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taining default hierarchies once they are formed.  Finally, we
considered three effector payment rules and found that two of
them, sharing and champion, each offer advantages. 

We looked at three issues in our discussion of classifier
syntax.  First, we questioned the necessity of using weighted
matching for problems with noisy inputs, and thus doubted
the need for that particular extension of the syntax. Second,
we suggested that classifier systems are presently unsuited to
learn quasi-continuous mappings from input to output, and
sketched out a modification that may make this possible.  In
the modification, the output is computed collectively by the
classifiers matching the input, rather than being selected from
among their candidate messages.  Finally, we noted the awk-
wardness of fixed-format classifier conditions when the
messages to be matched become realistically long and sug-
gested a sparse bit-at-position-naming encoding instead.  The
consequences could include better linkage of building blocks
as well as a new approach to the problems addressed currently
by partial matching. 

We omitted a number of topics about which something
should, eventually, be said, but on which our own thinking is
as yet rudimentary: planning and lookahead, the representa-
tion of expectations, and ways in which classifier systems can
form and carry along histories of their activities and summa-
ries that condense detailed situation information.  We also
ignored the important topics of classifier speciation and pop-
ulation size. 

Our decisions in these matters have been guided by a de-
sire to do good classifier system engineering and create
systems that work.  Certainly the notion of a classifier system
is appealing---how could roving bands of mating, reproduc-
ing, fighting, and dying rules fail to captivate our collective
imagination?  But understanding how such systems can learn
effectively requires much effort in rigorous theory formation,
mathematical computation, and careful experimentation.  Al-
though such activities are sometimes less glamorous than
exploring advanced capabilities, more basic questions de-
mand our immediate attention if classifier systems are to
move from laboratory curiosity to become working, flexible,
adaptive systems.  Our parting hope is that this paper has il-
luminated some small crannies where such labor may pay off. 
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One possible way is to switch from selecting the output
message to computing it bit by bit.  Suppose we define the ba-
sic problem as taking an input string into an output string such
that a small change in the input string (one bit, say) results in
a small change in the output string.  Then let each classifier’s
output string consist, not of a candidate message, but instead
of a weighted string of votes for setting each bit of a  collec-
tively computed output message.  An example classifier might
be 

     1  #  0  #  #    /    43:1   4:0   15:0   .

The meaning is that if this classifier matched the input, it
would vote 43 to set the first output bit to 1, 4 to set the second
bit to 0, and 15 to set the third to 0.  The system would decide
the first output bit by adding up the votes for that bit and
choosing 1 or 0 depending on which had the majority.  The
other output bits would be picked similarly.  Payoff---
assumed positive---would first be divided by the number of
output bits.  Then the first of the resulting shares would be
split equally and added to the first-bit weights of the
classifiers that voted  for the final decision on the first bit,
similarly for the second share, etc.  Finally, a payout
consisting of a small fraction of each weight would be
removed from those weights that had been adjusted.  The
fitness of a classifier for the genetic algorithm would equal
the sum of its weights.  When a new classifier was generated,
the weights could be inherited in some fashion from the
parents, or they could be set nominally, thus saving the need
to manipulate them with genetic operators. 

A system based on this type of classifier resembles a
classical perceptron, with the added advantage that its constit-
uent structures can be modified through the GA.  Such a
classifier system is likely to have the ‘‘continuous mapping’’
property because changing one bit of the input will only
change part of the membership of the match set, which will in
turn change only a few of the output bits, since only some of
the matching classifiers will attend to the changed input bit.
Furthermore, the degree of output change per input change
should be evolvable, according to the problem, under the GA.
We propose investigation of the properties of (continuous)
mapping classifier systems both for their potential for extend-
ing classifier systems’ problem range, and to develop the
connections with neural networks. 

5.3   Sparse classifier notation 

In realistic classifier systems message lengths will be sub-
stantial, and many classifiers will contain a high proportion of
don’t care symbols.  The sparsity of such classifiers suggests
a classifier syntax that explicitly recognizes information-con-
taining positions and ignores don’t cares.  There are many
ways to implement such a  sparse notation for classifiers, but
in one simple scheme we simply tag condition bits by their
name.  For example, the rule 1#0## / 00011  could be repre-
sented in sparse notation as (1,1) (3,0) / 00011.  In this way,
unmentioned positions are assumed to be #’s.  Explicit don’t
care characters may also be used and these may be treated as
pass-through characters, carrying information from message
through the condition to the action. 

Going to such flexible codings does require some care,
however.  Depending on the genetic operators used, there is
the possibility of redundancy and conflicts between different
parts of the same condition.  However, simple rules may be
used to determine the outcome of such conflicts during
matching.  A first-come-first-serve arbitration rule may work
well, effectively shielding subsequent positions from expres-
sion; this forms a type of intrachromosomal dominance
operator.  A majority-wins conflict resolution rule may also
be useful, although some tie-breaking mechanism is neces-
sary for even splits of 1’s and 0’s.  A probabilistic conflict
resolution rule would match a 1 or a 0 with probability equal
to the proportion of 1’s or 0’s in the condition.  This latter
mechanism provides an interesting counterpoint to Booker’s
partial matching and other position weighting schemes such
as those of Davis and Young (1988) and Stadnyk (1987). 

Besides saving space, a sparse rule coding may provide
reproductive benefits when acted upon by a genetic algo-
rithm.  By eliminating needless don’t care characters,
building blocks of better rules are likely to be tightly linked.
If simple cut and splice operators are adopted together with
strength-based reproduction, these building blocks should
propagate rapidly, thereby forming better rules more quickly
than is possible with a rigid fixed format. Experiments are un-
der way to test this hypothesis in an epistatic optimization
domain.  If successful, the results should transfer readily to
the machine learning arena. 

6.  Summary 

In this paper we have reviewed a number of milestones in the
development of classifier systems, indicated a number of im-
portant current problems and issues, and suggested some
solution directions.  At the level of classifier system architec-
ture, we emphasized the twin problems of generation and
maintenance of bucket brigade chains.  One of our sugges-
tions was to investigate ways to introduce modularity so that
all chains could be short.  A second suggestion was to reduce
intra-chain competition through a merger of the Michigan
and Pitt approaches in which the population could contain not
only individual classifiers but ‘‘corporations’’ of cooperating
classifiers. 

In our discussion of bidding and payments, we first
pointed out that neither the roulette wheel nor noisy auction
method of decision-making is ideal under all uncertainty re-
gimes, and suggested an auction with noise dependent
adaptively on the variance of received payoffs.  Next, we con-
sidered the community’s travails with the questions of
overgeneralization and the formation and maintenance of de-
fault hierarchies. On overgeneralization, we pointed to a
relatively clear result indicating that the problem can be elim-
inated if specificity is not factored into a classifier’s payout,
but also noted that overgeneralization can be greatly attenuat-
ed under appropriate taxation and payoff conditions.  On
default hierarchies we noted regimes in which they can be
maintained stably, but acknowledged that their evolution in
classifier systems has been rare---except perhaps transiently-
--and cited an hypothesis that may explain this.  We described
a more market-like bidding mechanics that may aid in main-
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than one classifier.  If the nominal payoff amount is R, should
R  be shared as above by these classifiers (Holland, 1985),
should each classifier receive a full amount R  (Holland,
1986a), or should R  perhaps be paid only to the highest scor-
ing classifier in the decision process that led to the selected
action---a sort of champion payment scheme (Goldberg,
1989)? 

Informal experiments have suggested that the second
scheme above is the worst, giving the lowest performance
and poorest generalization.  Between the other two, payoff
splitting and champion, the choice appears to be close.  Pay-
off splitting gives more rapid generalization, but the
champion technique may reach higher performance some-
what faster.  As noted in Section 4.2, the champion
technique’s slower generalization rate may help offset forces
that tend toward overgeneralization.  Perhaps the two tech-
niques can be usefully combined. Further experiments, as
well as theoretical investigation, should be done.  The ques-
tion is quite important, as the effectors are the doorway
through which payoff enters the system. 

5.  Classifier syntax 

We bring together in this section several questions that in-
volve potential changes in the format or syntax of classifiers.
We first discuss whether the existence of noisy inputs in some
problems calls for a change in syntax.  Next we examine the
possibility of using classifier systems to learn continuous
mappings.  Finally, we look at recodings of classifier condi-
tions for situations in which very long messages can be
expected. 

5.1   Noisy inputs 

There has been relatively little investigation of classifier sys-
tems with noisy inputs.  Booker (1982, 1985) used inputs in
which some bits were fixed but the rest could vary randomly;
his system then solved several categorization tasks of increas-
ing difficulty using partial matching.  Wilson (1987b)
experimented with  payoff noise in which the environment
with some probability reversed its payoff schedule; as long as
the noise was moderate, the system evolved the same solution
classifiers that it did in the absence of noise.  Neither of these
investigations dealt with the general situation in which the
bits of the input message have some probability of being
changed from their original values. 

To deal generally with input noise, Davis and Young
(1988) suggested that the notion of partial matching should be
extended to include weighted matching of individual message
bits.  Their purpose was to handle noise better than appeared
possible with either complete matching or, under noise that
varied with bit position, Booker’s partial matching.  Howev-
er, their scheme required that the classifier syntax be
expanded to accommodate a string of weights, one for each
bit.  Davis and Young showed that their ‘‘classifier system
with Hamming weights’’ could achieve optimal performance
on a discrimination task having different degrees of noise and
noise that varied with taxon position.  Unfortunately, they

presented neither partial nor complete matching experiments
on the same problems. 

Experimental comparisons should definitely be made,
because the weight string represents considerable computa-
tional baggage.  Davis and Young argued that a standard
classifier system would require very large numbers of classi-
fiers to handle noise as well as the Hamming weight system.
In preliminary experiments, however, the first author applied
the BOOLE system to Davis and Young’s task using the same
number of classifiers that they did.  The performance for dif-
ferent degrees of level noise was very close to the Hamming
system results, especially when BOOLE’s decision was
based on a strength-weighted ‘‘vote’’ of the matching classi-
fiers.  In addition, BOOLE evolved classifiers that looked at
just one or a few input positions, with #’s for the others---not
the elaborate bit combinations Davis and Young felt would be
necessary.  The question of the ability of standard classifier
systems to deal with noise should be thoroughly investigated
experimentally and theoretically. At this point, it is far from
clear that noise requires a change in standard classifier syn-
tax. 

5.2   Continuous mappings 

In general, classifier systems produce output messages by  se-
lecting them based on the satisfaction of classifier input
conditions.  That is, given a certain input, the system chooses
a subset of the set of available classifier messages.  Selection
permits the system to execute highly discontinuous mappings
from input to output: if the input changes slightly---but, from
a logical standpoint, critically---the output message(s) can
undergo a very large change.  Basically the same situation
holds under partial matching; in that case the input may have
to change somewhat more before the output changes, but
when it does, the output change---to new messages---can be
equally discontinuous.  The ability to implement discontinu-
ous mappings is a valuable characteristic of classifier systems
because many tasks require large behavior changes to result
from small differences in environmental input. 

There are important problems, however, that call for a
quasi-continuous mapping from input to output.  In such
problems, a small input change should produce a small output
change---though the mapping itself need not be simple.
Many of the sensory-motor mappings in animals have this
property.  Consider, for example, the mapping from a point in
visual space---as encoded by, say, the angles of the two eyes’
lines of gaze---to the vector of joint angles of the arm and
hand that corresponds to touching that same point with the in-
dex finger.  Here the overall mapping is highly complex and
nonlinear, but it is continuous in that a small change in visual
coordinates maps to a small change in joint coordinates.  A
quite different example is the mapping that simply shifts an
input string by one bit.  Both of these examples would be
awkward to implement with a standard classifier system be-
cause a distinct classifier would be required for each possible
output (embellishments such as ‘‘pass-through’’ would not
help).  Continuous mappings have largely been the province
of artificial neural networks.  Can they be achieved with clas-
sifier systems? 
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4.3   Formation and stability of default         
hierarchies 

Holland (1985) argued that default hierarchies should form in
classifier systems if classifiers’ specificities are factored into
their bids: this allows more-specific exception classifiers to
outbid, and thus ‘‘protect’’, general classifiers when the latter
would otherwise make an error.  In most systems (again, Wil-
son’s and Grefenstette’s excepted) the bid included
specificity, yet default hierarchies have clearly not appeared
in abundance.  As noted earlier, Riolo (1987b) showed, in ex-
periments not using the GA, that default hierarchies could be
stable, once formed. Goldberg (1989) reached the same con-
clusion using a different regime than Riolo’s but again not
including the GA.  The implication is that something about
the GA inhibits default hierarchy generation. 

Wilson (1988) hypothesized that the bid competition not
only protected defaults when they were wrong, it also tended
to starve them when they were right, so that defaults, if gen-
erated, could not survive.  The starvation resulted because the
GA could be expected to generate, besides the default, more-
specific versions of the default, and these latter classifiers
would outbid the default and prevent it from being activated.
For example, consider a problem whose solution is ‘‘if the
first bit of the input string is a 1, decide 1; if the first bit is a
0, decide 0’’.  The two classifiers 1## ... /1 and 0## ... /0 solve
the problem via a logical partition. On the other hand, the
classifiers  1## ... /1 and ### ... /0 solve it via a default hier-
archy: if the input is the string ‘‘0 ...’’, the general classifier
will be correct; if the input is ‘‘1 ...”, the generalist will be
wrong, but will be outbid by 1## ... /1, which is correct.  How-
ever, there seems to be nothing to prevent the evolution of
0## ... /0, so that the generalist would be outbid in every situ-
ation and thus would not survive.  Wilson supported this
hypothesis by experiments in which (1) no default hierarchies
occurred under the standard algorithm, but (2) a striking one
emerged when the algorithm was modified to eliminate the
starvation effect. 

Wilson’s results imply that default hierarchies will be
rare when discovery is based on the GA.  However, classifier
systems do not depend strictly on genetic discovery and may,
as we have seen, use other operators, so that the question of
the stability of a default hierarchy, once formed, remains im-
portant.  As noted in Section 4.2, if a classifier pays out a
fraction b of its strength S, the strength approaches R/b, where
R is the mean payoff to the classifier.  Under the usual bidding
scheme, bid and payout fractions are equal, so that the bid it-
self approaches bS=b(R/b)=R, independent of b.
Consequently the bids of a default and a competing exception
classifier tend toward the same value, and, despite its greater
specificity, the exception cannot stably beat the default.  Pre-
vious approaches to this problem have depended, to some
extent, on ad hoc fixes to keep the bids different. Here we
suggest that stability may ensue under a bidding process that
more closely reflects that of auctions in real markets. 

In real market economies, individuals examine an item
they wish to purchase, decide how much they can afford, and
bid up to the point where the buyer’s bid meets or exceeds

other bids and the seller agrees to sell.  In a classifier system,
a classifier simply matches a message, yanks out a fixed per-
centage of its bank balance, and throws the sum at the seller
if that amount should happen to be selected in the auction pro-
cess. To achieve more market-like flexibility, suppose we let
a classifier bid up to its standard bid value, bS = cσS, but then
have the winners pay out only the amount  necessary to beat
their competitors.  In one simply implemented scheme, each
classifier simply broadcasts its standard bid value, a winner is
selected, but the winner only pays out an amount equal to that
bid by the second best rule.  That this or other such  necessity
auction schemes may encourage default hierarchy stability is
suggested by the following reasoning. 

Let a default and an exception classifier have initially
equal strengths Sd = Se = S.  Then, in competition, the excep-

tion will tend to win since its bid is cσeS vs. cσdS for the

default. However, under the new payout rule, the winner need
only pay out as much as the bid of the second-place bidder---
in this case cσdS. Repetition of this contest, with continued

victory for the exception, will result in its strength approach-
ing   Se = R/cσd. At the same time, the exception’s bid will

approach cσeSe = R(σe/σd) > R.  What about the default’s

bid?  The default will receive payoff in situations where the
exception is not relevant (does not match).  Because of its low
specificity, the default will almost always be forced to pay out
its standard bid value, cσdS, in order to win.  Thus the de-

fault’s strength will tend toward  Sd = R/cσd, and its bid will

approach cσdSd = R(σd/σd) = R, which, as just seen, is less

than that of the exception rule.  This margin of bid values
should permit the exception rule to win consistently over the
default rule when both are active, allowing the stable mainte-
nance of a default hierarchy.  Simulations and more analysis
are required to back these conjectures. 

Default hierarchies are important because they are intui-
tive, and in many situations reduce the number of rules
required by the system.  They enlarge the set of acceptable so-
lutions with no change in the size of the set of structures, and
they provide broad-brush, transitional rulesets and coverings
while the system searches for more correct ones (Holland,
Holyoak, Nisbett, & Thagard, 1986; Goldberg, 1989).  How-
ever, more work is required to determine the conditions under
which default hierarchies can both form and persist. 

4.4   Effector payment alternatives 

In classifier systems, what is paid out by a classifier is shared
by the classifiers whose messages the first classifier matched,
or, under the implicit bucket brigade, by classifiers in the pre-
viously active set.  The idea in both cases is to support
multiple or parallel activation chains, and to encourage bal-
anced niche formation.  The situation is somewhat different
when external payoff is received, and there are several op-
tions. 

When a system takes an action that results in external
payoff, that action has been advocated, in general, by more
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sion-making mechanisms used in classifier systems and
suggest ways they can better deal with varying uncertainty.
We next discuss the apparent problem of overgeneralization
and then consider a number of questions related to the forma-
tion and stability of default hierarchies.  Finally, we compare
several effector payment schemes.  Two definitions will be
helpful for clarity.  We shall say that a classifier’s bid is the
quantity used by the decision mechanism to determine which
classifiers will be activated.  Second, we shall use payout to
mean the total amount, during a cycle, that a classifier pays to
the classifiers whose messages it matches and, in the case of
detector messages, to the environment. 

4.1   Decision techniques 

Most classifier systems have made decisions by a stochastic
process in which the probability of selection was proportional
to a classifier’s bid.  In the bid competition, the probability
was equal to the bid divided by the sum of bids of all classi-
fiers whose conditions were satisfied.  In the effector
activation competition, the probability of choosing a particu-
lar effector state was equal to the sum of bids of classifiers
advocating that state, divided by the sum of bids of all classi-
fiers addressing that effector. Goldberg (1983) calls this the
‘‘roulette wheel’’ technique. His own choice, however, was a
‘‘noisy auction’’ in which each contending bid had added to
it gaussian noise having a certain variance, and the classifiers
with the largest of the resulting quantities were selected.  An
advantage of the noisy auction is that by adjusting the noise
variance, the degree of determinism in the decision can range
from completely deterministic (i.e., based directly on the
highest bids) to totally random. 

The degree of determinism in the decision is important,
and relates to the ‘‘exploration vs. exploitation’’ dilemma
faced by all inductive systems.  If of two classifiers A and B
that might be selected, the strength of A is somewhat greater
than that of B, then a relatively deterministic decision (for A)
should be made only if the system is quite sure that the
strengths estimate accurately the resulting payoff.  This cor-
responds to exploitation of current information.  On the other
hand, if the system is unsure that the estimates are accurate,
or if the environment’s payoff schedule could be non-station-
ary, then the decision should be made less deterministically,
corresponding to greater exploration of different possibilities.
Goldberg (1988) develops the theory of such decision making
and shows that neither the roulette wheel nor the noisy auc-
tion with fixed variance is optimal over the full range of
uncertainty that a system can encounter. He also cites results
in the psychological literature that suggest humans adapt the
exploitation-exploration balance in their decision procedures
to the degree of perceived uncertainty. 

To give classifier systems a similar flexibility Goldberg
suggests a noisy auction in which the variance of each classi-
fier’s bid depends on the variance in its received payoffs.
Thus the bids of classifiers whose payoff amount was reliable
would be treated quite deterministically, while those of clas-
sifiers with uncertain payoff would have a greater stochastic
component.  The scheme would be implemented by having
each classifier keep an estimate of the variance of payoffs to

it.  We suggest that this  variance-sensitive bidding is an im-
portant topic for investigation.  Its effect should be to permit
a system to explore alternatives in earlier learning phases
much as with roulette wheel decision making, then later, as
uncertainty diminishes, to maximize payoff returns through
increasingly deterministic decisions. 

4.2   Overgeneralization 

As noted in the review, classifier systems have a tendency to
produce excessive numbers of general and overgeneral clas-
sifiers.  Some systems, however, have not shown the
problem, for example Wilson’s Animat and BOOLE, and
Grefenstette’s state-space traverser.  As discussed earlier, the
problem can occur when a classifier’s specificity is factored
into its payout, resulting in higher fixed-point strengths for
generalists.  In the systems just mentioned, payout was sim-
ply a fraction of the strength. Wilson (1988) investigated the
question directly, using systems that were identical except
that one had specificity in the payout and the other did not.
The result was rampant overgeneralization for the former and
solid learning for the latter.  From this, there would appear to
be no good reason for the payout to depend on specificity. 

The problem perhaps arose in the first place because of
the conceptual elegance of the economic analogy in which a
classifier paid its bid to its suppliers. Since the bid contained
specificity, then, by the analogy, so should the payout.  How-
ever, besides biasing the GA in favor of generalists, this
policy has other problems. Goldberg (1983) noted that if the
payout was a fraction b of the strength, the steady-state
strength would approach R/b, where R is the mean payoff to
the classifier.  If b is constant, then the steady-state payoff is
in effect estimated (to within a factor 1/b) by the strength.  If,
however, b=cσ, with c a constant and σ the specificity, then
the strength estimates payoff divided by σ.  This conflicts
with the basic notion that strength, if it is to be a classifier’s
fitness under the GA, should estimate payoff.  The fraction b
also determines how heavily recent payoffs are weighted in
the current estimate; if b depends on σ, then the weighting is
greater for more specific classifiers, to no apparent purpose. 

Despite the practical and conceptual difficulties with in-
cluding specificity in the payout, an argument can be made
that at least some of the resulting bias toward general classi-
fiers may be helpful in supporting default hierarchies (Riolo,
1987b).  In addition, classifier systems such as those of Gold-
berg (1983, 1989) and Robertson and Riolo (1988) have
included specificity, or a slowly increasing function thereof,
in the payout without serious overgeneralization problems.
However, Goldberg’s programs also used a ‘‘champion’’
payoff scheme (see Section 4.4) instead of payoff sharing,
and Wilson’s (1988) explanation of overgeneralization col-
lapse depends partly on the presence of payoff sharing.  In
Robertson and Riolo’s case, as noted in the review, various
means including taxation held generalists in check.  The most
appropriate conclusion is thus that specificity can be included
in the payout and might in some respects be desirable, but a
bias toward overgeneralization will occur that must in one
way or another be contended with. 
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this hypothesis, the triggered coupling operator crosses one of
those non-coupled classifiers, call it B, with C to produce two
new classifiers: one that fires on B’s condition and leaves a
message M, and one that fires on M and leaves C’s message.
As a result, there is now a well-defined coupling between B’s
condition and C’s message that represents the hypothesis and
can be further tested by the bucket brigade. 

Robertson and Riolo’s ‘‘yhwhyhwh...’’ prediction task
provides an example. The system should predict ‘‘w’’ after
‘‘ h’’ if the preceding letter was ‘‘y’’; otherwise it should pre-
dict ‘‘ y’’.  If the system can see only one letter at a time, it
cannot solve the task unless (1) some classifier on the preced-
ing time-step leaves a message that implies whether ‘‘w’’ or
‘‘ y’’ was present on that step, and (2) a classifier on the
present time-step responds to that message (and the ‘‘h’’) and
makes the right prediction. These classifiers are to be created
by triggered coupling out of a classifier (B) that notices the
‘‘ w’’ or ‘‘ y’’ and a classifier (C) that happens by chance to get
the right answer and so makes a profit. 

Holland (1987) suggests other conditions under which
coupling might be triggered in order to induce bucket brigade
chains.  Although these heuristics deserve investigation,
much of their power is wasted under the present bucket bri-
gade architecture.  The problem is that events that should be
coupled by the operators may, in realistic cases, be many
time-steps apart.  If, for instance, a system is to leave a room
by the same door through which it entered, this coupling will
be very hard to establish if the system is also active within the
room.  As long as the fundamental time-granularity of the
bucket brigade is solely that of its most elementary level, sig-
nificant couplings will be extremely improbable except in
elementary tasks. 

3.3    Proposal: eliminate long chains 

This section has pointed out that under the present architec-
ture, long bucket brigade chains are required for significant
action, yet long chains are both hard to support and hard to set
up. We propose investigation of methods that will promote
modularity in the bucket brigade.  Conceptually, all action se-
quences can be decomposed into modules at various levels of
abstraction. For instance, <dress>, <take a taxi>, and <enter
theater> might be high level modules of <going to the opera>,
whereas <put on shoes> and <tie laces> would be modules--
-belonging to <dress>---at a lower level, etc.  If the bucket
brigade were organized so that module sequences at different
levels formed separate reinforcement chains, then all such
chains would be short, thus making them easier to discover
and maintain.  There would be further benefits.  The essence
of a module is that it can be called in many different contexts.
Consequently, classifiers forming a module would be more
fully tested than classifiers in the present architecture, and
populations could potentially be smaller. In addition, execu-
tion of a module chain is a unit activity suitable not only for
the bucket brigade, but also for Grefenstette’s PSP since it
forms a well-defined episode (John Grefenstette, personal
communication, 1988).  Finally, modularity at a range of lev-
els would introduce levels of time-granularity that could
permit powerful triggered coupling. 

An architecture for a modular or hierarchical classifier
system has been suggested by Wilson (1987a), but many
schemes are possible.  It is probably important to have oper-
ating principles that permit a message to persist on the
message list over indefinitely many time-steps so as to allow
it to name the module that its sub-modules belong to.  Further,
module chains should probably receive some payoff even if
the system as a whole is not rewarded; they should be reward-
ed for ‘‘doing their job’’. 

3.4    Proposal: a corporate classifier system 

Even with shorter chains and modularity, the population will
retain some degree of the cooperator/competitor dilemma
noted earlier.  Classifiers in a module chain are basically co-
operative and stand or fall together.  On the other hand,
separate modules are in competition if they address similar
purposes. Grefenstette (1987b) points out that the Pitt ap-
proach directly permits evolution of coadapted---
cooperative---sets of rules under the genetic algorithm.  It is
possible a similar effect could be achieved in a classifier sys-
tem if, for purposes of reproduction, classifiers could form
cooperative clusters. 

The idea is that the population would consist not only of
single classifiers, but also clusters of classifiers called  corpo-
rations.  If two classifiers belonged to the same corporation,
they would not compete with each other because the corpora-
tion could only be reproduced or deleted as a unit.
Corporations would form and break up through a modified
crossover operator.  The performance and reinforcement
components of the classifier system would function almost as
usual, i.e., ignoring the clustering.  However, for purposes of
reproduction, the fitness of a corporation would depend on
the strengths of its constituent classifiers in such a way that
clustering of cooperators was advantageous over their re-
maining single.  For example, suppose a corporation’s fitness
were defined simply as the average strength of its member
classifiers.  This alone might be sufficient to favor clustering
of cooperators since, for example, increased fitness stability
is generally advantageous, and bucket-brigade transactions
within a corporation would leave its fitness unchanged.
However, if normal CS effects are not sufficient, pressures
can be introduced for the purpose.  For example, the rein-
forcement component could pay a bonus to a classifier that
received bucket brigade payoff from a member of the same
corporation. Or, transactions not within the same corporation
could be taxed. If the system had operating principles that in-
duced both modularity and corporations, the corporations that
evolved might well consist of module chains, at least approx-
imately. 

4.  Bidding and payments 

Since the behavior of all classifier systems is driven by rein-
forcement received from the environment, the mechanisms
for distributing that reward internally are primary concerns in
classifier system design.  The last section was concerned with
reward distribution over multiple cycles of the system. In this
section, we look at certain questions related to events that
take place within a single cycle.  We first critique the deci-
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basic activity as getting a cup of coffee is extraordinary.  At
more abstract levels, long chains are equally common: con-
sider the number of steps that can be required to take a trip,
make a sale, etc.  Under the bucket brigade, however, long
chains take a long time to reinforce.  Wilson (1987a) and Ri-
olo (1987a) found that the number of repetitions required to
fully reinforce the earliest member of an n member bucket
brigade chain was on the order of 10n, or about 100 execu-
tions of a chain merely 10 steps long.  As it now stands, the
bucket brigade model seems practical only for learning prob-
lems that can be organized into a small number of steps. 

Furthermore, the research has suggested that besides be-
ing slow to reinforce, bucket brigade chains are also quite
fragile in the sense that earlier members tend to have less
strength, regardless of the number of sequence repetitions.
This seems partly due to a combination of two effects: (1) the
probability of reaching payoff starting with an earlier classi-
fier is less than that starting with a later one, because of
stochastic effects at each step; (2) later classifiers tend to have
many sequences leading into them, so they are reinforced
more often.  However, there is probably a further reason.
Classifiers in a chain are cooperative: early ones depend on
the activation of later ones for their payoff flow, and later
ones depend on earlier ones to set up the situations in which
they, the later ones, can become activated.  At the same time,
however, the members of the chain usually compete to make
offspring under the genetic algorithm.  Of course, all classifi-
ers in the population are in such a competition, but for those
making up a chain, the competition is particularly problemat-
ic.  If, for example, later classifiers tend to be stronger, they
will be more successful reproductively, and this will put de-
letion pressure on the earlier classifiers.  But that in turn will
feed back and weaken the later classifiers, since the earlier
ones set them up.  The full ramifications of this instability are
not now known, but it is clear that short chains will be less
subject to it than longer ones. Grefenstette (1987b) also notes
the cooperator/competitor dilemma. 

Bridge classifiers are designed to feed environmental
payoff almost immediately to the beginning of a chain, inde-
pendent of its length.  Though Riolo showed that these can be
made to work once generated, there is no suggestion as to
how to bring them into existence without the complication of
new special operators. Furthermore, very large numbers of
tentative bridges would have to be employed, since any earli-
er-firing classifier might be the valid origin of a chain. 

Grefenstette’s profit sharing plan and other epochal algo-
rithms would seem to be an easier way of achieving much the
same effect as bridges since they distribute payoff to all ear-
lier classifiers as though by bridge.  PSP is not a cure-all,
however.  As Grefenstette notes, there is a problem in decid-
ing how far back in time to give payoff; it is not always
sufficient to stop at the previous reward cycle since the stage
may have been set earlier for the present reward. Perhaps
more importantly, epochal methods do not depend on a strict
causal chain: their vulnerability to freeloaders, parasites, and
inappropriately rewarded classifiers has not yet been clearly
determined. Finally, the cooperator/competitor dilemma still
holds for sequentially firing classifiers under PSP. 

3.2   Long chain generation 

In the decade since CS-1, there have been few classifier sys-
tems in which chains of sequentially activated classifiers
have actually been formed.  Our review mentioned three:
Wilson’s Animat, Robertson and Riolo’s letter sequence pre-
dictor, and the bucket brigade and PSP versions of
Grefenstette’s (1988) state-space traverser.  Of these, only
Robertson and Riolo’s used internal messages.  The three sys-
tems learned under conditions of infrequent payoff in which
the generation of stage-setting classifiers was required.  The
discovery of such classifiers remains a difficult problem. 

In theory, classifier systems generate whatever rules are
needed through the genetic algorithm, but in practice addi-
tional mechanisms have often been invoked.  There seem to
be at least two problems with the usual simple GA used to
date. (1) Classifier system tasks typically involve a kind of
multimodal optimization in which the system must solve not
one, but a number of quite different problems (e.g., finding
food under different sets of environmental inputs).  It is not
clear that classifiers that solve sub-problem A will contain
schemata useful for sub-problem B; therefore, unrestricted
crossover may result primarily in classifiers that are relevant
to no sub-problem.  It was to offset this that Booker (and later,
Robertson and Riolo) used the GA only among simultaneous-
ly active classifiers. (2) In some cases, good solutions to a
task may occupy only a very small portion of the space of
possible classifiers, so that GA search is difficult.  Classifiers
close to good ones may not (under exact matching) match, so
they are not evaluated and yield no search information.
Again, Booker attempted to offset this problem with partial
matching.  It is interesting that the GA alone was quite suc-
cessful in two tasks in which every possible classifier
matched some problem state and could thus be evaluated.  In
Wilson’s BOOLE system, every possible L-bit input string
could occur, so any classifier generated received eventual
evaluation; the system relied very little on discovery through
operators like covering.  Similarly, in Grefenstette’s state-
space system, every possible classifier matched at least one
state, and the system evidently did not use covering.  In gen-
eral, however, the states of most tasks form only a small
subset of the possible states, and the GA has required auxilia-
ry operators. 

The two auxiliary operators used thus far are covering
and triggered coupling.  Covering creates classifiers that
match environmental input and therefore incorporate prob-
lem state information that the genetic algorithm may
eventually make use of. Triggered coupling is more sophisti-
cated; the logic is as follows.  Suppose a classifier C makes a
large profit on a certain time step---the incoming receipts un-
der the bucket brigade significantly exceed its outgoing
payments.  The implication is that C’s message was especial-
ly appropriate in that situation.  But why a profit now, since
C simply fired as usual under the bucket brigade?  Perhaps
there was some unusual condition on the previous time-step
that correlated with C’s profit.  If so, it could not have been
detected by any classifier currently coupled into C; their fir-
ing was business as usual.  Maybe some other classifier on the
previous time-step detected the unusual condition.  To test
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Wilson (1987a) suggested, but did not simulate, a new
approach to the long chain problem through his  hierarchical
bucket brigade.  This method is designed to induce behavior-
al hierarchies of classifiers in which modularity keeps all
bucket brigade chains short, but overall action sequences can
still be long.  Separately, Wilson (1987b) used a single-step
(no bucket brigade) CS called BOOLE to learn a complex
Boolean function.  This work also demonstrated parametric
control of the system’s generalization bias and employed dy-
namic variation of the crossover rate.  Subsequently, Sen
(1988) modified Wilson’s program and obtained very rapid
learning rates, far faster than connectionist networks on the
same problem. 

Robertson and Riolo (1988) investigated letter sequence
prediction and produced the first evidence of the generation,
and use by the bucket brigade, of internal messages.  The pre-
diction task required internal messages since performance
depended partially on memory of letters seen earlier.  The
best results occurred using a  triggered coupling operator sug-
gested by Holland (1987).  In this method, classifiers active
on successive time-steps are sometimes recombined to form
a pair of coupled offspring.  Addition of this operator im-
proved performance over that obtained when discovery relied
only on the genetic algorithm and a covering operator much
like Wilson’s (1985) create mechanism.  Furthermore, while
the GA and covering worked well together, each alone pro-
duced substantially inferior results on most tasks. Part of the
study investigated the use of large populations of classifiers,
finding that performance with 8,000 classifiers was signifi-
cantly better than that with 500. 

Robertson and Riolo provide a useful discussion of sev-
eral major problems they encountered.  One problem was the
tendency (often noted informally by others) toward excessive
production by the GA of general, and overgeneral, classifiers.
This is commonly believed to occur because, in the standard
bucket brigade algorithm, the quantity both bid and paid out
by a classifier contains the classifier’s specificity as a factor.
The result is that, other things equal, a classifier’s fixed-point
strength is inversely proportional to its specificity, so general
classifiers are preferentially reproduced.  The study limited
this problem with taxes that fell more heavily on generalists,
and by bias in parent selection.  A second problem was that
reward-receiving effector classifiers at the end of a chain
were much stronger and more numerous than earlier mem-
bers of the chain, discouraging creation of long chains.  The
study offset this in several ways: taxes were kept very low;
detector messages did not participate in payoff; the number of
copies of each type of classifier was limited; and the number
of effector messages posted during a time-step was limited.
A third problem was that unrestricted mating for crossover
led to a large number of lethal or inappropriate classifiers that
degraded system performance.  The solution was related to
Booker’s (1982) modification: crosses were allowed only be-
tween classifiers that were active at the same time, and
therefore tended to have similar structure. 

Wilson (1988) investigated several aspects of bidding
and payout through experiments with his single-step classifi-
er system.  First, he found that overgeneralization could be

eliminated by simply removing the specificity factor from the
amount a classifier paid out; any power of specificity could
remain as a factor in the bid.  Second, when this change was
made, use of a bid competition and a restricted message list
did not improve performance over use of an unlimited mes-
sage list and no bid competition.  Third, the bid competition
did not encourage formation of default hierarchies.  A rein-
forcement algorithm somewhat different from the standard
was found to support default hierarchy formation.  Briefly,
the change was to distribute payoff to, and take payout from,
all matching classifiers that agreed with the system’s deci-
sion, leaving the others alone. 

Last, Grefenstette (1988) made the first experimental
comparison between the bucket brigade and a simplified ver-
sion of Holland and Reitman’s epochal credit allocation
scheme. In the latter, termed the  profit sharing plan (PSP), a
constant fraction of the current external reward is paid to each
classifier that becomes active since the last receipt of reward.
Grefenstette argued that classifier strengths under PSP more
accurately predict final rewards than those under the bucket
brigade, and his experimental results with a two-dimensional
state space showed superior performance for PSP.  Building
on earlier work (Grefenstette 1987b), he then presented a sys-
tem called RUDI that combined aspects of classifier systems
and the LS-1 approach to rule learning.  In RUDI, rulewise
apportionment of credit is used to order rules heuristically,
thereby promoting tighter linkage of building blocks in sub-
sequent recombination of separate rulesets. This hybrid of the
Michigan and Pitt approaches gave results better than either
approach alone. 

2.4    Summary 

Much effort has been devoted to the development of working
classifier systems over the past decade, but many open ques-
tions remain.  In the remainder of this paper,  we address
some of the shortcomings of current classifier systems and
propose alternative approaches in the specific areas of bucket
brigade architecture, bidding and payments, and classifier
syntax. 

3.  The bucket brigade architecture 

The bucket brigade has the virtue of distributing credit to
large numbers of sequentially acting classifiers by means of
strictly local transactions among them.  Unfortunately, as the
review has suggested, the technique has two primary weak-
nesses: (1) it is difficult to maintain long bucket brigade
chains, and (2) they are hard to generate in the first place. 

3.1    Long chain maintenance 

Maintaining long chains is important, since many systems---
animals, certainly---must execute extensive action sequences
before receiving environmental payoff.  At the level of mus-
cle activations, the number of steps involved in even such a
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The first classifier system was Cognitive System One (CS-1)
of Holland & Reitman (1978).  CS-1 ran a simulated linear
maze with external payoff only at the maze ends, so that the
correct step-direction had to be learned at each interior point.
The system’s success was the first example of the generation
of rules appropriate to a task under the genetic algorithm, and
the effective allocation of credit under conditions of infre-
quent payoff.  Although CS-1 learned under infrequent
payoff, it did not do so using the bucket-brigade of today’s
classifier systems.  Instead CS-1 apportioned credit to activat-
ed classifiers using an  epochal algorithm.  The epochal
algorithm kept track of fairly extensive activation statistics
and paid classifiers active since the last payoff event when re-
ward was next received. 

Smith (1980) stripped the classifier system of its appor-
tionment of credit system in his study of a system called LS-
1 in Waterman’s (1970) poker playing task.  By so doing,
Smith sidestepped many of the knotty questions of credit as-
signment by requiring genetic evaluation of entire rule sets.
This approach contrasts starkly with that of CS-1 where a sin-
gle rule is taken as the corpuscle of genetic manipulation.
Subsequent generations of researchers have joined in the
great debate pitting the Michigan approach (CS-1-like) ver-
sus the   Pitt approach (LS-1-like), but we will later in this
paper make an argument that synthesis of the two approaches
is necessary to achieve more flexible learning classifier sys-
tems. 

Several themes of recurring importance were first ad-
dressed by Booker (1982, 1985).  First, he assigned non-zero
match scores to classifiers whose conditions mismatched
messages in some positions, arguing that near-matches pro-
vide search information that is ignored under complete
matching and also permit the system to respond to situations
in which no exact match is obtained. Booker’s success with
partial matching opened a continuing debate of the merits of
various matching techniques.  Second, Booker made classifi-
ers that were active in the same situation share the resulting
payoff.  The consequence was a crowding pressure that dy-
namically allocated classifiers to distinct sub-problems of the
overall task, a technique that has been found effective in sev-
eral subsequent studies.  Last, he restricted classifier mating
to pairs that were active in the same situation and thus satis-
fied a similarity criterion.  Booker’s idea was to limit the drop
in on-line performance due to crosses between unrelated clas-
sifiers.  The technique was successful, but the issue of mating
restriction is not settled since, for example, early in a search
it may be desirable to mate promiscuously. 

Goldberg (1983) applied classifier systems to two con-
trol problems: the centering of a Newtonian object in a one-
dimensional space, and generation of a rule set that would
cover both normal and exceptional operating conditions on a
gas pipeline.  There were three main contributions.  First,
Goldberg’s results demonstrated the existence of theoretical-
ly predicted default hierarchies of classifiers (Holland, 1981,
1985) in which, in the simplest case, a default general rule
covers the normal situations encountered but is outbid by one
or more exception rules that take control in situations where
the default would be incorrect.  Default hierarchies have been

a continuing theme since.  Second, Goldberg introduced the
noisy auction, an alternative to the roulette wheel method for
calculating bids that offers greater control possibilities and
has led to further scrutiny of bidding techniques (Goldberg,
1988).  Finally, his work was the first application of a CS to
a physical---albeit simulated---system. 

Although Goldberg showed the existence of default hier-
archies, his work did not consider infrequent reward.
Wilson’s (1985) Animat system was the first to demonstrate
the bucket brigade---though a simplified one---under infre-
quent payoff conditions.  The simplification was to omit the
posting and matching of messages; classifiers controlling the
system on the current step simply passed a fraction of their
strength to the classifiers active on the previous step.  Using
this  implicit bucket brigade, the system evolved classifier
chains up to four or five steps long.  Wilson introduced two
other procedures that aided rapid learning in this food-finding
task.  First, when the system could not match an environmen-
tal input, a matching classifier was simply created using an
action chosen randomly or by a form of lookahead.  Second,
each classifier stored an estimate of the average number of
steps between its activation and the finding of food; the esti-
mate was combined with strength to form the classifier’s bid.
This encouraged the formation of paths that were both remu-
nerative and short. 

Forrest (1985) investigated the use of a classifier system
to implement a subset of the KL-ONE semantic net language.
Although the study did not consider learning and would thus
seem misplaced in this paper, her work represents an impor-
tant milestone in the development of classifier systems.
Classifier systems have sometimes been criticized as being
too primitive, unable to emulate the cognitive models and re-
lationships of symbolic AI systems.  Forrest debunks such
symbol chauvinism in a clearly stated existence proof.
Whether such modeling can be learned remains an open ques-
tion, and learning such complex structures is a primary thrust
of the present paper. 

2.3    Since 1985 

Riolo (1987a,b) addressed two issues that appeared problem-
atic for the bucket brigade: long chains and default hierarchy
instability.  Early classifiers in a long chain are difficult to re-
inforce because of the number of trials required to transport
strength up the chain and because of losses along the way.
Using simulated chains, Riolo showed that so-called bridging
classifiers (Holland, 1985) can carry strength from one end of
the chain to the other in a single time step. 

Factoring a classifier’s specificity into its bid had been
observed to lead to instability in the relative bids of default
and exception classifiers in a default hierarchy.  Riolo
showed this could be corrected by further biasing the bid
competition in favor of specialists.  Both studies showed that
viable structures can be maintained once appropriate classifi-
ers are generated. However, the studies did not include the
genetic algorithm or other discovery mechanism, so the ques-
tion of formation of bridges or default hierarchies was left
open. 



Abstract 

The current state of classifier system development is ex-
amined with emphasis on challenges and unsolved
problems.  Suggestions related to the bucket-brigade ar-
chitecture, the mechanics of bidding and payments, and
classifier syntax follow a review of past research. 

1.  Introduction 

Depending on the paper you choose to mark the beginning of
their development, classifier systems (CSs) have just passed
either their eighteenth or eleventh birthday.  Age 18 is ob-
tained if you start the clock with ‘‘Processing and Processors
for Schemata’’ (Holland, 1971); age 11 is calculated if you
choose ‘‘Cognitive Systems Based on Adaptive Algorithms’’
(Holland & Reitman, 1978) as your milestone of choice.
Some may find it surprising that this classifier system ‘‘new’’
kid on the block has actually been hanging around for a de-
cade or two.  Over the last decade especially, classifier
systems have received increasing attention from researchers
interested in developing flexible machine learning systems.
Yet, as with many children approaching adolescence, these
research efforts have reached a developmental crisis---a crisis
that must find at least partial resolution before further strides
are likely to be successful. 

In this paper, we examine the current state of classifier
system development with emphasis on areas that we believe
contain the most important unsolved problems and, therefore,
challenges.  Adopting the perspective that classifier systems
are intended as a general approach to the induction of needs-
serving behavior in uncertain environments, we first discuss
past research that has aided in moving the field toward this
goal.  We then focus on three important areas where our un-
derstanding is incomplete: the architecture of the bucket-
brigade, the mechanics of bidding and payments, and the syn-
tax of classifiers.  While reviewing these topics, we offer
suggestions that may solve some of the identified problems or
stimulate others in their own search for solutions. 

We assume that readers of this article are familiar with
basic CS structures and algorithms.  If this is not the case, sev-
eral publications now exist that describe classifier systems in
considerable detail.  Holland’s (1986a) description is some-
times regarded as the standard reference.  Goldberg (1989)
provides a teaching introduction to classifier systems and re-
views or enumerates much of the research published prior to
the book’s publication. Further material may be found in
Grefenstette (1985, 1987a), Booker, Goldberg, and Holland
(in press), Goldberg and Holland (1988), and a growing num-
ber of other sources. 

2.  Milestones 

Our present knowledge of classifier systems is based prima-
rily on theoretical and experimental studies over the last
decade.  The experimental work tested variations, adjust-
ments, and extensions of the basic theoretical framework
developed by Holland (1975, 1976, 1980, 1981, 1985, 1986a,
1986b, 1987).  To save space, we have been selective in
choosing studies for the following review.  They are arranged
chronologically, but we hope at the same time to bring out
major themes that several studies have addressed. 

2.1   CS  prehistory 

Holland foreshadowed the coming of classifier systems in his
1971 paper ‘‘Processing and Processors for Schemata’’.  In a
sequence of four prototype proposals he progressed from a
simple stimulus-response schema processor to a sophisticated
automaton with anticipatory modeling.  These suggestions
led to the call (Holland, 1975) for the creation of the  broad-
cast language, a Post-like production system combining
computational completeness, genetic operator amenability,
and sophisticated pattern matching and processing capability.
Neither broadcast language nor schemata processors made it
to the stage of experimental testing, but both helped shape the
coming of the first classifier system, CS-1. 

2.2   1978 to 1985 
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