also found important to trigger Create
randomly, at a very low rate (typically, with prob-
ability 0.02 per step). * is engaged in path con-
struction, using the best available current evidence.
This can lead to good but nevertheless suboptimal
paths which might be improved if * would only try
something different. Random Creates are one way
to introduce a new move direction. Usually the new
classifier is no improvement. But when it is, and it
gets tried (gets in [A]), it will be (often heavily) rein-
forced and therefore given a good chance at eventual
reproductive success.

22

A different type of Create was also found useful.
Instead of randomly picking the action in a Created
classifier, * may make an educated guess, as fol-
lows. From its current position, * steps tentatively
into a randomly selected adjacent position. There,
[M] is determined and the strength-weighted aver-
age of the distances of its classifiers, MNDIST[M],
1s formed. The same is done for several adjacent
positions. These values are then compared with
MNDIST[M| for the starting position. Several de-
cision schemes are possible, with the general idea
of picking an action direction corresponding to the
shortest apparent path. If, however, none of the ad-
Jacent MNDIST{M]’s is better by more than 1 than
the current position’s value, it is preferable not to
create a new classifier. This technique is important
early in *’s existence, when very little is yet known;
but, interestingly, it appears that * should not rely
entirely upon it. Some suboptimal paths get set up
which tend not to be improved. The problem goes
away if random Creates are also available.

Effect of Genetic Operations:

Finally, we shall discuss what the experiments
suggest about the role of the genetic operations. To
begin, it is helpful to define a “concept” as a set of
classifiers from |P| having exactly the same taxon
and action, and for which there is no other classifier
in [P] with that taxon and action. The basic effect
of *’s genetic operations then appears to be to ex-
ert a pressure tending to increase the generality of
[P]’s concepts. That is, with time, the periods of
the concepts in [P| tend to decrease. The pressure
is restrained by the requirement that the concepts
be more or less correct {* must get the food expe-
ditiously). The precise point of balance appears to
depend on the parameter regime.

An important experiment is to evolve an animat
with reinforcement and Create going as usual, but
with genetic operations turned off. The result is a
performance almost as good as Fig. 2. But signifi-
cant generalization does not occur; the curve of his-
togram averages remains essentially flat at a value
of about 270. There thus appears to be a division
of effort: Create introduces the raw material, the
specific examples to be evaluated; and the genetic
operations produce more general concepts from the
examples.

It 1s clear that crossover is capable of making a
more general classifier out of two less general par-
ents; this was illustrated earlier. We are not sure,
however, just why for * the more general concept
has a selective advantage. Somehow, greater gener-
ality must lead to greater concept strength; there is
no other way to win out. Yet being active more fre-
quently does not in itself result in greater strength:
strength 1s an estimator typical payoff, not payoff
rate.

Our tentative hypothesis stems from noting that
a more specific concept will always have to share
payoff with any more general offspring that comes
into existence. This initially weakens the specific
concept so that the number of classifiers making it
up tends to fall (at equilibrium, numbers are propor-
tional to total strength). Consequently, the specific
gets even less of the payoff, since payoff is shared.
The result is a cascading situation in which the more
general concept wins out. The odds favor the gen-
eral because it has more than this one source of pay-
off.

While general classifiers appear to have a selec-
tive advantage, this is of no use unless such classi-
fiers can be formed and introduced in the first place.
Crossover is adequate for some types of generaliza-
tion. But a natural operation for the purpose is
obviously intersection. We have implemented this
operation as follows. Two parents are chosen and
a new taxon is formed by intersecting copies of the
parents’ taxa over a randomly selected interval. In
that interval, if the parents differ at a position, the
new taxon gets a #; if not, the new taxon gets the
common value. Outside the interval, the new taxon
is filled in from parent 1.

Intersection is a “hot” operation which should
be used cautiously because it can introduce # s
at a high rate. Nevertheless, our results show in-
creased generalization with little performance loss
when crossover and intersection are both available
to *.

Space remains only discuss the deletion tech-
nique. The simplest method, conceptually, is to
delete at random. Then, to a first approx1mat10n
the equilibrium number of classifiers in a concept—
or in any subset of [P] whatsoever—is proportional
to its total strength. A drawback of random deletion
1s that a valuable concept that happens to consist
of one classifier is at considerable risk until it re-
produces This is not a problem on average if P
is large enough. Yet one wonders whether “deleting
the weak” might not be better.

Several methods have been tried, all but one
clearly worse than random deletion. The possibly
better method is to delete with probability propor-
tional to the reciprocal of strength. This has the
obvious effect of tending to protect the precious clas-
sifier just mentioned. It can also be shown that the
probability that a concept |C] will lose a member
under this type of deletion is proportional to the
square of its number, which places a strong restraint
on over-expansion.

The * of Fig. 2 employed both intersection
g /
(along with crossover) and inverse-strength deletion.

23

CONCLUSION

In its simple way, * meets the definition of intel-
ligence stated at the beginning. * becomes good
at satisfying its need for food in a Woods of di-
verse object configurations on the basis of experi-
ence. Though not yet tested, *’s rule generaliza-
tion over time suggests that performance would be
maintained in a somewhat different Woods, or if the
Woods slowly changed.

*

While the present animat has numerous limi-
tations (sensory, motor, memory, etc.) there does
not seem to be any essential barrier to removal of
the limitations and to carryover of the present algo-
rithms to a more sophisticated model in more com-
plicated environments.

ACKNOWLEDGEMENT

The author wishes to acknowledge valuable con-
versations with C.G. Shaefer of the Rowland Insti-
tute.

REFERENCES

1] Winston, P.H. Artificial Intelligence, 2nd ed.
Reading, Massachusetts: Addison-Wesley, 1984.

[2] van Heerden, P.J. The Foundation of Empirical

Knowledge. Wassenaar, The Netherlands: Wis-
tik, 1968.
(3] Walter, W.G. The Living Brain. New York:

Norton, 1953.

(4] Holland, J.H., & Reitman, J.S. Cognitive sys-
tems based on adaptive algorithms. In Pattern-
Directed Inference Systems, Waterman, D.A., &
Hayes-Roth, F., (eds.). New York: Academic
Press, 1978.

i5] Booker, L. Intelligent Behavior as an Adapta-
tion to the Task Environment, Ph.D. Dissertation
(Computer and Communication Sciences), The
University of Michigan, 1982.

/6] Holland, J.H. Adaptation. In Progress in Theo-
retical Biology, 4, Rosen, R., & Snell, F.M., (eds.).
New York: Plenum, 1976.

{7] . Genetic algorithms and adaptation.

In Adaptive Control of lli-Defined Systems, Self-

ridge, O.G., Rissland, E.L., & Arbib, M. A, (eds.).

New York: Plenum, 1984.

Adaptation in Natural and Artificial
Systems. Ann Arbor: University of Michigan
Press, 1975.

Martha Gordon, personal communication.

8

9]

