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ABSTRACT
The learning classifier system XCS is an iterative rule-
learning system that evolves rule structures based on
gradient-based prediction and rule quality estimates. Be-
sides classification and reinforcement learning tasks, XCS
was applied as an effective function approximator. Hereby,
XCS learns space partitions to enable a maximally accurate
and general function approximation. Recently, the function
approximation approach was improved by replacing (1) hy-
perrectangular conditions with hyper-ellipsoids and (2) iter-
ative linear approximation with the recursive least squares
method. This paper combines the two approaches assessing
the usefulness of each. The evolutionary process is further
improved by changing the mutation operator implementing
an angular mutation that rotates ellipsoidal structures ex-
plicitly. Both enhancements improve XCS performance in
various non-linear functions. We also analyze the evolving
ellipsoidal structures confirming that XCS stretches and ro-
tates the evolving ellipsoids according to the shape of the un-
derlying function. The results confirm that improvements in
both the evolutionary approach and the gradient approach
can result in significantly better performance.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search; I.2.6 [Artificial Intelligence]:
Learning; G.1.2 [Numerical Analysis]: Approximation

General Terms
Algorithms

Keywords
Function Approximation, Genetic Algorithms, LCS, XCS,
Locally Weighted Learning, Recursive Least Squares
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1. INTRODUCTION
The XCS learning classifier system was introduced by Wil-

son in 1995 [16]. Recent applications of the system to real-
world datamining problems have confirmed the strong learn-
ing capabilities of the system [2, 3]. Moreover, theoretical
advancements have led to a deeper understanding as well
as to a theoretical confirmation that XCS is able to reli-
ably evolve accurate problem solutions for a wide range of
problems in polynomial time [6].

Recent system enhancements have targeted on improving
the evolving solution structure (that is, the population of
classifiers) on two ends of the spectrum: (1) Condition struc-
tures were modified to be maximally suitably applicable in
real-valued and multi-valued problems [17, 2]. (2) Predic-
tions were enhanced to linear and polynomial predictions
[18, 14]. Most recently, it was shown that general ellipsoidal
condition structures are more effective than hyperrectangu-
lar structures for many function approximation problems
[5]. Moreover, the delta rule for the learning of (linear) rule
predictions was effectively replaced with the pseudo-inverse
method or recursive least squares (RLS) method [14, 13].

This paper combines the two approaches investigating
if the RLS method is also useful in combination with
the hyperellipsoidal condition structures. The results con-
firm the usefulness of the improved approximation method
also within the representation of hyperellipsoidal conditions.
Moreover, the paper improves the evolutionary algorithm
for the evolution of rotated hyperellipsoidal conditions by
mutating the angular orientation of the evolving hyperellip-
soids explicitly instead of mutating the complete covariance
matrix. Also this approach, independent of the approxima-
tion method taken, improves XCS’s function approximation
performance. Finally, this paper investigates the evolving el-
lipsoidal condition structures confirming that XCS stretches
and rotates the ellipsoids most suitably for a maximally ac-
curate function approximation.

The paper is structured as follows. The next section gives
a short overview of the XCS system. Next, we progres-
sively add the explicit rotation and the RLS structure to the
hyperellipsoidal condition representation and evaluate the
consequent function approximation performance. Section 5
analyzes the evolved condition structures. Summary and
conclusions discuss the impact of this study from a broader
perspective.
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2. XCS BACKGROUND
XCS is a typical Michigan-style learning classifier systems

(LCSs) [12, 4]. The following introduction of XCS intro-
duces the enhanced XCS system for function approximation
— often termed XCSF [17, 18]. Moreover, we introduce
XCSF with general hyperellipsoidal conditions [5]. For fur-
ther information on XCS the interested reader is referred to
the cited literature as well as the algorithmic description of
XCS [8].

2.1 Representation
XCSF is applied to real-valued function approximation

problems. The system learns iteratively receiving an input
vector ~xt = (x1, ..., xn) ∈ S ⊆ ℜn, determining its function
value prediction P and receiving the actual function value
yt. XCSF represent its function approximation values in
a population of classifiers, where each classifier specifies in
its condition part its applicability and in its prediction part
its linear function approximation. Essentially, XCSF real-
izes function approximation by a locally weighted learning
approach [1]. Classifier conditions partition the input space
and classifier predictions (linearly) approximate the function
value within the partitions.

A classifier in XCSF consists of a condition C, a predic-
tion R, a prediction error ε, and a fitness value F . The
general hyperellipsoidal condition C is formally represented
as follows:

C = (~m, Σ) = ((m1, m2, ..., mn)T , (σ1,1, σ1,2..., σn,n−1, σn,n)),
(1)

where ~m specifies the center of the ellipsoid, the notation T

denotes the transpose of a (column) vector or matrix, and
Σ defines the fully weighted Euclidean distance metric of
the ellipsoid, also termed Mahalanobis distance [1]. This
transformation matrix essentially determines the stretch of
the ellipsoid and the rotation in the n-dimensional problem
space. Classifier activity is determined by

cl.ac = exp

„

−
(~x− ~m)T ΣT Σ(~x− ~m)

2

«

, (2)

which essentially determines the distance from the current
input and then applies the Gaussian kernel on the distance.
A classifier is active (that is, it matches), if its current ac-
tivity is above some threshold θm.

The linear function prediction R is specified by a weight
vector

R = ~w = (w0, w1, ..., wn)T , (3)

where w0 is the offset weight. The prediction is then deter-
mined by the inner product ( ~x∗ − ~m∗)T ~w where vectors ~x
and ~m are enhanced by a trailing one and zero, respectively.
The prediction error ε estimates the mean absolute error of
the linear predictions. The fitness F specifies the accuracy
of the classifier relative to competing, that is, overlapping
classifiers. The three estimates are iteratively updated by
the following gradient-based techniques.

2.2 Rule Parameter Update
Each learning iteration t, XCS receives a problem instance

~xt with the corresponding actual function value yt. XCS
forms a match set [M ] of all classifiers whose conditions are
active. The match set is where XCS updates its classifier
parameters.

XCS uses the error between prediction ||( ~x∗

t − ~m∗)T ~w||
and actual function value yt to update the reward predic-
tion, prediction error, and fitness estimate of all classifiers
in match set [M ] (Since we do function approximation, we
ignore actions so that there are no action sets). Hereby, we
use the usual delta update rule for the weight vector R, that
is,

wi ← wi + η(yt − ( ~x∗ − ~m∗)T ~w)(x∗

i −m∗

i ), (4)

where η denotes the learning rate. Reward prediction er-
ror and fitness are updated by the usual XCS procedure
using the inner product ||( ~x∗

t − ~m∗)~wT || as the prediction.
Essentially, the reward prediction error approximates the
averaged absolute error of the generated prediction minus
the received actual function value. Fitness is derived from
the error and estimates the averaged relative accuracy of a
classifier in comparison with other, overlapping, competing
classifiers. Fitness is used for offspring selection. After rule
updates and possible GA invocation in the current match
set, the next iteration starts.

2.3 Rule Structure Evolution
XCSF is initialized with an empty population. Initial clas-

sifiers are generated by a covering mechanism that creates
a matching condition given a problem instance ~x for which
no classifier matches. The center of the hyperellipsoid (~m)
is set to the current input (~x). Only the diagonal entries in
the transformation matrix Σ are initialized to the squared
inverse of the uniformly randomly chosen number between
zero and the parameter r0. All other matrix entries are set
to zero. In this way, covering creates axis-parallel hyperel-
lipsoidal condition parts.

XCS applies a steady-state, niched GA for rule evolution.
The GA selects two parental classifiers from the current
match set [M ] using set-size relative tournament selection
based on the classifier’s fitness estimates [7]. Two offspring
are generated from the selected parents and crossover and
mutation is applied. We utilize uniform crossover, in which
any corresponding values in the two classifier conditions are
exchanged with a probability of .5. Mutation alters each en-
try in the condition part with a probability of µ. Mutation
moves the center of the hyperellipsoid uniformly randomly
within its current interval. A matrix entry is mutated by
maximally decreasing (increasing) the value by 50%. If the
value was set to zero, it is initialized to a randomly cho-
sen value as in covering for the diagonal matrix entries but
considering parameter µ0. Before the offspring is inserted
in the population two classifiers may be deleted to keep a
fixed population size N . Classifiers are deleted from [P ]
with probability proportional to an estimate of the size of
the match sets that the classifiers occur in. If the classifier
is sufficiently experienced and its fitness F is significantly
lower than the average fitness of classifiers in [P ], its dele-
tion probability is further increased.

2.4 Learning Bias in XCS
The evolutionary algorithm is the main component that

searches for better problem space partitions with respect to
the achieved predictive accuracy. GA selection propagates
the currently most accurate classifiers. Mutation searches
in the neighborhood for better space partitions. Crossover
combines previously successful sub-partitions. Selection in
action sets in combination with deletion in the whole pop-
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ulation stresses generalization. Moreover, the mechanism
has a niching effect biasing the evolutionary process towards
evolving a classifier population that covers the whole prob-
lem space.

While the evolutionary mechanism is designed to evolve
partitions in which linear approximations are maximally ac-
curate, the gradient descent-based methods estimate the
suitability of the current partitions. Thus, XCS applies a
distributed, local search mechanism combining evolutionary
techniques with gradient learning techniques to find a global
problem solution. As a whole, XCS strives to evolve a com-
plete, maximally accurate, and maximally general function
approximation.

3. EFFICIENT SEARCH IN ROTATION
SPACE

This section first investigates parameter dependencies of
XCSF. Next, the mutation operator is improved resulting in
higher parameter independence and more reliable learning
performance. We then replace the iterative delta rule update
of the predictions with the RLS method. The combination
of both improvements yields the strongest performance.

The investigations focus on the following function:

f1(x, y, z) = sin(8π(x + y + z)) (x, y, z ∈ [0, 1]).

Note that the sine lies obliquely in the three dimensional
problem space. Twelve full sinus waves need to be approx-
imated in the three dimensional space. If not stated differ-
ently, all experiments are averages over 20 experimental runs
and parameters were set as follows: N = 6400, β = η = 0.5,
α = 1, ε0 = .01, ν = 5, θGA = 50, τ = .4, χ = 1.0, µ = 0.05,
r0 = .5, θdel = 20, δ = 0.1, θsub = 20.

3.1 Parameter Dependencies
We first investigate the impact of learning rate β and mu-

tation control parameter µ0 on performance. Figure 1 shows
that the function is highly challenging for XCSF with hy-
perellipsoids in the chosen settings. Best performance is
achieved when the learning rate β is set to the lower value
.1 and value µ0 is set to the lower value .5. The learning
rate influence indicates that XCSF relies on stable parame-
ter estimates. The high rate β = .5 appears to introduce too
much noise in the error and fitness estimates making it hard
for XCS to detect more suitable classifier structures. The
mutation influence µ0 suggests that small changes in clas-
sifier structure are advantageous in the solution structure
evolution. Thus, small iterative improvements are better
than larger jumps in the condition structure space.

Both observations are confirmed in the successive sections
improving first condition structure search and then linear
approximation.

3.2 Adding Explicit Rotations via Mutations
In its current form, the full transformation matrix deter-

mines the stretch and orientation of ellipsoidal conditions.
This is clearly a highly redundant encoding of the actual nec-
essary structure. Although redundant encodings are known
to be potentially helpful in the GA literature [9], redun-
dancy in the case of the ellipsoidal encoding may not be as
helpful due to several reasons: (1) Mutations in the transfor-
mation matrix may cause strong alterations in the underly-
ing ellipsoidal structures. (2) The redundant encoding may
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β=.5, µ0=.5: pred.error
pop

β=.5, µ0=2: pred.error
pop

β=.1, µ0=.5: pred.error
pop

β=.1, µ0=2: pred.error
pop

Figure 1: The sin(8π(x + y + z)) function is a hard
approximation task.

lead to disruptive crossover operations. Essentially, a re-
dundant encoding of two similarly oriented ellipsoidal struc-
tures may actually lead to a completely differently oriented
ellipsoid. Thus, recombined offspring may often reflect ran-
dom guesses rather than effective structural recombination.
(3) The redundant representation may lead to unnecessary
diversity and consequent evolutionary stagnation in XCS.
Since successful evolutionary search relies on reproductive
opportunities of classifiers before likely deletion [7], higher
diversity can prevent the detection of relevant classifiers be-
fore deletion significantly delaying evolutionary progress.

To conquer these constraints, we now replace the covari-
ance matrix representation with an angular representation.
It is know, that in three (two) dimensions, three (one) angles
are sufficient for an exact representation of any orientation of
an object. In our case, we represent hyperellipsoids. Given
the Euler angles γi, we can easily compute the correspond-
ing transformation matrix [15]. Thus, instead of evolving
the full transformation matrix explicitly, we now evolve the
Euler angles γi and use the resulting matrix to determine
classifier activity as described above.

In the evolutionary process, the Euler angles are initial-
ized to zero upon covering. Mutation alters the angles
by a uniform random number in the range [−πµ0, πµ0].
The angles are constrained to lie in the range of (−2π, 2π].
Note that this representation still allows redundant encod-
ings: For example, in two dimensions an ellipse with stretch
m1 = 2 and m2 = .1 and angle 0 (or 2π) is equivalent to
another ellipse with stretch m1 = .1 and m2 = 2 and angle
π/2 (or −3π/2).

Figure 2 shows that the angular mutation improves
XCSF’s performance significantly. In fact, with a lower
learning rate, regardless of the chosen µ0 value, XCSF
evolves an accurate function representation. With a larger
learning rate, the fluctuations in parameter estimates persist
and continue to delay learning progress. Nonetheless, also
in this setting XCS evolves a similar accurate solution after
500k learning iterations. Compared to the previous muta-
tion approach, XCSF reaches a higher accuracy level in all
four settings. Also learning speed is improved. However,
learning rate influences stay significant. Thus, we now add
an improved linear prediction method to the system, which
was introduced elsewhere [14, 13].
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XCSF with Hyperellipsoids and Angular Mutation in sin(8 π (x+y+z))

β=.5, µ0=.5: pred.error
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Figure 2: The benefit of rotation becomes very ob-
vious in the sin(8π(x + y + z)) function. Still, a good
approximation takes time to evolve and stays pa-
rameter dependent.

3.3 Using Recursive Least Squares Approxi-
mation

The results so far showed that XCS suffers from a larger
learning rate β indicating that the error and fitness esti-
mates, which depend on the generated function value pre-
dictions, fluctuate and consequently partially mislead the
evolutionary progress. Recently, the delta rule update of
the prediction part (Equation 4) was replaced by the pseu-
doinverse method [14] and RLS [13]. RLS is known to yield
faster and very stable parameter approximations [11].

To implement (linear) RLS in XCS classifiers, a matrix V
(of size |n| × |n|) needs to be added to each classifier. The
update of XCSF with RLS is done as follows. Given the
current input x and the target value y, RLS updates the
weight vector ~w as

~w ← ~w + ~k[(yt − ( ~x∗ − ~m∗))T ~w],

where, ~k is the gain vector computed as

~k =
V T ( ~x∗ − ~m∗)

1 + ( ~x∗ − ~m∗)T V T ( ~x∗ − ~m∗)
, (5)

while matrix V is updated recursively by,

V T =
h

I − ~k( ~x∗ − ~m∗)T
i

V T . (6)

RLS implements least squares rigorously. For the initializa-
tion (avoiding the often used inverse computation), we set
matrix V to the scaled identity matrix as suggested else-
where [11]:

V = δrls × I, (7)

where I is the identity matrix of dimension n+1 and δrls > 0
(δrls = 1 in the experiments herein). Note that RLS is a
special case of Kalman filtering for the case of a fixed target
state and no control signal applied to the state variables
(that is, the weight vector ~w).

Performance of XCSF with RLS is reported in Figure 3.
Clearly, RLS stabilizes parameter estimates making the sys-
tem more independent from the chosen learning rate β. In
fact, with a sufficiently low µ0 value, learning stays nearly
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Figure 3: With the RLS approximation, the
sin(8π(x + y + z)) performance somewhat stabilizes
yielding a more smooth performance progress. How-
ever, large mutation rates as well as large learning
rates continue to cause performance disruption.

independent from learning rate β. However, when µ0 is cho-
sen too high, also the higher learning rate continues to cause
disruption. This indicates that RLS is able to yield better
and faster approximations but cannot directly help in the
structural search for maximally effective space partitions.

3.4 Angle Representation Plus RLS
Combining RLS with the introduced angular mutation

yields most effective performance. Figure 4 shows that now
all four parameter settings converge quickly and reliably to
an accurate function approximation solution. The achieved
approximation error is smaller than in all previous settings
indicating that (1) the angular mutation enables a more di-
rected evolution to maximally suitable space partitions, and
(2) the RLS yields better and faster function value approx-
imations in the evolving partitions. In the next section, we
investigate the performance on several other three dimen-
sional functions assessing the general usefulness of RLS and
the angular mutations in the evolution of hyperellipsoidal
condition structures.

4. PERFORMANCE SUITE
Despite of the achieved improvements, it remains unclear

when rotations are actually useful. This section investigates
performance in several other challenging three dimensional
functions evaluating the usefulness of RLS and angular mu-
tations in them.

4.1 Functions with Independent Dimensions
It was hypothesized before [5] that rotations of the hyper-

ellipsoidal conditions are only useful when the dimensions
are nonlinearly dependent on each other. This is the case in
the sinusoidal curve since the sine function is applied to the
sum of all dimensions. Thus, the influence of each dimension
is combined nonlinearly yielding the function value.

The dimensions are linear independent when the contri-
bution to the target value of each dimension is considered
separately and then combined linearly. In this case, space
partitioning can be axis-parallel so that also the most suit-
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XCSF with RLS and Hyperellipsoids and Angular Mutation in sin(8 π (x+y+z))

β=.5, µ0=.5: pred.error
pop

β=.5, µ0=2: pred.error
pop

β=.1, µ0=.5: pred.error
pop
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pop

Figure 4: With the general hyperellipsoidal condi-
tion structure and RLS approximation, most accu-
rate approximations are learned in the sin(8π(x+y +
z)) function. Learning also gains speed, stability,
and parameter independence.

able orientation of the ellipsoids is axis-parallel. Thus, rota-
tions should not be advantageous in functions in which each
dimension is combined linearly.

One example of such a function is:

f2(x, y, z) = sin(2πx) + sin(2πy) + sin(2πz).

Figure 5 shows performance of XCSF with hyperellipsoids
and RLS in this function. As predicted, angular mutation
has no influence on the learning performance. Also the
learning rate has only a slight influence on performance.
Population size is larger in the case of matrix mutations
since the condition structure is expressed by more param-
eters letting additional room for mutations and additional
condition representations. The function is generally quite
challenging, though, seeing that three sine waves interact in
the production of the overall function value.

4.2 Superimposed Sine Functions
When we superimpose several sinus functions, the re-

quired space partitions reflecting nonlinearity become even
more important. We tested XCSF without and with RLS
as well as without and with angular mutation on several su-
perimposed sinuses. Due to the complexity of the function,
we double the maximum population size to N = 12800.

Figure 6 shows XCSF’s performance on the following su-
perimposed sine function:

f3 = sin(2π(x + y + z)) + sin(4π(x + y + z)) +

sin(6π(x + y + z))

We can see that angular mutation helps to evolve an optimal
classifier condition structure—regardless if without or with
RLS. Surprisingly, performance degrades slightly after about
200k learning iterations—most likely an effect of disrupting
interactions between overlapping classifier structures. This
effect needs to be investigated further.
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Figure 5: In a nonlinear three dimensional func-
tion with independent problem dimensions, rotation
does not improve performance.
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Figure 6: Angular mutation improves learning speed
significantly in f3. RLS has only an additional, but
small positive influence on performance.

4.3 Non-continuously Differentiable Function
Another function in which space partitions need to be even

more abrupt are non-continuously differentiable functions.
At the point of the non-continuity in the differentiation, the
linear approximation becomes quickly severely incorrect, so
that this point should be partitioned well. XCSF needs to
find these partitions efficiently in order to evolve accurate
function approximations.

One example of such a function is the following:

f4 = |sin(2π(x + y + z))|+ |cos(2π(x + y + z))|

Figure 7 shows the performance of XCSF (N = 6.4k) with
hyperellipsoids in this function. Angular mutation appears
to be very useful in this case, yielding a faster learning per-
formance and a more accurate performance after 500k learn-
ing steps in comparison to runs without angular mutation.
Again, angular mutation yields higher payoff than RLS al-
though RLS also improves learning speed and also increases
accuracy—at least in the case without angular mutation.
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Figure 7: Also in the case of a non-continuously
differentiable, oblique function, angular mutation
yields significant performance improvements.
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Figure 8: The RLS update yields slightly stronger
improvement than angular mutation in a function in
which obliqueness changes over the problem space.

4.4 Changing Obliqueness
As a final test function, we change the obliqueness of the

function in question by applying a non-linear function, such
as the sine, to one dimension before adding it to the other
dimensions and then applying an overall function, such as
another sine. Thus, we have two nested sine functions. One
function of that kind is:

f5 = sin(2π(x + y + sin(πz)))

In this case, the required most suitable rotations are now
twisted inside each other and are changing continuously.
Thus, rotations may not be very useful any longer. Fig-
ure 8 shows performance of XCSF (N = 12.8k) in this func-
tion. As suggested, rotations are hardly useful and actually
yield a slightly worse performance than runs with general
mutation. As suspected, the function appears too complex
to evolve efficient rotations so that angular mutation has
hardly any effect on performance.
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Figure 9: Uniform crossover yields performance im-
provement throughout the investigated functions.

4.5 Impact of Crossover
So far, it was not shown if the uniform crossover ap-

plication has an impact on performance. In the investi-
gated functions, it seems expectable that crossover should
be useful to spread suitable, potentially partial ellipsoidal
sizes, stretches, and orientations over the search space. Fig-
ure 9 shows various runs of XCS without crossover appli-
cation in the investigated functions. It can be seen that
crossover speeds up learning and improves the accuracy
reached throughout the investigated functions. Population
size (not shown) in the runs without crossover stays slightly
lower due to the decrease in mixing. Interestingly, crossover
has the least beneficial effect in functions f2—the axis-
independent sine function. Required ellipsoidal size continu-
ously change in each dimension so that structural spreading
is not beneficial. The possibly beneficial recombination of
different ellipsoidal stretches in each dimension shows hardly
any beneficial performance impact.

5. RESULT STRUCTURES
Since linear approximations yield larger errors in areas in

which the second derivative of the target function is large,
space partitions should be smaller in these areas. When
evolving hyperellipsoids in the oblique 2-D sinusoidal func-
tion f6 = sin(2π(x + y)), the relative stretch of the ellipse
in 2-D space should consequently be stronger, the more cur-
vature in the sine function. This can be observed in Fig-
ure 10 in which we plot the ratio between larger and smaller
dimensions of the learned two dimensional ellipses (popula-
tion after 500k learning iterations). Figure 10 is rotated by
45◦ so that the perspective is perpendicular to the sine func-
tion. As can be observed, the stretch (obtained by dividing
the smaller deviation by the larger one) actually mimics the
absolute value of the second derivative of the sine function
(that is, the negative sine), except for in the corners in which
undersampling results in noisy boundary effects.

Although the stretches suggest that XCSF evolves suit-
able ellipsoids, we did not show as yet that the orientation
of the evolving ellipsoids also mimics the obliqueness of the
function. To investigate this, we tested the final population
for the orientation of the evolving ellipsoids. To do so, we
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Figure 10: The stretch factor (ellipse ratio) of the el-
lipses increases in regions with small second deriva-
tives in the target function.

tested for the angles and investigated to which degree the
orientation mimics the required 45 (which corresponds to
π/4) orientation. To do so, the evolving ellipsoids and de-
grees had to be converted appropriately. Figure 11 shows
the average absolute difference from the target angle π/4.
It can be seen that XCSF approximates the orientation of
the function quite accurately. Moreover, the deviations re-
veal that in more complex regions of the function (that is, in
those regions with larger absolute second derivatives), the
angular deviations are slightly smaller than in regions with
smaller second derivatives. Since in the latter case angu-
lar inaccuracies have a lesser effect on prediction errors, less
fitness pressure towards maximally accurate angles applies,
which explains the higher deviation from π/4 in these re-
gions.

6. SUMMARY AND CONCLUSIONS
This study on XCS’s capability in function approximation

problems has shown that XCSF is able to approximate com-
plex three dimensional functions. XCSF approximates the
target function by overlapping, piecewise-linear approxima-
tions. Hereby, XCSF evolves condition parts that optimize
the angular orientation as well as the stretch of the evolving
hyperellipsoids to achieve a maximally accurate piecewise-
linear function approximation.

The experimental results showed furthermore that
XCSF’s performance can be optimized on two sides of the
spectrum: (1) condition structures and structure optimiza-
tion can be optimized to partition the problem space more
effectively; (2) linear approximation can be optimized to
yield stable, and maximally accurate approximations as fast
as possible. The improvements can be combined yielding
additive benefits.

Despite these encouraging results, XCSF still needs quite
a large population size to approximate the underlying func-
tion. In the case of ellipsoidal condition structures, however,
it is hard to determine which classifier condition includes
other classifier conditions. Thus, subsumption hardly ever
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Figure 11: XCSF approximates the required π/4
orientation of the ellipses quite accurately. In re-
gions with high second derivatives of the target func-
tion, the approximation becomes more precise since
larger deviations cause even higher inaccuracies in
the function value predictions.

applies. Further investigations in fitness sharing and other
niching techniques may lead to the evolution of more com-
pact representations without affecting performance. An-
other method could be the further refinement of post-
processing, compaction algorithms proposed elsewhere [19].
A progressive freezing of the variation operators may yield
the desired effect. On the other hand, XCSF evolves a rather
redundant encoding of the underlying problem structure,
which may be useful in some applications as well. Thus,
another way of investigating the strength of XCSF’s rep-
resentation may be to test its robustness by e.g. deleting
random classifiers.

The study showed that a redundant phenotype encoding
is usually not as helpful as often observed in the genetic
algorithms literature [9]. On the other hand, we showed
that if required orientations change over the problem space,
redundancy may be slightly advantageous. This suggest, as
observed for GAs, that also XCSF uses available paths to op-
timal solutions. Redundant encodings may open new paths.
In most of the investigated functions, though, direct muta-
tion of ellipsoidal orientation was the most suitable path.

Despite the successful improvement of the genetic search
in XCS(F), for real-valued problems it remains an open ques-
tion how insights from Evolution Strategies (ES) may be
implemented in XCS, and other learning classifier systems
for that matter. The covariance matrix adaptation (CMA)
algorithm may enable a faster adaptation of condition struc-
tures in XCS [10]. However, we have seen that XCSF does
not evolve one classifier condition structure over the whole
search space but actually evolves many, suitably adapted to
the complexity of the problem subspace in question. Thus,
the covariance matrix of CMA may need to be either evolved
for separate classifiers, or classifier clusters. Research in this
direction promises to yield interesting new insights on XCS’s
distributed problem representation.

Finally, XCSF may be modified to process different in-
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put values differently. Currently, all input values are used
to determine (1) classifier activity as well as (2) the pre-
diction value, given the classifier matches (that is, has suf-
ficient activity). Another option would be to restrict the
determination of activity to a subset of input values and the
generation of the prediction value to a different (potentially
overlapping) subset of input values. In this case, XCS(F)
may then utilize “context” information to control classifier
activity and “predictive” information to generate currently
applicable output predictions. Wilson [20] made a first step
in this direction by investigating classifiers with continuous
actions and resulting continuous, action-dependent payoff.

Acknowledgments
This work was supported by the European commission con-
tract no. FP6-511931. Additional support from the Re-
search Board at the University of Missouri is acknowledged.

7. REFERENCES
[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally

weighted learning. Artificial Intelligence Review,
11:11–73, 1997.
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