
S. W. Wilson 5 GA-Easy

The results of Section 5 are of this sort. One sometimes
hears the question: Is a GA more powerful than an equal
population of hill-climbers, and if so, why? The answer
seems to be yes, as noted. But why?

Perhaps the basic reason is that the hill-climber can get
tripped up by an individual case, whereas on a problem
that is GA-easy but not SAO, the GA is carried over such
cases by the statistical power of the schema theorem. Note
also that each of a population of hill-climbers is likely to
get stuck somewhere, but in different places than its neigh-
bors. In a problem like the one constructed in this paper,
each hill-climber will at the same time be correct in a
number of places (in the string), again at different places
than its neighbors. Crossover would permit the good parts
to be communicated and accumulated. But only the GA
has crossover.

References

[1] D. E. Goldberg. Simple genetic algorithms and the
minimal, deceptive problem. In L. Davis, editor,
Genetic Algorithms and Simulated Annealing, chapter
6, pages 74-88. Morgan Kaufmann, Los Altos, CA,
1987.

[2] D. E. Goldberg. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

S. W. Wilson 4 GA-Easy

5 IS THIS FAIR TO HILL-CLIMBERS?

One might suggest that the genetic algorithm has a built-in
unfair advantage over a steepest-ascender since the GA
works from a population of N initial strings whereas the
steepest-ascender uses just one. What if there were N
steepest-ascenders each starting with a random string and
searching independently? The probability of finding the
optimum somewhere among N such steepest-ascenders
certainly increases with N. How does this compare with a
population of size N under the GA?

Here we are on somewhat more complicated ground. Let
us start by assuming we are trying to optimize the function
F using N steepest-ascenders. Since a steepest-ascender
starting at four of the eight possible starting strings for f2
will reach the optimum of f2, the probability of reaching
the optimum of F, starting with a random 3m-bit string, is
(4/8)m. The probability of not finding the optimum in such
a string is then [1-(.5)m]. If we have N random strings, the
probability that the steepest-ascender will not find the opti-
mum in any of the strings is [1-(.5)m]N. Consequently, the
probability of finding at least one optimum in a population
of N strings, written in terms of string length n = 3m, is
1 - [1 - (.5)n/3]N .

Let us go one step further and suppose this probability
equals some criterion value, say one-half. We could then
set the above expression equal to one-half and solve for N.
The result N(n) would be the minimum size population for
which the steepest-ascender would have probability .5 of
finding the optimum. The manner in which N(n) in-
creased with n would suggest how the steepest-ascender’s
ability scaled with increasing problem size.

Our main purpose is to compare the N-string steepest-as-
cender with a GA having population N. As noted in Sec-
tion 2, there is at present no formal analysis that would tell
us, say, how large N has to be for the GA, or even the GA
on a GA-easy problem such as this, to have probability .5
of finding the optimum. Current formal work on optimal
population size, while important, does not yet directly ad-
dress the question of convergence to the optimum. It is
therefore necessary to proceed experimentally.

Our approach is to take a range of values for n, calculate
the corresponding values of N(n), then see if a GA using
these values for N finds F’s optimum substantially more
often than half the time. Specifically, we chose values for
n of 15, 18, 21, 24, 27, and 30 bits. The resulting values of
N(n) are shown in the table below; in each case, the GA’s
population size was the next lower even integer. The GA
employed tournament selection (2-string tournaments),
single-point crossover with probability 0.6, and point mu-
tation with probability equal to the reciprocal of popula-
tion size. For each value of N, the GA was run 10 times for
30 generations. The measure of the GA’s success was the
proportion of the 10 runs for which the optimum was

present in the final generation. Also tabulated are mea-
sures of computational effort for the steepest-ascender and
the GA. In both cases we simply use the number of string
evaluations. For the GA, this is just N times the number of
generations (30). For the steepest-ascender, note that to
determine the best bit change for a single string requires n
evaluations and the total “climb” for that string should av-
erage on the order of n/2 steps. Since there are N strings,
the total number of evaluations is therefore about (Nn2)/2.

n N(n) GA-success GA-effort SA-effort

15 21.83 0.8 600 2250
18 44.01 0.9 1320 7128
21 88.38 1.0 2640 19404
24 177.10 1.0 5280 50688
27 354.54 1.0 10620 129033
30 709.44 1.0 21240 318600

These results suggest that the GA is more effective, with
much less effort, than the N-string steepest-ascender on
function F. With exponentially rising population sizes, the
steepest-ascender has only an even chance of finding the
optimum, whereas the GA found the optimum with little
difficulty in the small populations, and with near certainty
in the larger ones. The GA in fact found the optimum in
earlier generations as n increased.

The tentative implication of the results of this and the pre-
vious section is that within the class of functions that are
GA-easy, and therefore presumably actually rather easy
for a GA, there exists a quite large subclass of problems
that are not easily solvable by “steepest-ascent”, a basic
hill-climbing technique. Furthermore, on these problems
the GA would appear to be more powerful than an equal
population of steepest-ascenders. Further research along
this particular direction might compare the GA, again on a
GA-easy but not SAO problem, with a population of more
sophisticated hill-climbers that employ stochastic methods
to escape local optima.

6 CONCLUSION

In this paper we compared the GA with simple but well-
defined optimization methods on relatively simple prob-
lems. We found, perhaps somewhat surprisingly, that
“GA-easy” problems can be difficult for these other meth-
ods, but not for the GA. The results add to our confidence
that “GA-easy” is a non-trivial characterization. Formal
analysis of genetic algorithm action on GA-easy problems
should be relatively straightforward. If such problems are
actually moderately interesting, the analysis is doubly mo-
tivated.

Our approach proposed that careful comparisons with
methods that the GA beats could yield insight into the GA.

S. W. Wilson 3 GA-Easy

and determine the value of k and the bit value at k for
which the highest fitness is found (breaking ties by some
definite procedure). Call these k’ and b’, respectively.
Next form a new string S’ that is like S except that the bit
at position k’ is set to b’. Now replace S by S’ and repeat
this process until the fitness of S no longer increases. If for
any initial string the fitness of the string finally arrived at
equals the highest possible value of f we shall say that f is
steepest-ascent optimizable (SAO).

Inspection of Figure 2 shows that f2 is not steepest-ascent
optimizable because 000, which is sub-optimal, will be
reached starting from any of the four strings in the lower
part of the figure. Let us next see if f2 is GA-easy:

f (0**) 3/4 f (*0*) 3/4 f (**0) 3/4
f (1**) 5/4 <— f (*1*) 5/4 <— f (**1) 5/4 <—

f (00*) 1 f (0*0) 1 f (*00) 1
f (01*) 1/2 f (0*1) 1/2 f (*01) 1/2
f (10*) 1/2 f (1*0) 1/2 f (*10) 1/2
f (11*) 2 <— f (1*1) 2 <— f (*11) 2 <—

The function f2 is indeed GA-easy. We have shown by this
example that the proposition “GA-easy does not imply
steepest-ascent optimizable” is true. This is stronger than
our previous result, since apart from our intuition, it can be
proved that functions that are bit-setting optimizable form
a proper subset of functions that are steepest-ascent opti-
mizable. Briefly, assume there exists a function f that is
BSO but not SAO. If f is not SAO, it must have at least
one local optimum (a maximum), where the steepest-as-
cender could get stuck. Now suppose the bit-setting opti-
mizer happened to be started with initial string S precisely
on one these local maxima. By definition of local maxi-
mum, any bit change in S would produce a string with
non-increasing fitness, so that the bit-setting optimizer
would also get stuck, contradicting the hypothesis that f is
BSO. Thus BSO implies SAO. The converse is not true,
since for example f1 is SAO but not BSO.

4 LONG STRINGS

The previous main result, that GA-easy does not imply
SAO, is certainly interesting but we need to check that it
doesn’t merely apply to short string problems like those
used to prove it. Is the proposition also true for arbitrarily
long strings? The answer is yes, as will now be shown.

Consider a function F of bit strings of length n = 3m (m an
integer >> 1). Further, let the value (fitness) of a string un-
der F be the sum of the values obtained by applying f2 to
successive triples of the bits of the string. That is,

F(x1, x2, x3, x4,...,x3m) = f2(x1, x2, x3) + f2(x4, x5, x6) +
... + f2(x3m-2, x3m-1, x3m).

Clearly, because f2 is not steepest-ascent optimizable, F is
also not SAO. To see this it is only necessary to assume a
starting string for optimizing F in which at least one of the
three-bit arguments to at least one of the f2 terms above is
a “bad” (unsuccessful) starting point for optimization of f2.
Then no matter how effective the optimizer on the rest of
the string, those three bits will never arrive at 111, so the
global optimum of F will not be reached.

Showing that F is GA-easy is more difficult. We shall
again proceed by suggestive example, and not attempt a
formal proof. First, shorten F, without loss of generality,
to a function of six bits. We next need to be convinced that
schema values are simply sums of the schema values for
f2, as in this example:

F(1***10) = f2(1**) + f2(*10).

But this equation is equivalent to the sum of the eight
equations:

F(100010) = f2(100) + f2(010)
. . .
F(111110) = f2(111) + f2(110),

all of which hold by definition of F. Therefore, we can say
that F’s schema fitnesses just sum f2’s schema fitnesses in
the manner above.

Now, to demonstrate GA-easy, we must show that in every
complete set of competing schemata, the schema with
maximum fitness contains the optimum. In other words,
e.g.,

F(1***11) > F(0***00), F(0***01), ... , F(0***11),

meaning that F(1***11) is greater than any schema value
on the right. Consider the first inequality. Since we have
just found that F’s schema values are sums of f2’s, we can
write

F(1***11) = f2(1**) + f2(*11)
and
F(0***00) = f2(0**) + f2(*00).

We are therefore asking whether

f2(1**) + f2(*11) > f2(0**) + f2(*00).

But because f2 is GA-easy, this must be true. Since there
was nothing unique about our choice of schemata, we con-
clude that F is GA-easy. Further, If F is GA-easy but not
SAO, then we have demonstrated that the proposition
“GA-easy does not imply steepest-ascent optimizable” is
true for strings of arbitrary length.

S. W. Wilson 2 GA-Easy

Let us now ask how hard f1 is for a GA. Unfortunately,
while we could frame a definition of “GA-optimizable” as
being, say, optimizable by a GA starting from a random
initial population of such-and-such a size, etc., it could not
be usefully applied to a given problem because the precise
action of a GA is not sufficiently well understood to allow
prediction of the results. In effect, the only way currently
to determine “GA-optimizable” is experimentally. How-
ever, optimization problems can be characterized in terms
of their deceptiveness and there tends to be a correlation
between deceptiveness and the difficulty in practice of op-
timization by a GA.

According to theory centered on the schema theorem, GAs
“work well when building blocks—short, low-order sche-
mata with above-average fitness values—combine to form
optima or near-optima” [2]. Goldberg particularly has
studied function-coding combinations that are deceptive to
the GA in the sense that some or all short, low-order sche-
mata whose fitness values are optimal within complete sets
of competing schemata ([2], p. 39) do not in fact contain,
or sample, the global optimum. For such functions, the
schema theorem implies that the GA will be misled and
may fail to find or retain the global optimum before con-
verging to a suboptimal solution. Experimentally, this is
the case (with some qualifications that are outside our
present scope), and it can safely be said that deceptive
problems will be difficult to optimize using a GA.

In this paper we focus on the converse proposition and
suggest as a working hypothesis that the more non-decep-
tive a problem, the easier it will be to GA-optimize. In
particular, let us define a problem to be GA-easy if the
highest fitness schema in every complete set of competing
schemata contains the optimum. Noting that our connec-
tion between GA-easy and GA-optimizable is reasonable
but entirely heuristic, let us now ask whether of not f1 is
GA-easy. To do so we enumerate the problem’s complete
sets of competing schemata and see if the highest fitness
schema in each set contains the optimum. The results are

as follows (schema fitness values assume a uniform sche-
ma distribution, true on average at the start of search from
a random initial population):

f (0**) 7/8 f (*0*) 7/8 f (**0) 9/8
f (1**) 2 <— f (*1*) 2 <— f (**1) 7/4 <—

f (00*) 1/4 f (0*0) 3/4 f (*00) 3/4
f (01*) 3/2 f (0*1) 1 f (*01) 1
f (10*) 3/2 f (1*0) 3/2 f (*10) 3/2
f (11*) 5/2 <— f (1*1) 5/2 <— f (*11) 5/2 <—

The maximum fitness schema (indicated by an arrow) in
each competing set contains the optimum, 111, so that, ac-
cording to our definition, f1 is GA-easy. Earlier we found
that f1 is not bit-setting optimizable so that we have shown
by example that the proposition “GA-easy does not imply
bit-setting optimizable” is true.

This result is somewhat interesting, but not terribly sur-
prising, since bit-setting optimization is a very weak meth-
od and should not often succeed. However, we now know
that GA-easy, while making perhaps the strongest possible
assumption about schema non-deceptiveness, nevertheless
includes functions that cannot be bit-setting optimized. In
the next section we develop a more interesting result.

3 STEEPEST-ASCENT OPTIMIZATION
AND GA-EASY

Consider function f2 (Figure 2) which is similar to f1 ex-
cept that it has a local maximum at 000. Like f1, f2 is not
BSO. However, unlike f1, f2 cannot be optimized by a bi-
nary form of steepest-ascent. To define (binary) steepest-
ascent, suppose we again start with an arbitary string S of
length n and see which of the two possible settings of the
kth bit gives the string a higher fitness. We perform this
experiment, always starting with S, for each possible k,

111 : 3

011 : 2 101 : 2 110 : 2

001 : 0 100 : 1 010 : 1

000 : 1/2

Figure 1: Function f1

111 : 3

011 : 1 101 : 1 110 : 1

001 : 0 100 : 0 010 : 0

000 : 2

Figure 2: Function f2

S. W. Wilson 1 GA-Easy

Abstract

It is shown that there are many functions which
are GA-easy but not readily optimizable by a ba-
sic hill-climbing technique. The results, includ-
ing a comparison of the genetic algorithm with a
population of hill-climbers, provide insight into
the operation of the GA and suggest further study
of GA-easiness.

1 INTRODUCTION

Recent work beginning with Goldberg’s [1] seminal paper
on deceptiveness has aimed at characterizing functions (or
more exactly, function-coding combinations) that are diffi-
cult to optimize using a genetic algorithm. The purpose of
those investigations has been to explore the limits of GA
power and, if possible, to exceed them via innovations in
the algorithm. It would also be of interest to have good
characterizations of functions that are easy for GAs, par-
ticularly if the functions cause difficulties for standard op-
timization methods. Identification of such functions and
methods can give us a clearer picture of where and to what
the GA is superior, and so aid in the practical selection of
optimization techniques. But characterizing GA capabili-
ty in terms of the methods it beats should also give insight
into the still somewhat mysterious operation of the GA by
suggesting—when we understand how the other methods
work—which aspects of the GA could account for its su-
periority.

The present paper takes a few steps along this path by
showing, through example problems, that there is a large
class of functions which are GA-easy (according to a quite
natural definition), but whose global optima cannot reli-
ably be found by a basic hill-climbing technique. Further,
an experiment is performed indicating that the GA is supe-
rior, on this class of functions, to a set of hill-climbers
equal in number to the GA population size. These demon-
strations contribute to the evidence that (1) the GA pos-
sesses local-optimum-avoiding capability exceeding that
of basic hill-climbers, and (2) crossover gives the GA a
distinct advantage over multiple independent local
searches.

The rest of the paper is organized as follows. In the next
section we warm up by defining what is perhaps the most
elementary binary search technique, bit-setting optimiza-
tion, and show that GA-easy does not imply bit-setting op-
timizable—in other words that there is a class of functions
that are GA-easy but cannot be optimized by this tech-
nique. Then in Section 3 we strengthen this result by de-
fining steepest-ascent optimization and showing that GA-
easy does not imply steepest-ascent optimizable. In Sec-
tion 4 we make sure this result applies to strings of arbi-
trary length. Then in Section 5 we demonstrate that on
functions that are GA-easy but not steepest-ascent-optimi-
zable, the GA should do better than an equal population of
steepest-ascenders. Section 6 summarizes and comments
on these results.

2 BIT-SETTING OPTIMIZATION AND
GA-EASY

Let us consider an optimization problem in which the
function f to be optimized is defined over a Hamming
space so that points in the space are represented by binary
strings. Suppose we begin with an arbitrary string S of
length n and see which of the two possible settings of the
kth bit gives the string a higher value for f (i.e., a higher fit-
ness). We perform the same experiment, always starting
with S, for each possible k, and then form a new string S’
consisting of the better settings of each bit (if neither is
better we pick one at random). If for any initial string S
the value of f (S’) equals the highest possible value of f we
shall say that f is bit-setting optimizable (BSO).

Now consider the function f1 of three-bit strings shown in
Figure 1. Each point of the lattice contains a bitstring to-
gether with the fitness (function value) for that string. The
arrows indicate the direction of fitness change between
points that differ by a single bit. By inspection, we see
that f1 is not bit-setting optimizable (NBSO) since if the
optimizer happens to start with S = 001 it will end up with
S’ = 110, which is not the optimum. (Note in passing that
if the fitnesses of 001 and 000 were changed to 1 and 0, re-
spectively, the problem would be BSO.)

GA-Easy Does Not Imply Steepest-Ascent Optimizable

Stewart W. Wilson
The Rowland Institute for Science

100 Cambridge Parkway
Cambridge, MA 02142

(wilson@think.com)

From Proceedings of The Fourth International Conference on Genetic Algorithms,
R. K. Belew and L. B. Booker (eds.), San Mateo, CA: Morgan Kaufmann Publishers (1991)

S. W. Wilson 5 GA-Easy

The results of Section 5 are of this sort. One sometimes
hears the question: Is a GA more powerful than an equal
population of hill-climbers, and if so, why? The answer
seems to be yes, as noted. But why?

Perhaps the basic reason is that the hill-climber can get
tripped up by an individual case, whereas on a problem
that is GA-easy but not SAO, the GA is carried over such
cases by the statistical power of the schema theorem. Note
also that each of a population of hill-climbers is likely to
get stuck somewhere, but in different places than its neigh-
bors. In a problem like the one constructed in this paper,
each hill-climber will at the same time be correct in a
number of places (in the string), again at different places
than its neighbors. Crossover would permit the good parts
to be communicated and accumulated. But only the GA
has crossover.

References

[1] D. E. Goldberg. Simple genetic algorithms and the
minimal, deceptive problem. In L. Davis, editor,
Genetic Algorithms and Simulated Annealing, chapter
6, pages 74-88. Morgan Kaufmann, Los Altos, CA,
1987.

[2] D. E. Goldberg. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

S. W. Wilson 4 GA-Easy

5 IS THIS FAIR TO HILL-CLIMBERS?

One might suggest that the genetic algorithm has a built-in
unfair advantage over a steepest-ascender since the GA
works from a population of N initial strings whereas the
steepest-ascender uses just one. What if there were N
steepest-ascenders each starting with a random string and
searching independently? The probability of finding the
optimum somewhere among N such steepest-ascenders
certainly increases with N. How does this compare with a
population of size N under the GA?

Here we are on somewhat more complicated ground. Let
us start by assuming we are trying to optimize the function
F using N steepest-ascenders. Since a steepest-ascender
starting at four of the eight possible starting strings for f2
will reach the optimum of f2, the probability of reaching
the optimum of F, starting with a random 3m-bit string, is
(4/8)m. The probability of not finding the optimum in such
a string is then [1-(.5)m]. If we have N random strings, the
probability that the steepest-ascender will not find the opti-
mum in any of the strings is [1-(.5)m]N. Consequently, the
probability of finding at least one optimum in a population
of N strings, written in terms of string length n = 3m, is
1 - [1 - (.5)n/3]N .

Let us go one step further and suppose this probability
equals some criterion value, say one-half. We could then
set the above expression equal to one-half and solve for N.
The result N(n) would be the minimum size population for
which the steepest-ascender would have probability .5 of
finding the optimum. The manner in which N(n) in-
creased with n would suggest how the steepest-ascender’s
ability scaled with increasing problem size.

Our main purpose is to compare the N-string steepest-as-
cender with a GA having population N. As noted in Sec-
tion 2, there is at present no formal analysis that would tell
us, say, how large N has to be for the GA, or even the GA
on a GA-easy problem such as this, to have probability .5
of finding the optimum. Current formal work on optimal
population size, while important, does not yet directly ad-
dress the question of convergence to the optimum. It is
therefore necessary to proceed experimentally.

Our approach is to take a range of values for n, calculate
the corresponding values of N(n), then see if a GA using
these values for N finds F’s optimum substantially more
often than half the time. Specifically, we chose values for
n of 15, 18, 21, 24, 27, and 30 bits. The resulting values of
N(n) are shown in the table below; in each case, the GA’s
population size was the next lower even integer. The GA
employed tournament selection (2-string tournaments),
single-point crossover with probability 0.6, and point mu-
tation with probability equal to the reciprocal of popula-
tion size. For each value of N, the GA was run 10 times for
30 generations. The measure of the GA’s success was the
proportion of the 10 runs for which the optimum was

present in the final generation. Also tabulated are mea-
sures of computational effort for the steepest-ascender and
the GA. In both cases we simply use the number of string
evaluations. For the GA, this is just N times the number of
generations (30). For the steepest-ascender, note that to
determine the best bit change for a single string requires n
evaluations and the total “climb” for that string should av-
erage on the order of n/2 steps. Since there are N strings,
the total number of evaluations is therefore about (Nn2)/2.

n N(n) GA-success GA-effort SA-effort

15 21.83 0.8 600 2250
18 44.01 0.9 1320 7128
21 88.38 1.0 2640 19404
24 177.10 1.0 5280 50688
27 354.54 1.0 10620 129033
30 709.44 1.0 21240 318600

These results suggest that the GA is more effective, with
much less effort, than the N-string steepest-ascender on
function F. With exponentially rising population sizes, the
steepest-ascender has only an even chance of finding the
optimum, whereas the GA found the optimum with little
difficulty in the small populations, and with near certainty
in the larger ones. The GA in fact found the optimum in
earlier generations as n increased.

The tentative implication of the results of this and the pre-
vious section is that within the class of functions that are
GA-easy, and therefore presumably actually rather easy
for a GA, there exists a quite large subclass of problems
that are not easily solvable by “steepest-ascent”, a basic
hill-climbing technique. Furthermore, on these problems
the GA would appear to be more powerful than an equal
population of steepest-ascenders. Further research along
this particular direction might compare the GA, again on a
GA-easy but not SAO problem, with a population of more
sophisticated hill-climbers that employ stochastic methods
to escape local optima.

6 CONCLUSION

In this paper we compared the GA with simple but well-
defined optimization methods on relatively simple prob-
lems. We found, perhaps somewhat surprisingly, that
“GA-easy” problems can be difficult for these other meth-
ods, but not for the GA. The results add to our confidence
that “GA-easy” is a non-trivial characterization. Formal
analysis of genetic algorithm action on GA-easy problems
should be relatively straightforward. If such problems are
actually moderately interesting, the analysis is doubly mo-
tivated.

Our approach proposed that careful comparisons with
methods that the GA beats could yield insight into the GA.

S. W. Wilson 3 GA-Easy

and determine the value of k and the bit value at k for
which the highest fitness is found (breaking ties by some
definite procedure). Call these k’ and b’, respectively.
Next form a new string S’ that is like S except that the bit
at position k’ is set to b’. Now replace S by S’ and repeat
this process until the fitness of S no longer increases. If for
any initial string the fitness of the string finally arrived at
equals the highest possible value of f we shall say that f is
steepest-ascent optimizable (SAO).

Inspection of Figure 2 shows that f2 is not steepest-ascent
optimizable because 000, which is sub-optimal, will be
reached starting from any of the four strings in the lower
part of the figure. Let us next see if f2 is GA-easy:

f (0**) 3/4 f (*0*) 3/4 f (**0) 3/4
f (1**) 5/4 <— f (*1*) 5/4 <— f (**1) 5/4 <—

f (00*) 1 f (0*0) 1 f (*00) 1
f (01*) 1/2 f (0*1) 1/2 f (*01) 1/2
f (10*) 1/2 f (1*0) 1/2 f (*10) 1/2
f (11*) 2 <— f (1*1) 2 <— f (*11) 2 <—

The function f2 is indeed GA-easy. We have shown by this
example that the proposition “GA-easy does not imply
steepest-ascent optimizable” is true. This is stronger than
our previous result, since apart from our intuition, it can be
proved that functions that are bit-setting optimizable form
a proper subset of functions that are steepest-ascent opti-
mizable. Briefly, assume there exists a function f that is
BSO but not SAO. If f is not SAO, it must have at least
one local optimum (a maximum), where the steepest-as-
cender could get stuck. Now suppose the bit-setting opti-
mizer happened to be started with initial string S precisely
on one these local maxima. By definition of local maxi-
mum, any bit change in S would produce a string with
non-increasing fitness, so that the bit-setting optimizer
would also get stuck, contradicting the hypothesis that f is
BSO. Thus BSO implies SAO. The converse is not true,
since for example f1 is SAO but not BSO.

4 LONG STRINGS

The previous main result, that GA-easy does not imply
SAO, is certainly interesting but we need to check that it
doesn’t merely apply to short string problems like those
used to prove it. Is the proposition also true for arbitrarily
long strings? The answer is yes, as will now be shown.

Consider a function F of bit strings of length n = 3m (m an
integer >> 1). Further, let the value (fitness) of a string un-
der F be the sum of the values obtained by applying f2 to
successive triples of the bits of the string. That is,

F(x1, x2, x3, x4,...,x3m) = f2(x1, x2, x3) + f2(x4, x5, x6) +
... + f2(x3m-2, x3m-1, x3m).

Clearly, because f2 is not steepest-ascent optimizable, F is
also not SAO. To see this it is only necessary to assume a
starting string for optimizing F in which at least one of the
three-bit arguments to at least one of the f2 terms above is
a “bad” (unsuccessful) starting point for optimization of f2.
Then no matter how effective the optimizer on the rest of
the string, those three bits will never arrive at 111, so the
global optimum of F will not be reached.

Showing that F is GA-easy is more difficult. We shall
again proceed by suggestive example, and not attempt a
formal proof. First, shorten F, without loss of generality,
to a function of six bits. We next need to be convinced that
schema values are simply sums of the schema values for
f2, as in this example:

F(1***10) = f2(1**) + f2(*10).

But this equation is equivalent to the sum of the eight
equations:

F(100010) = f2(100) + f2(010)
. . .
F(111110) = f2(111) + f2(110),

all of which hold by definition of F. Therefore, we can say
that F’s schema fitnesses just sum f2’s schema fitnesses in
the manner above.

Now, to demonstrate GA-easy, we must show that in every
complete set of competing schemata, the schema with
maximum fitness contains the optimum. In other words,
e.g.,

F(1***11) > F(0***00), F(0***01), ... , F(0***11),

meaning that F(1***11) is greater than any schema value
on the right. Consider the first inequality. Since we have
just found that F’s schema values are sums of f2’s, we can
write

F(1***11) = f2(1**) + f2(*11)
and
F(0***00) = f2(0**) + f2(*00).

We are therefore asking whether

f2(1**) + f2(*11) > f2(0**) + f2(*00).

But because f2 is GA-easy, this must be true. Since there
was nothing unique about our choice of schemata, we con-
clude that F is GA-easy. Further, If F is GA-easy but not
SAO, then we have demonstrated that the proposition
“GA-easy does not imply steepest-ascent optimizable” is
true for strings of arbitrary length.

S. W. Wilson 2 GA-Easy

Let us now ask how hard f1 is for a GA. Unfortunately,
while we could frame a definition of “GA-optimizable” as
being, say, optimizable by a GA starting from a random
initial population of such-and-such a size, etc., it could not
be usefully applied to a given problem because the precise
action of a GA is not sufficiently well understood to allow
prediction of the results. In effect, the only way currently
to determine “GA-optimizable” is experimentally. How-
ever, optimization problems can be characterized in terms
of their deceptiveness and there tends to be a correlation
between deceptiveness and the difficulty in practice of op-
timization by a GA.

According to theory centered on the schema theorem, GAs
“work well when building blocks—short, low-order sche-
mata with above-average fitness values—combine to form
optima or near-optima” [2]. Goldberg particularly has
studied function-coding combinations that are deceptive to
the GA in the sense that some or all short, low-order sche-
mata whose fitness values are optimal within complete sets
of competing schemata ([2], p. 39) do not in fact contain,
or sample, the global optimum. For such functions, the
schema theorem implies that the GA will be misled and
may fail to find or retain the global optimum before con-
verging to a suboptimal solution. Experimentally, this is
the case (with some qualifications that are outside our
present scope), and it can safely be said that deceptive
problems will be difficult to optimize using a GA.

In this paper we focus on the converse proposition and
suggest as a working hypothesis that the more non-decep-
tive a problem, the easier it will be to GA-optimize. In
particular, let us define a problem to be GA-easy if the
highest fitness schema in every complete set of competing
schemata contains the optimum. Noting that our connec-
tion between GA-easy and GA-optimizable is reasonable
but entirely heuristic, let us now ask whether of not f1 is
GA-easy. To do so we enumerate the problem’s complete
sets of competing schemata and see if the highest fitness
schema in each set contains the optimum. The results are

as follows (schema fitness values assume a uniform sche-
ma distribution, true on average at the start of search from
a random initial population):

f (0**) 7/8 f (*0*) 7/8 f (**0) 9/8
f (1**) 2 <— f (*1*) 2 <— f (**1) 7/4 <—

f (00*) 1/4 f (0*0) 3/4 f (*00) 3/4
f (01*) 3/2 f (0*1) 1 f (*01) 1
f (10*) 3/2 f (1*0) 3/2 f (*10) 3/2
f (11*) 5/2 <— f (1*1) 5/2 <— f (*11) 5/2 <—

The maximum fitness schema (indicated by an arrow) in
each competing set contains the optimum, 111, so that, ac-
cording to our definition, f1 is GA-easy. Earlier we found
that f1 is not bit-setting optimizable so that we have shown
by example that the proposition “GA-easy does not imply
bit-setting optimizable” is true.

This result is somewhat interesting, but not terribly sur-
prising, since bit-setting optimization is a very weak meth-
od and should not often succeed. However, we now know
that GA-easy, while making perhaps the strongest possible
assumption about schema non-deceptiveness, nevertheless
includes functions that cannot be bit-setting optimized. In
the next section we develop a more interesting result.

3 STEEPEST-ASCENT OPTIMIZATION
AND GA-EASY

Consider function f2 (Figure 2) which is similar to f1 ex-
cept that it has a local maximum at 000. Like f1, f2 is not
BSO. However, unlike f1, f2 cannot be optimized by a bi-
nary form of steepest-ascent. To define (binary) steepest-
ascent, suppose we again start with an arbitary string S of
length n and see which of the two possible settings of the
kth bit gives the string a higher fitness. We perform this
experiment, always starting with S, for each possible k,

111 : 3

011 : 2 101 : 2 110 : 2

001 : 0 100 : 1 010 : 1

000 : 1/2

Figure 1: Function f1

111 : 3

011 : 1 101 : 1 110 : 1

001 : 0 100 : 0 010 : 0

000 : 2

Figure 2: Function f2

S. W. Wilson 1 GA-Easy

Abstract

It is shown that there are many functions which
are GA-easy but not readily optimizable by a ba-
sic hill-climbing technique. The results, includ-
ing a comparison of the genetic algorithm with a
population of hill-climbers, provide insight into
the operation of the GA and suggest further study
of GA-easiness.

1 INTRODUCTION

Recent work beginning with Goldberg’s [1] seminal paper
on deceptiveness has aimed at characterizing functions (or
more exactly, function-coding combinations) that are diffi-
cult to optimize using a genetic algorithm. The purpose of
those investigations has been to explore the limits of GA
power and, if possible, to exceed them via innovations in
the algorithm. It would also be of interest to have good
characterizations of functions that are easy for GAs, par-
ticularly if the functions cause difficulties for standard op-
timization methods. Identification of such functions and
methods can give us a clearer picture of where and to what
the GA is superior, and so aid in the practical selection of
optimization techniques. But characterizing GA capabili-
ty in terms of the methods it beats should also give insight
into the still somewhat mysterious operation of the GA by
suggesting—when we understand how the other methods
work—which aspects of the GA could account for its su-
periority.

The present paper takes a few steps along this path by
showing, through example problems, that there is a large
class of functions which are GA-easy (according to a quite
natural definition), but whose global optima cannot reli-
ably be found by a basic hill-climbing technique. Further,
an experiment is performed indicating that the GA is supe-
rior, on this class of functions, to a set of hill-climbers
equal in number to the GA population size. These demon-
strations contribute to the evidence that (1) the GA pos-
sesses local-optimum-avoiding capability exceeding that
of basic hill-climbers, and (2) crossover gives the GA a
distinct advantage over multiple independent local
searches.

The rest of the paper is organized as follows. In the next
section we warm up by defining what is perhaps the most
elementary binary search technique, bit-setting optimiza-
tion, and show that GA-easy does not imply bit-setting op-
timizable—in other words that there is a class of functions
that are GA-easy but cannot be optimized by this tech-
nique. Then in Section 3 we strengthen this result by de-
fining steepest-ascent optimization and showing that GA-
easy does not imply steepest-ascent optimizable. In Sec-
tion 4 we make sure this result applies to strings of arbi-
trary length. Then in Section 5 we demonstrate that on
functions that are GA-easy but not steepest-ascent-optimi-
zable, the GA should do better than an equal population of
steepest-ascenders. Section 6 summarizes and comments
on these results.

2 BIT-SETTING OPTIMIZATION AND
GA-EASY

Let us consider an optimization problem in which the
function f to be optimized is defined over a Hamming
space so that points in the space are represented by binary
strings. Suppose we begin with an arbitrary string S of
length n and see which of the two possible settings of the
kth bit gives the string a higher value for f (i.e., a higher fit-
ness). We perform the same experiment, always starting
with S, for each possible k, and then form a new string S’
consisting of the better settings of each bit (if neither is
better we pick one at random). If for any initial string S
the value of f (S’) equals the highest possible value of f we
shall say that f is bit-setting optimizable (BSO).

Now consider the function f1 of three-bit strings shown in
Figure 1. Each point of the lattice contains a bitstring to-
gether with the fitness (function value) for that string. The
arrows indicate the direction of fitness change between
points that differ by a single bit. By inspection, we see
that f1 is not bit-setting optimizable (NBSO) since if the
optimizer happens to start with S = 001 it will end up with
S’ = 110, which is not the optimum. (Note in passing that
if the fitnesses of 001 and 000 were changed to 1 and 0, re-
spectively, the problem would be BSO.)

GA-Easy Does Not Imply Steepest-Ascent Optimizable

Stewart W. Wilson
The Rowland Institute for Science

100 Cambridge Parkway
Cambridge, MA 02142

(wilson@think.com)

From Proceedings of The Fourth International Conference on Genetic Algorithms,
R. K. Belew and L. B. Booker (eds.), San Mateo, CA: Morgan Kaufmann Publishers (1991)

