
Prediction Update Algorithms for XCSF:
RLS, Kalman Filter, and Gain Adaptation

Pier Luca Lanzi∗†, Daniele Loiacono∗, Stewart W. Wilson†‡, David E. Goldberg†

∗Artificial Intelligence and Robotics Laboratory (AIRLab)
Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy

†Illinois Genetic Algorithm Laboratory (IlliGAL)
University of Illinois at Urbana Champaign, Urbana, IL 61801, USA

‡Prediction Dynamics, Concord, MA 01742, USA
lanzi@elet.polimi.it, loiacono@elet.polimi.it, wilson@prediction-dynamics.com, deg@illigal.ge.uiuc.edu

ABSTRACT
We study how different prediction update algorithms influ-
ence the performance of XCSF. We consider three classical
parameter estimation algorithms (NLMS, RLS, and Kalman
filter) and four gain adaptation algorithms (K1, K2, IDBD,
and IDD). The latter have been shown to perform compa-
rably to the best algorithms (RLS and Kalman), but they
have a lower complexity. We apply these algorithms to up-
date classifier prediction in XCSF and compare the perfor-
mances of the seven versions of XCSF on a set of real func-
tions. Our results show that the best known algorithms still
perform best: XCSF with RLS and XCSF with Kalman per-
form significantly better than the others. In contrast, when
added to XCSF, gain adaptation algorithms perform com-
parably to NLMS, the simplest estimation algorithm, the
same used in the original XCSF. Nevertheless, algorithms
that perform similarly generalize differently. For instance:
XCSF with Kalman filter evolves more compact solutions
than XCSF with RLS and gain adaptation algorithms allow
better generalization than NLMS.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based Machine
Learning; G.1.2 [Approximation]: Least squares

General Terms
Algorithms, Performance.

Keywords
LCS, XCS, Prediction Update, Kalman Filter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
In XCSF [14], computed prediction replaces classifier pre-

diction with a parameter vector w, which is associated to
each classifier, and a prediction function p(s,w). In XCSF,
classifier prediction is computed from the current input s
and w. In addition, the original update of the prediction
parameter is replaced by the update of w; this step depends
both on the prediction function p(s,w) and on the param-
eter estimation algorithm used to update w. In [14], the
prediction function p(s,w) is defined as the linear combina-
tion “sw” while w is updated using Normalized Least Mean
Square algorithm (NLMS) [6] or modified Delta rule [13, 14].

The results in [14] show that XCSF can evolve accurate
piecewise-linear approximations of simple functions. Later,
the analysis in [8] has shown that generalization in XCSF
relies on the convergence properties of the parameter esti-
mation algorithm used to update w. If the algorithm is
too slow, the genetic algorithm may act before w is ade-
quately updated, and the generalization capability of XCSF
may be dramatically reduced. In [8], XCSF is applied to
a set of periodic functions on different input ranges. The
results show that when the input range is limited to small
inputs the NLMS update converges quickly so that XCSF
evolves classifiers representing piecewise-linear approxima-
tions, as in [14]. Instead, when the input range includes large
inputs the NLMS update converges slowly so that XCSF
evolves piecewise constant approximations, which do not
fully exploit the generalization potential of XCSF. Accord-
ingly, in [8] NLMS is replaced with recursive least squares
(RLS) [6], which is known to be more robust and to converge
faster than NLMS. The results in [8] show that XCSF with
RLS performs better than the original XCSF with NLMS
both in terms of prediction accuracy and in terms of achieved
generalization.

In this paper, we extend the analysis in [8] and study
how different incremental parameter estimation algorithms
influence XCSF performance. We consider (i) two classi-
cal parameter estimation algorithm (RLS, and Kalman fil-
ter), and (ii) four gain adaptation algorithms (also known as
dynamic-learning-rate algorithms [12]), i.e., K1 [12], K2 [12],
IDBD [11], and IDD [5]. The first three gain adaptation
algorithms (K1, K2, and IDBD) were introduced in [12]
as alternatives to the more computationally expensive least
squares algorithms. In [12] it was shown, that these meth-
ods could perform better than NLMS and comparably to

1505

the best algorithm (Kalman filter in [12]), while having the
same order of complexity as NLMS. Later, IDD [5] was
introduced as a simplification of IDBD. We extend XCSF
and use these six algorithms as a replacement of the usual
NLMS prediction update used in XCSF. We compare the
seven versions of XCSF both in terms of prediction accu-
racy and generalization, on three types of problems: one
involving the approximation of simple functions (like those
used in [14]), one involving the same functions enriched with
irrelevant inputs (as done in [12]), one involving Gaussian
noise added to the incoming reward (as done in [1]). The re-
sults we present show that in XCSF the contribution of the
genetic algorithm to the learning process makes some differ-
ences among the update algorithms less relevant. The best
known algorithms still perform best: XCSF with RLS and
XCSF with Kalman perform significantly better than all the
others. In contrast, when added to XCSF, gain adaptation
algorithms perform comparably to NLMS (in [12], they out-
performed NLMS), the simplest estimation algorithm possi-
ble, the same used in the original XCSF. Nevertheless, algo-
rithms that perform similarly generalize differently so that
for instance: XCSF with Kalman filter evolves more com-
pact solutions than XCSF with RLS; gain adaptation algo-
rithms allow better generalization than NLMS while having
the same order of complexity. Finally, our results are coher-
ent with those in [8], RLS performs better than NLMS even
in very simple problems.

2. INCREMENTAL PARAMETER
ESTIMATION

We consider the typical problem of incrementally estimat-
ing the parameter vector θ̂(t) of the linear system,

y(t) = θ(t)T
φ(t) + ξ(t) (1)

θ̂(t + 1) = θ̂(t) + d(t) (2)

from the observations 〈φ(t), y(t)〉, t ∈ {0, 1, . . . }; the term
ξ(t) is the observation noise and it is assumed to be white
noise with zero mean and variance R; the term d(t) is the
drift vector, a zero mean white noise with covariance matrix
Q = E{d(t)d(t)T }; it is usually assumed that ξ(t), d(t), and
φ(t) are independent random variables [4, 6]. The estima-

tion of θ̂(t) is usually solved by algorithms which update the

current estimate θ(t) of θ̂(t) as,

θ(t + 1) = θ(t) + k(t)[y(t)− θ(t)T
φ(t)] (3)

where k(t) is the gain vector whose definition depends on
the estimation algorithm applied. In this section we briefly
introduce some algorithms showing how they compute the
gain vector k(t).

2.1 Classical Algorithms
Least Mean Square (LMS) is the simplest and probably

the most used parameter estimation algorithm. It defines
the gain vector k(t) as

k(t) = ηφ(t) (4)

where η > 0 is the learning rate. To guarantee the conver-
gence of LMS it is good practice to set the learning rate
as [6],

η =
η̄

E[φ(t)T φ(t)]

where η̄ ∈ (0, 2) is the absolute learning rate that is nor-
malized based on the expected value of φ(t)T φ(t), i.e.,
E[φ(t)T φ(t)].

The Normalized Least Mean Square or NLMS is a modifi-
cation of LMS that is usually preferred because potentially
faster than LMS when large inputs φ(t) are involved [6]. In
NLMS, the gain vector k(t) is computed as,

k(t) =
ηφ(t)

φ(t)T φ(t)
(5)

where the learning rate η is usually bound between 0 and
1 [4].1 Least squares algorithms compute the gain vector
k(t) as,

k(t) =
P(t)φ(t)

R + φ(t)T P(t)φ(t)
(6)

where, if θ(t) has n inputs, the n× n matrix P (t) is recur-
sively updated as,

P(t + 1) = P(t)−
P(t)φ(t)φ(t)T P(t)

R + φ(t)T P(t)φ(t)
+ Q. (7)

When R = E[ξ2(t)] and Q = E[d(t)d(t)T], Equation 6 and
Equation 7 implement the Kalman filter. In this case, if it is
not possible to have an exact estimate of ξ(t) and d(t), some
rough assumptions are made (see [11] further discussion).
When R = I and Q = 0, the same equations implement
recursive least squares (RLS) [6]. Thus RLS assumes that
the observation noise ξ(t) (Equation 1) has unitary variance
and that there is no drift d(t) = 0 (Equation 2). We refer
the reader to [6] and [4] for an analysis of the relations and
similarities shared by recursive least squares and Kalman
filter and also for modifications of recursive least squares.

2.2 Gain Adaptation Algorithms
Gain adaptation, or dynamic-learning-rate, algorithms

have been introduced in [11, 12]. They implement a sort
of meta-learning in that the learning rate is adapted based
on the current inputs and on the trace of previous modifi-
cations. The incremental delta-bar-delta (IDBD) uses a dif-
ferent adaptive learning rate for each input. This approach
in principle improves the performance when some inputs are
irrelevant or when noise affects the inputs in different ways.
With IDBD [11] each element ki(t) of the gain vector k(t)
is computed as,

ki(t) = e
βi(t)φi(t) (8)

βi(t + 1) = βi(t) + ηδ(t)φi(t)hi(t) (9)

hi(t + 1) = hi(t) [1− ki(t)φi(t)]
+ + ki(t)δ(t) (10)

where δ(t) is the error computed as “y(t) − θ(t)T φ(t)”, η
is the meta learning rate, and the function [x]+ returns x if
x > 0, zero otherwise.

The incremental delta-delta (IDD) [5] implements an ap-
proach similar to IDBD but it does not store the traces
hi(t). In IDD, each element ki(t) of the gain vector k(t) is
computed as,

ki(t) = e
βi(t)φi(t) (11)

βi(t + 1) = βi(t) + η
∆θi(t + 1)

eβi(t)
∆θi(t) (12)

1Equation is used in XCSF to update the classifier predic-
tion parameter vector w [14], see Section 3 for further de-
tails.

1506

where ∆θi(t) is the change of the parameter θi which, given
the error δ(t) (δ(t) = y(t) − θ(t)T φ(t)), is computed as
∆θi(t) = ki(t)δ(t); while η is the usual meta learning rate.

LMS and NLMS have an order of complexity O(n) while
recursive least squares and Kalman filter are O(n2) both in
terms of computation and memory usage. The algorithms
K1 and K2 [12] approximate least squares, while being less
expensive both in terms of computation and memory. The
idea in K1 and K2 is to approximate the matrix P as a di-
agonal matrix P̂ so as to reduce the memory usage and the
computation from O(n2) down to O(n), since only the diag-

onal elements of P̂, p̂ii, are stored. In the K1 algorithm [12]
this computation is made as,

p̂ii(t) = e
βi(t) (13)

βi(t + 1) = βi(t) + ηδ(t)φi(t)hi(t) (14)

hi(t + 1) = [hi(t) + ki(t)δ(t)] [1− ki(t)φi(t)]
+ (15)

where δ(t) is the error, δ(t) = y(t)−θ(t)T φ(t), η is the meta

learning rate and [x]+ is x if x > 0, else 0. The algorithm

K2 [12] is similar, it still defines p̂ii(t) = eβi(t), but computes
the memory parameters βi in a different way,

βi(t + 1) = βi(t) +
ηφ2

i (t)

1 +
P

j
φ4

j(t)
[δ2(t) +

−R̂−
X

j

p̂jj(t)φ
2
i (t)] (16)

where δ(t) is the error, δ(t) = y(t) − θ(t)T φ(t), η is the
meta learning rate and [x]+ is x if x > 0, else 0. In [12]
it is suggested that in practice, it is often useful to bound
each βi from −10, to prevent arithmetic underflows; it is
also prudent to limit the change in βi on any one step to
± 2. We refer the reader to [12] for more details on the
derivation of the algorithms K1 and K2.

3. THE XCSF CLASSIFIER SYSTEM
The introduction of computed prediction requires three

simple modifications to XCS. First, the classifier prediction
parameter is replaced with a parameter vector w, that is
used to compute classifier prediction. Second, a prediction
function p(st,w) is introduced which defines how classifier
prediction is computed based on the current input st and w;
usually, p(st,w) is computed as simple linear combination
stw but other functions can be used [9]. Finally, the usual
update of the classifier prediction parameter is replaced with
the update of the classifier parameter vector w based on a
target prediction value P and the current classifier predic-
tion value p(st,w).

Classifiers. In XCSF, classifiers consist of a condition,
an action, and four main parameters. The condition is
represented by a concatenation of real interval predicates,
inti = (li, ui). The action specifies the action for which the
payoff is predicted. The four parameters are: the weight
vector w, the prediction error ǫ, the fitness F , and the nu-
merosity num. The weight vector w has one weight wi for
each possible input and an additional weight w0 correspond-
ing to a constant input x0, that is set as a parameter of
XCSF.

Performance Component. At time step t, XCSF builds
a match set [M] containing the classifiers in the population
[P] whose condition matches the current sensory input st;

if [M] contains less than θmna actions, covering takes place
[2]. The weight vector w of covering classifiers is initialized
with zero values while all the other classifiers parameters are
initialized as usual [2].

For each action ai in [M], XCSF computes the system

prediction. As in XCS, in XCSF the system prediction of
action a is computed by the fitness-weighted average of all
matching classifiers that specify action a. In contrast with
XCS, in XCSF classifier prediction is computed as a function
of the current state st and the classifier weight vector w.
Accordingly, in XCSF system prediction is a function of both
the current state st and the action a. Following a notation
similar to that in [2], the system prediction for action a in
state st, P (st, a), is defined as:

P (st, a) =

P

cl∈[M]|a
cl.p(st)× cl.F

P

cl∈[M]|a
cl.F

(17)

where cl is a classifier, [M]|a represents the subset of classi-
fiers in [M] with action a, cl.F is the fitness of cl ; cl.p(st) is
the prediction of cl in state st, which is computed as:

cl.p(st) = cl .w0 × x0 +
X

i>0

cl .wi × st(i)

where cl.w i is the weight wi of cl . The values of P (st, a)
form the prediction array. Next, XCSF selects an action to
perform. The classifiers in [M] that advocate the selected
action are put in the current action set [A]; the selected
action is sent to the environment and a reward r is returned
to the system together with the next input.

Reinforcement Component. XCSF uses the incoming
reward to update the parameters of classifiers in action set
[A]−1 corresponding to the previous time step. Note that,
when XCSF is used for function approximation (a single step
problem) the reinforcement component acts on the current
action set. At time step t, the expected payoff P is computed
as:

P = r−1 + γ max
a∈A

P (st, a) (18)

where r−1 is the reward received at the previous time step.
The expected payoff P is used to update the weight vector
w of the classifier in [A]−1 using NLMS or modified delta

rule [13]. For each classifier cl ∈ [A]−1, each weight cl.w i is
adjusted by a quantity ∆wi computed as:

∆wi =
ηst−1(i)

|st−1(i)|2
(P − cl.p(st−1)) (19)

where η is the correction rate and |st−1|
2 is the norm the

input vector st−1 [14]. The values ∆wi are used to update
the weights of classifier cl as:

cl.w i ← cl.w i + ∆wi (20)

Then the prediction error ǫ is updated as:

cl.ǫ← cl.ǫ + β(|P − cl.p(st)| − cl.ǫ) (21)

Finally, classifier fitness is updated as in XCS.

Discovery Component. The genetic algorithm is applied
as in any other XCS model [14]. The weight vectors of off-
spring classifiers are set to a fitness weighted average of the
parents weight vectors; all the other parameters are initial-
ized as usual [2].

1507

Algorithm 1 Update classifier cl with IDBD algorithm

1: procedure update prediction(cl , s, P)
2: x(0)← x0; ⊲ Build x by adding x0 to s
3: for i ∈ {1, . . . , |s|} do
4: x(i)← s(i);
5: end for
6: δ ← P − cl.p(s); ⊲ Compute the current error
7: for i ∈ {0, . . . , |s|} do
8: β(i)← β(i) + ηmeta × δ × x(i)× h(i); ⊲ Update

the value of β(i)
9: η ← exp(β(i)); ⊲ Compute the learning rate for

the ith weight
10: cl.w i ← cl.w i+η × δ × x(i); ⊲ Update the value

of cl.w i

11: h(i)← h(i)× positive(1−η×x(i)2)+η×δ×x(i);
⊲ Update the value of h(i)

12: end for
13: end procedure

4. XCSF WITH LEAST SQUARES
AND GAIN ADAPTATION

We extended XCSF and replaced the original NLMS up-
date [14] with each one of the six parameter estimation al-
gorithm discussed in the previous section: recursive least
squares, as introduced in [8], Kalman filter [6], K1 [12],
K2 [12], IDBD [11], and IDD [5]. These extensions are rather
straightforward. The linear system in Equation 1 and the
update in Equation 3 easily map into the problem of esti-
mating the parameters w in XCSF: y(t) corresponds to the
classifier prediction, i.e., p(s,w); φ(t) corresponds to the

current input st; the estimate θ(t) of θ̂(t) corresponds to
the classifier parameter vector w. At time t the prediction
of a classifier cl (i.e., y(t) in Equation 1) is affected by an
error e(t). Thus, the observation noise ξ(t) corresponds to
the error e(t) which represents both the error due to envi-
ronment and the error due to the approximation. Finally,
when the environment is stationary (a common assumption
in reinforcement learning) there is no drift, i.e., d(t) is al-
ways zero.

For each algorithm considered, we extended the classifier
structure by adding the additional parameters that the algo-
rithm requires and we replaced the usual NLMS update [14]
with the corresponding update algorithm. To implement
the Kalman algorithm in XCSF we needed to estimate the
values of R and Q in Equation 7. To estimate R, classifiers
are extended with an additional error ǫs which estimates
the square error of the classifier. The new parameter ǫs is
updated as,

cl.ǫs ← cl.ǫs + β((P − cl.p(st))
2 − cl.ǫs)

Finally, since all the problems we consider are stationary,
there is no drift so that Q is zero.

As an example, Algorithm 1 reports the algorithmic de-
scription for the update of classifier cl using IDBD [11]; the
algorithmic descriptions for all the six algorithms considered
are available in [10]. Table 2 reports for each algorithm the
list of parameters that are added to the classifier structure
and the corresponding complexity order for memory.

fp(x) = 1 + x + x
2 + x

3 (22)

fabs(x) = |sin(x) + |cos(x)|| (23)

fs3(x) = sin(x) + sin(2x) + sin(3x) (24)

fs4(x) = sin(x) + sin(2x) + sin(3x) + sin(4x) (25)

Table 1: Test functions (x ∈ [0, 1]).

5. EXPERIMENTAL DESIGN
All the experiments discussed in this paper involve single

step problems and are performed following the standard de-
sign used in the literature [14]. In each experiment XCSF
has to learn to approximate a target function f(x); each ex-
periment consists of a number of problems that XCSF must
solve. For each problem, an example 〈x, f(x)〉 of the tar-
get function f(x) is randomly selected; x is input to XCSF

whom computes the approximated value f̂(x) as the ex-
pected payoff of the only available dummy action; the action
is virtually performed (the action has no actual effect), and
XCSF receives a reward equal to f(x). XCSF learns to ap-
proximate the target function f(x) by evolving a mapping
from the inputs to the payoff of the only available action.
Each problem is either a learning problem or a test problem.
In learning problems, the genetic algorithm is enabled while
it is turned off during test problems. The covering operator
is always enabled, but operates only if needed. Learning
problems and test problems alternate. XCSF performance
is measured as the accuracy of the evolved approximation
f̂(x) with respect to the target function f(x). To evaluate

the evolved approximation f̂(x) we measure the root mean

square error (RMSE) defined as:

RMSE =

s

1

n

X

x

(f(x)− f̂(x))2,

where n is the number of sample points used to compute the
error. In particular, we consider the average RMSE over the
performed experiments, dubbed RMSE.

6. EXPERIMENTAL RESULTS
We have compared the seven versions of XCSF we intro-

duced in the previous section by applying them on the four
functions in Table 1 which are the real versions of those used
in [7].

6.1 Simple Experiments
In the first set of experiments we applied XCSF to ap-

proximate the four functions in Table 1, using the follow-
ing parameters: N = 800; β = 0.2; α = 0.1; ν = 5;
χ = 0.8, µ = 0.04, θdel = 50, θGA = 50, and δ = 0.1;
GA-subsumption is on with θgasub = 50; action-set sub-
sumption is off; m0 = 0.2, r0 = 0.1 [14]; we considered three
values of ǫ0, 0.05, 0.1, and 0.2. For XCSF, recursive least
squares, and Kalman filter we set η = 0.2, while for the
gain adaptation algorithms we set the meta-learning rate η
to 0.02, a rather typical value in [12]. Table 3a reports, for
each of the four functions, and each value of ǫ0, the RMSE
(µ±σ) for the seven versions of XCSF: column xcsf reports
the performance of XCSF which uses the NLMS update [14];
column rls reports the performance of the recursive least

1508

squares update; column kal reports the performance of the
Kalman algorithm (Section 2); columns k1, k2, and idbd

report the performance of the three update methods intro-
duced in [12]; finally, column idd reports the performance
of the IDD algorithm introduced in [5].

XCSF with RLS and Kalman, columns rls and kal, per-
form better than all the others which, on the other hand,
appear to perform similarly. We applied a one-way analysis
of variance or ANOVA [3] to test whether the differences in
the approximation errors in Table 3a are statistically sig-
nificant. We also applied the typical post-hoc procedures
(SNK, Tukey, Scheffé, and Bonferroni) to analyze the dif-
ferences among the seven versions of XCSF. The analysis
shows that the performances are statistically significant at
the 99.99% confidence level; the following post-hoc proce-
dures partition the seven algorithms into four groups with
similar (not significantly different) performances. The first
group contains RLS and Kalman, columns rls and kal. The
second group contains K1 and IDBD (columns k1 and idbd);
this is coherent with the discussion in [12], in fact the two
algorithms are related and IDBD can be actually viewed as
the immediate ancestor of K1 [12]; the third group contains
the usual XCSF update and K2 (columns xcsf and k2); also
this result is coherent with [12], XCSF update is basically
an NLMS and K2 is actually an extension of NLMS. Fi-
nally, the fourth group contains only IDD which performs
differently from all the others.

We analyzed the results for the average population size
(Table 3b). For this purpose we considered the groups
identified in the previous step and applied an ANOVA in
each group to test whether the generalization performance
(within the groups) is actually different. The analysis of
the first group, containing rls and kal, shows that the two
algorithms perform differently in terms of the size of the
evolved populations. Thus, the Kalman algorithm evolves
populations that are significantly smaller than those evolved
by recursive least squares. The analysis of the second group
shows that also k1 and idbd are statistically different in term
of average population size, i.e., XCSF with idbd evolves
populations that are more compact than those evolved by
XCSF with k1. Finally, the analysis of the third group
shows also that the size of the populations evolved by XCSF
with NLMS (xcsf) and K2 are statistically significant, i.e.,
K2 evolves populations that are more compact than those
evolved by XCSF. These results are confirmed by the sta-
tistical analysis of the data for average classifier generality
available in [10].

6.2 Adding Random Inputs
In [12], it is shown that gain adaptation algorithms (like

K1, K2, and IDBD) perform better than classical param-
eter identification algorithms (like NLMS, recursive least
squares, and Kalman algorithm) in problems involving irrel-
evant random inputs. Therefore, we extended the previous
comparison and, following the approach in [12], we added
one and two irrelevant inputs, uniformly randomly gener-
ated between 0 and 1, to the four functions in Table 1. The
XCSF parameters are set as in the previous experiments,
except for the population size N which is 800 when one ir-
relevant input is added and 1600 when two random inputs
are added.

Table 4 reports the RMSE and the average population
size for the seven versions of XCSF applied to the four
functions enriched with one random irrelevant inputs. The
one-way ANOVA applied on the data in Table 4a shows
that the performances are significantly different. The fol-
lowing post-hoc procedures partition the seven algorithms
into three groups. The first group, as in the previous set of
experiments, includes RLS and Kalman (rls and kal) which
(according to the tests) perform similarly. The second group
includes XCSF, K1, K2, and IDD. The third group includes
IDBD which appears to perform significantly worse than all
the others. We applied the same statistical test on each
of these three groups to test whether the algorithms that
performed similarly in terms of prediction error, actually
provide different generalization performances. The analysis
of the data in Table 4b shows that the generalization perfor-
mance of the algorithms in the first group is not statistically
significant, i.e., RLS and Kalman perform similarly. In the
second group the analysis of the average population size,
forms three subgroups, one group containing XCSF and K1,
one group containing K2, and one group with IDD.

Table 5 reports the RMSE for the seven versions of XCSF
applied to the four functions enriched with two irrelevant
random inputs. The one-way ANOVA applied on the data
in Table 5a shows that the performances are significantly
different. The following post-hoc procedures partition the
seven algorithms into the same three groups found in the
case of one irrelevant input. The subsequent analysis of the
data regarding the population size (Table 5b) we performed
on each group also returned the same result as in the previ-
ous analysis.

6.3 Noisy Payoff
Finally, we compared the seven algorithms on the same

problems with Gaussian noise added to the reward. Ta-
ble 6a reports the RMSE for the four functions when a
zero mean Gaussian noise and a standard deviation σ of 0.05
and 0.1 is added to the reward. We performed two one-way
ANOVA, one for each value of σ. Both tests show a sta-
tistically significant difference in the performances. When
σ = 0.05, the post-hoc procedures partition the seven algo-
rithms into four groups: one with RLS and Kalman (rls
and kal); one with the NLMS and K2; one with K1 only;
one with IDBD and IDD. We partitioned the data in Ta-
ble 6a for σ = 0.05 according to the groups identified by
the previous ANOVA and applied three separate analyzes
on each group to determine whether there is a statistically
significant difference within the algorithms in each group.
The analysis shows that (i) the difference in the average
population size between RLS and Kalman (rls and kal) is
statistically significant, thus XCSF with Kalman tends to
evolve more compact solutions; (ii) the difference in the av-
erage population size between NLMS and K2 (xcsf and k2)
is statistically significant; (iii) the difference in the average
population size between IDBD and IDD (idbd and idd) is
statistically significant. When σ = 0.1, the post-hoc pro-
cedures group together NLMS, K1, and K2 (the other two
groups are the same as in the case of σ = 0.05); thus, with
more noise the difference between NLMS, K1, and K2 ap-
pears to be less relevant. The subsequent analysis of the
average population size within the three groups shows that:
(i) the difference in the average population size between RLS
and Kalman is significant, i.e., XCSF with Kalman evolves

1509

Algorithm Parameters Complexity

rls k(t), P O(n2)
kal k(t), P, Q, εs O(n2)
k1 k(t), β(t), h(t) O(n)
k2 k(t), β(t) O(n)

idbd k(t), β(t), h(t) O(n)
idd k(t), β(t) O(n)

Table 2: Additional parameters and complexity.

more compact populations; (ii) the difference in the aver-
age population size between NLMS, K1, and K2 is signifi-
cant and, coherently to the analysis performed for σ = 0.05,
it groups together NLMS with K2 which have according to
analysis similar performance when compared to K1; (iii) the
difference in the average population size for IDBD and IDD
is not statistically significant. Overall, these results confirm
what has been found in the previous experiments: (i) RLS
and Kalman always perform better than NLMS and gain
adaptation algorithms, although Kalman appears to allow
better generalization than RLS; (ii) in terms of prediction
accuracy, NLMS performs rather well and in many case its
performance is comparable to more sophisticated gain adap-
tation algorithms, (iii) however, gain adaptation algorithms
seem to allow better generalization than NLMS.

7. CONCLUSIONS
We have studied the influence of different prediction up-

date algorithms on XCSF. The results we report show that
the genetic pressure toward accurate maximally general clas-
sifiers flatten some of the differences that have been reported
in the parameter estimation literature. The additional com-
plexity required by RLS and Kalman filter may be conve-
nient: XCSF with RLS and XCSF with Kalman always per-
form significantly better than all the other versions. Gain
adaptation algorithms may perform better than NLMS, one
of the simplest parameter estimation algorithm, but the dif-
ference appear to be less evident than that reported in [12].
This is due to the presence of the additional evolutionary
pressure that is present in XCSF but not in the typical set-
tings like those in [12]. Nevertheless, algorithms with similar
learning performance provide different achieved generaliza-
tion. In fact, our results show that XCSF with Kalman
filter usually evolves more compact solutions than XCSF
with RLS, although the two versions achieve similar perfor-
mance. Finally, gain adaptation algorithms usually allow
better generalization than NLMS, although providing simi-
lar performance.

Acknowledgments
This work was sponsored by the Air Force Office of Scientific
Research, Air Force Materiel Command, USAF, under grant
F49620-03-1-0129. The U.S. Government is authorized to
reproduce and distribute reprints for government purposes
notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of the Air Force Office of Scientific Re-
search, or the U.S. Government.

The authors also wish to thank Rich Sutton for his help
with IDBD.

8. REFERENCES
[1] M. V. Butz, K. Sastry, and D. E. Goldberg. Strong,

stable, and reliable fitness pressure in XCS due to
tournament selection. Genetic Programming and

Evolvable Machines, 6(1):53–77, 2005.

[2] M. V. Butz and S. W. Wilson. An algorithmic
description of XCS. Journal of Soft Computing,
6(3–4):144–153, 2002.

[3] S. A. Glantz and B. K. Slinker. Primer of Applied

Regression & Analysis of Variance. McGraw Hill,
2001. second edition.

[4] G. C. Goodwin and K. S. Sin. Adaptive Filtering:

Prediction and Control. Prentice-Hall information and
system sciences series, Mar. 1984.

[5] M. E. Harmon and L. C. B. III. Multi-player residual
advantage learning with general function. Technical
report, Air Force Base Ohio: Wright Laboratory, 1996.

[6] S. Haykin. Adaptive Filter Theory. Prentice-Hall,
2001. 4th Edition.

[7] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. Extending XCSF beyond linear
approximation. In Genetic and Evolutionary

Computation – GECCO-2005, pages 1859–1866,
Washington DC, USA, 2005. ACM Press.

[8] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. Generalization in the XCSF classifier
system: Analysis, improvement, and extension.
Technical Report 2005012, Illinois Genetic Algorithms
Laboratory – University of Illinois at
Urbana-Champaign, 2005.

[9] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. XCS with computed prediction for the
learning of Boolean functions. In Proceedings of the

IEEE Congress on Evolutionary Computation –

CEC-2005, pages 588–595, Edinburgh, UK, Sept.
2005. IEEE.

[10] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. Prediction update algorithms for XCSF:
Rls, kalman filter, and gain adaptation. Technical
Report 2006008, Illinois Genetic Algorithms
Laboratory – University of Illinois at
Urbana-Champaign, 2006.

[11] R. S. Sutton. Adapting bias by gradient descent: An
incremental version of delta-bar-delta. In Proceedings

of the Tenth National Conference on Artificial

Intelligence, pages 171–176. MIT Press, 1992.

[12] R. S. Sutton. Gain adaptation beats least squares? In
Proceedings of the Seventh Yale Workshop on Adaptive

and Learning Systems, pages 161–166. Yale University,
New Haven, CT, 1992.

[13] B. Widrow and M. E. Hoff. Adaptive Switching

Circuits, chapter Neurocomputing: Foundation of
Research, pages 126–134. The MIT Press, Cambridge,
1988.

[14] S. W. Wilson. Classifiers that approximate functions.
Journal of Natural Computating, 1(2-3):211–234, 2002.

1510

f(x) ǫ0 xcsf rls kal k1 k2 idbd idd

fp(x) 0.05 0.02 ± 0.00 0.01± 0.00 0.01± 0.00 0.02± 0.00 0.02± 0.00 0.01± 0.00 0.02± 0.00
fp(x) 0.1 0.02 ± 0.00 0.02± 0.00 0.02± 0.00 0.03± 0.01 0.04± 0.00 0.02± 0.00 0.04± 0.00
fp(x) 0.2 0.04 ± 0.01 0.04± 0.01 0.06± 0.01 0.05± 0.01 0.07± 0.01 0.04± 0.01 0.07± 0.01
fs3(x) 0.05 0.10 ± 0.05 0.03± 0.01 0.03± 0.00 0.08± 0.02 0.09± 0.04 0.08± 0.02 0.13± 0.04
fs3(x) 0.1 0.10 ± 0.02 0.05± 0.00 0.05± 0.01 0.10± 0.03 0.09± 0.01 0.09± 0.02 0.12± 0.03
fs3(x) 0.2 0.13 ± 0.01 0.09± 0.01 0.09± 0.01 0.12± 0.01 0.13± 0.01 0.11± 0.01 0.15± 0.02
fs4(x) 0.05 0.16 ± 0.06 0.04± 0.03 0.03± 0.01 0.12± 0.04 0.15± 0.05 0.13± 0.03 0.17± 0.05
fs4(x) 0.1 0.16 ± 0.06 0.06± 0.01 0.06± 0.01 0.13± 0.04 0.13± 0.03 0.12± 0.02 0.16± 0.03
fs4(x) 0.2 0.17 ± 0.03 0.09± 0.01 0.09± 0.01 0.15± 0.02 0.16± 0.01 0.14± 0.02 0.18± 0.03
fabs(x) 0.05 0.04 ± 0.00 0.02± 0.00 0.02± 0.00 0.04± 0.01 0.04± 0.00 0.04± 0.01 0.05± 0.01
fabs(x) 0.1 0.05 ± 0.01 0.04± 0.01 0.04± 0.00 0.06± 0.00 0.06± 0.00 0.05± 0.01 0.07± 0.00
fabs(x) 0.2 0.10 ± 0.01 0.09± 0.01 0.08± 0.01 0.10± 0.01 0.13± 0.01 0.08± 0.01 0.12± 0.01

(a)

f(x) ǫ0 xcsf rls kal k1 k2 idbd idd

fp(x) 0.05 93.98± 8.97 128.10± 9.26 55.52± 5.50 99.78± 10.91 85.54± 8.20 100.76± 8.30 82.88± 7.45
fp(x) 0.1 115.36± 9.73 128.70± 8.88 49.50± 5.72 107.20± 10.48 93.08± 8.63 117.36± 8.72 60.14± 6.37
fp(x) 0.2 126.14± 9.21 123.08± 8.66 43.12± 5.99 120.30± 11.31 117.76± 9.92 119.98± 10.24 50.40± 7.29
fs3(x) 0.05 128.84± 9.45 89.08± 7.80 80.00± 7.02 121.74± 10.07 126.46± 8.47 103.70± 6.75 130.36± 9.65
fs3(x) 0.1 108.82± 9.45 86.28± 7.95 69.80± 7.10 104.66± 9.83 107.18± 6.27 85.92± 8.59 109.90± 7.11
fs3(x) 0.2 95.16± 8.05 95.82± 9.62 63.08± 6.26 92.02± 6.50 93.96± 7.40 77.72± 7.78 87.60± 7.05
fs4(x) 0.05 141.92± 7.71 91.08± 7.19 87.22± 7.57 135.82± 8.65 138.38± 8.03 118.42± 8.23 133.42± 7.34
fs4(x) 0.1 122.80± 9.05 88.00± 8.83 75.78± 5.90 112.03± 9.06 113.28± 9.56 96.70± 9.37 115.40± 7.50
fs4(x) 0.2 101.90± 6.91 91.22± 9.42 68.10± 6.31 95.60± 8.79 96.82± 9.25 85.45± 7.57 95.60± 6.73
fabs(x) 0.05 102.44± 10.84 86.68± 10.00 63.54± 5.79 104.96± 9.20 107.36± 7.94 77.62± 10.41 106.50± 7.85
fabs(x) 0.1 97.30± 8.49 98.40± 9.59 62.78± 6.28 96.22± 8.39 95.72± 6.93 76.22± 6.18 81.80± 7.20
fabs(x) 0.2 102.20± 9.21 112.84± 9.42 57.94± 6.20 96.74± 9.63 92.12± 10.57 89.34± 8.49 59.76± 5.79

(b)

Table 3: Performance of XCSF: (a) RMSE, (b) average population size.

f(x) ǫ0 xcsf rls kal k1 k2 idbd idd

fp(x) 0.05 0.02 ± 0.00 0.01± 0.00 0.01± 0.00 0.02± 0.00 0.03± 0.00 0.02± 0.00 0.02± 0.00
fp(x) 0.1 0.03 ± 0.00 0.02± 0.00 0.03± 0.00 0.03± 0.00 0.04± 0.01 0.03± 0.01 0.04± 0.01
fp(x) 0.2 0.05 ± 0.01 0.06± 0.01 0.04± 0.00 0.05± 0.01 0.08± 0.01 0.04± 0.01 0.08± 0.01
fs3(x) 0.05 0.14 ± 0.03 0.03± 0.01 0.03± 0.01 0.13± 0.02 0.13± 0.03 0.18± 0.03 0.15± 0.03
fs3(x) 0.1 0.12 ± 0.02 0.05± 0.00 0.05± 0.00 0.12± 0.02 0.11± 0.02 0.17± 0.03 0.13± 0.02
fs3(x) 0.2 0.14 ± 0.01 0.09± 0.01 0.09± 0.00 0.13± 0.01 0.14± 0.01 0.15± 0.02 0.15± 0.01
fs4(x) 0.05 0.18 ± 0.04 0.05± 0.03 0.07± 0.05 0.18± 0.02 0.17± 0.04 0.25± 0.04 0.19± 0.03
fs4(x) 0.1 0.17 ± 0.03 0.06± 0.01 0.06± 0.00 0.18± 0.03 0.15± 0.03 0.23± 0.03 0.18± 0.03
fs4(x) 0.2 0.18 ± 0.02 0.09± 0.01 0.10± 0.01 0.18± 0.02 0.17± 0.02 0.22± 0.03 0.19± 0.02
fabs(x) 0.05 0.05 ± 0.01 0.02± 0.00 0.02± 0.00 0.05± 0.01 0.05± 0.01 0.08± 0.01 0.05± 0.01
fabs(x) 0.1 0.06 ± 0.00 0.04± 0.00 0.04± 0.00 0.06± 0.00 0.07± 0.00 0.08± 0.02 0.07± 0.01
fabs(x) 0.2 0.12 ± 0.00 0.09± 0.00 0.08± 0.01 0.11± 0.00 0.12± 0.00 0.11± 0.01 0.13± 0.00

(a)
f(x) ǫ0 xcsf rls kal k1 k2 idbd idd

fp(x) 0.05 152.30± 17.34 213.10± 11.72 213.54± 12.36 157.70± 15.66 120.40± 13.49 136.04 ± 10.92 124.52 ± 15.86
fp(x) 0.1 178.62± 12.53 217.50± 11.57 219.40± 12.49 190.84± 12.64 115.02± 11.35 165.78 ± 10.66 108.96± 9.48
fp(x) 0.2 210.54 ± 9.83 216.70± 8.73 219.16± 10.27 212.48± 12.63 105.80± 8.85 195.54 ± 13.40 102.14± 8.68
fs3(x) 0.05 236.48± 12.69 148.80± 11.47 145.60± 9.72 240.44± 15.44 205.30± 11.69 220.32 ± 15.31 239.44 ± 12.18
fs3(x) 0.1 188.06± 11.56 159.50± 10.03 153.64± 11.40 189.46± 14.33 168.52± 12.60 189.80 ± 18.55 185.70 ± 11.07
fs3(x) 0.2 161.16± 12.02 173.28± 11.23 172.50± 10.50 159.22± 12.74 150.50± 12.60 154.44 ± 14.64 143.80 ± 10.98
fs4(x) 0.05 250.76± 12.68 142.56± 13.58 152.56± 13.04 251.14± 14.93 228.62± 12.28 241.04 ± 15.62 247.10 ± 14.42
fs4(x) 0.1 208.02± 12.60 148.32± 11.31 148.34± 13.94 212.96± 12.80 193.64± 12.00 200.74 ± 17.41 207.16 ± 12.76
fs4(x) 0.2 173.22± 11.89 163.12± 8.52 162.38± 11.17 174.94± 15.42 163.54± 11.69 166.78 ± 15.67 165.14 ± 10.23
fabs(x) 0.05 173.56± 12.07 165.04± 13.21 161.26± 12.64 178.90± 11.48 154.98± 11.80 181.98 ± 18.25 166.00 ± 11.63
fabs(x) 0.1 157.82± 12.82 181.20± 11.30 173.22± 9.99 155.22± 11.14 128.56± 7.58 147.40 ± 14.11 154.08 ± 13.33
fabs(x) 0.2 185.58± 12.95 206.82± 12.30 200.98± 13.26 184.44± 11.67 124.76± 9.09 132.46± 9.75 120.22± 9.60

(b)

Table 4: Performance of XCSF with one irrelevant input: (a) RMSE, (b) average population size.

1511

f(x) ǫ0 xcsf rls kal k1 k2 idbd idd

fp(x) 0.05 0.02 ± 0.00 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.02± 0.00 0.04± 0.05 0.03± 0.01
fp(x) 0.1 0.03 ± 0.01 0.03± 0.01 0.03± 0.01 0.03± 0.01 0.04± 0.01 0.03± 0.01 0.04± 0.01
fp(x) 0.2 0.07 ± 0.02 0.06± 0.01 0.05± 0.00 0.06± 0.01 0.09± 0.02 0.04± 0.01 0.08± 0.02
fs3(x) 0.05 0.16 ± 0.03 0.05± 0.03 0.05± 0.04 0.18± 0.03 0.13± 0.07 0.29± 0.06 0.18± 0.03
fs3(x) 0.1 0.16 ± 0.02 0.06± 0.00 0.01± 0.03 0.17± 0.03 0.13± 0.06 0.29± 0.06 0.17± 0.03
fs3(x) 0.2 0.17 ± 0.01 0.09± 0.01 0.09± 0.01 0.17± 0.02 0.16± 0.02 0.27± 0.05 0.18± 0.01
fs3(x) 0.05 0.10 ± 0.02 0.03± 0.01 0.03± 0.01 0.08± 0.02 0.10± 0.03 0.09± 0.02 0.14± 0.03
fs3(x) 0.1 0.11 ± 0.02 0.05± 0.00 0.05± 0.00 0.12± 0.02 0.11± 0.02 0.20± 0.08 0.12± 0.02
fs3(x) 0.2 0.13 ± 0.01 0.08± 0.01 0.08± 0.01 0.13± 0.01 0.13± 0.01 0.19± 0.05 0.15± 0.01
fabs(x) 0.05 0.05 ± 0.01 0.02± 0.00 0.02± 0.00 0.04± 0.00 0.04± 0.01 0.15± 0.06 0.06± 0.01
fabs(x) 0.1 0.06 ± 0.00 0.04± 0.00 0.03± 0.00 0.06± 0.00 0.06± 0.00 0.12± 0.04 0.08± 0.01
fabs(x) 0.2 0.12 ± 0.00 0.09± 0.00 0.09± 0.01 0.11± 0.00 0.13± 0.01 0.12± 0.02 0.13± 0.01

(a)
f(x) ǫ0 xcsf rls kal k1 k2 idbd idd

fp(x) 0.05 440.60± 36.37 560.46± 26.01 556.94± 35.26 473.74± 35.91 311.64± 28.54 322.10± 38.96 330.14 ± 66.68
fp(x) 0.1 506.64± 31.14 581.24± 28.14 570.26± 28.03 527.84± 28.17 301.18± 29.25 361.76± 44.68 295.78 ± 30.85
fp(x) 0.2 571.12± 26.36 596.50± 21.48 596.02± 25.08 568.56± 30.11 304.74± 28.31 481.62± 26.50 275.14 ± 21.40
fs3(x) 0.05 128.84 ± 9.45 89.08± 7.80 96.64± 7.36 121.74± 10.07 126.46± 8.47 103.70 ± 6.75 132.62± 9.49
fs3(x) 0.1 522.40± 29.56 430.22± 25.95 426.32± 24.03 544.80± 28.40 602.82± 221.86 532.58 ± 133.96 497.68 ± 36.60
fs3(x) 0.2 453.02± 31.68 471.86± 24.43 463.54± 26.56 461.02± 31.08 601.68± 262.76 410.46± 88.02 374.06 ± 27.43
fs4(x) 0.05 666.30± 31.94 399.24± 26.27 429.35± 29.01 666.00± 27.52 638.98± 127.55 609.62± 46.51 663.14 ± 34.34
fs4(x) 0.1 568.12± 30.74 399.16± 30.89 410.60± 18.70 580.38± 30.55 585.08± 154.60 543.16± 55.35 536.86 ± 32.35
fs4(x) 0.2 490.98± 28.21 436.70± 27.81 424.98± 23.78 486.04± 32.99 444.16± 30.86 446.24± 38.16 435.38 ± 22.96
fabs(x) 0.05 489.50± 31.28 441.84± 21.73 432.04± 26.26 488.38± 29.06 404.50± 27.75 502.64± 53.48 450.94 ± 35.98
fabs(x) 0.1 426.16± 29.00 485.50± 30.47 464.90± 28.80 432.46± 26.09 325.06± 24.96 384.76± 46.36 329.76 ± 28.85
fabs(x) 0.2 506.60± 30.74 547.80± 29.66 532.78± 28.70 494.62± 32.33 309.94± 24.93 333.46± 25.71 302.50 ± 30.34

(b)

Table 5: Performance of XCSF with two irrelevant inputs: (a) RMSE, (b) average population size.

f(x) ǫ0 σ xcsf rls kal k1 k2 idbd idd

fp(x) 0.1 0.05 0.06± 0.00 0.05 ± 0.00 0.05± 0.00 0.06± 0.00 0.06± 0.00 0.06± 0.01 0.06 ± 0.00
fp(x) 0.2 0.05 0.07± 0.01 0.06 ± 0.00 0.07± 0.01 0.06± 0.01 0.09± 0.00 0.07± 0.01 0.08 ± 0.01
fs3(x) 0.1 0.05 0.10± 0.02 0.05 ± 0.00 0.05± 0.01 0.09± 0.02 0.09± 0.03 0.13± 0.04 0.12 ± 0.03
fs3(x) 0.2 0.05 0.13± 0.01 0.09 ± 0.01 0.09± 0.01 0.11± 0.01 0.13± 0.01 0.15± 0.01 0.15 ± 0.02
fs4(x) 0.1 0.05 0.14± 0.03 0.06 ± 0.00 0.06± 0.00 0.14± 0.03 0.12± 0.02 0.16± 0.03 0.16 ± 0.04
fs4(x) 0.2 0.05 0.17± 0.03 0.10 ± 0.01 0.09± 0.01 0.14± 0.02 0.15± 0.02 0.19± 0.05 0.19 ± 0.03
fabs(x) 0.1 0.05 0.07± 0.00 0.06 ± 0.00 0.06± 0.00 0.07± 0.01 0.08± 0.00 0.07± 0.01 0.08 ± 0.00
fabs(x) 0.2 0.05 0.11± 0.01 0.09 ± 0.00 0.10± 0.01 0.10± 0.01 0.13± 0.01 0.10± 0.01 0.13 ± 0.01
fp(x) 0.1 0.1 0.10± 0.00 0.10 ± 0.00 0.10± 0.00 0.11± 0.01 0.10± 0.00 0.11± 0.00 0.10 ± 0.00
fp(x) 0.2 0.1 0.11± 0.00 0.10 ± 0.00 0.11± 0.00 0.11± 0.01 0.11± 0.00 0.11± 0.01 0.11 ± 0.00
fs3(x) 0.1 0.1 0.14± 0.01 0.10 ± 0.00 0.10± 0.00 0.14± 0.01 0.13± 0.02 0.15± 0.02 0.15 ± 0.03
fs3(x) 0.2 0.1 0.15± 0.01 0.13 ± 0.01 0.12± 0.01 0.15± 0.01 0.15± 0.01 0.17± 0.01 0.18 ± 0.02
fs4(x) 0.1 0.1 0.17± 0.02 0.11 ± 0.00 0.11± 0.01 0.16± 0.01 0.15± 0.02 0.19± 0.03 0.18 ± 0.03
fs4(x) 0.2 0.1 0.19± 0.02 0.13 ± 0.01 0.13± 0.01 0.18± 0.02 0.18± 0.01 0.20± 0.02 0.20 ± 0.02
fabs(x) 0.1 0.1 0.11± 0.00 0.10 ± 0.00 0.10± 0.00 0.12± 0.01 0.11± 0.00 0.12± 0.01 0.11 ± 0.00
fabs(x) 0.2 0.1 0.09± 0.01 0.07 ± 0.01 0.09± 0.01 0.09± 0.01 0.11± 0.01 0.08± 0.01 0.12 ± 0.01

(a)

f(x) ǫ0 σ xcsf rls kal k1 k2 idbd idd

fp(x) 0.1 0.05 121.02 ± 10.00 130.26± 8.13 51.16± 6.49 130.04± 8.91 99.94± 8.68 104.52 ± 7.82 64.10 ± 6.87
fp(x) 0.2 0.05 124.48± 9.96 121.74± 11.40 45.26± 5.04 122.88± 11.23 114.50± 10.86 119.28± 10.17 48.74 ± 4.97
fs3(x) 0.1 0.05 106.24± 9.43 68.64± 6.63 69.80± 7.10 94.32± 8.19 101.88± 8.26 108.74 ± 8.47 109.90± 7.11
fs3(x) 0.2 0.05 83.20± 7.35 61.96± 4.80 63.08± 6.26 74.26± 8.26 76.80± 6.62 85.74± 7.21 87.60 ± 7.05
fs4(x) 0.1 0.05 119.26± 8.47 76.20± 6.74 77.96± 6.91 110.14± 8.43 113.72± 7.67 114.62 ± 8.00 116.02± 6.92
fs4(x) 0.2 0.05 94.36± 7.84 70.22± 6.03 69.80± 6.13 87.46± 7.48 87.00± 8.32 96.44± 7.83 95.76 ± 6.69
fabs(x) 0.1 0.05 100.40± 8.72 100.72± 7.82 62.74± 6.14 98.76± 7.88 101.58± 7.42 73.34± 7.34 91.82 ± 7.61
fabs(x) 0.2 0.05 102.54± 8.98 113.56± 11.02 58.50± 5.23 105.88± 9.99 91.48± 8.59 86.00± 5.96 59.30 ± 6.94
fp(x) 0.1 0.1 147.90± 9.47 156.14± 8.86 86.66± 6.01 145.48± 7.83 120.92± 9.07 83.14± 5.25 96.72 ± 9.49
fp(x) 0.2 0.1 128.78 ± 10.38 127.34± 9.63 47.38± 6.51 127.60± 9.70 118.38± 10.81 118.62 ± 8.40 52.86 ± 6.16
fs3(x) 0.1 0.1 135.34± 9.32 105.70± 6.86 107.70± 8.15 133.86± 10.64 125.96± 7.95 132.88 ± 7.15 132.60± 7.53
fs3(x) 0.2 0.1 88.70± 7.27 65.92± 7.12 68.00± 5.41 97.36± 9.88 84.30± 6.63 94.22± 7.39 95.14 ± 6.10
fs4(x) 0.1 0.1 142.22± 8.62 107.70± 8.08 111.20± 6.20 140.04± 10.39 132.92± 8.64 137.86 ± 9.02 135.76± 9.14
fs4(x) 0.2 0.1 100.84± 6.52 72.74± 5.61 72.68± 6.62 94.50± 7.83 96.02± 6.42 103.02 ± 6.87 102.74± 8.03
fabs(x) 0.1 0.1 136.14± 8.19 129.98± 10.24 97.82± 8.42 135.54± 9.50 122.74± 8.27 74.60± 5.98 127.54± 8.02
fabs(x) 0.2 0.1 107.08± 8.31 116.10± 10.07 56.72± 5.16 104.42± 9.35 102.32± 9.65 86.54± 7.84 58.36 ± 6.14

(b)

Table 6: Performance of XCSF with Gaussian noise on the reward: (a) RMSE, (b) average population size.

1512

