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The idea of the “virtual polywell” came up on talk-polywell.org recently so I decided to try to create a
very simple model in that vein. The essence of a polywell fusor is a set of coils in a vacuum chamber
which are held at high enough potential along with a high current to help confine electrons and ions to
help bring about fusion reactions in the center. The purpose of this report is to describe a fluid model
which might be used to determine various parameters to help with the construction of a real polwell fusor.

The first step in the model is the creation of the magnet coils. Since this is a virtual device, the size of
the coils is taken to be physcially zero - clearly unreal, but simple to compute. There are only a few con-
figurations which lead to a uniform magnetic field: four, six or 12 coils is all that will work. Six coils is
the typical polywell configuration, so this model will be based on uniform size and spacings around the x,
y and z axis.

The fundamental formulas for magnetic fields from coils can be found in text books like “Classical Electro-
dynamics”, J.D. Jackson, Wiley and “Electromagnetic Fields and Waves”, P. Lorrain and D. Corson,
Freeman. The introduction of scale factors by use of dimensionless constants makes plotting more useful.
A dimensionless magnetic field is:
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where L is the distance from the center of the fusor to the center of any coil, Iy is the amp-turns in a coil,
o is the permeability of free space and B is the magnetic field (normally in units of Tesla). I also use
dimensionless position vectors:
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Assuming the coils are pure circles we have the following for the field components of any arbitrary coil:
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where uy, is position in the volume, uy, is position on the coils, ry = ux — uj, and j; is a dimensionless cur-
rent value. Since there are six coils and three field values for each coil, there are 18 integrals for every
point in the volume of interest. The coils are symmetric so only 1/8th of the volume actually needs to be
computed (less if one is careful). The integrals are listed below, with superscripts indicating the coil
number. Coils 1 and 2 are on the x axis, coils 3 and 4 on the y axis and coils 5 and 6 are on the z axis.



The radius of each coil is taken as RL.
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Each coil is also set to a high voltage. The entire system is placed inside a spherical vacuum chamber
which is grounded. We can easily find the electric field from any single point charge inside a grounded
sphere using the method of images. Then by principle of superposition, we can sum over all the charges



on a coil. This again gives rise to 18 integrals.

Let a be the radius of the grounded sphere and b be the distance from the center to the charge in ques-
tion, then the potential for a point inside a sphere is given by

L Q 1 0
<I>(u)_47r60 (r2+r2+r2)1/2 @ ,\2 a® )2 a® )\ 2 (22)
v (e = st ) (o = G0y) o+ (e = 52t

If the charge is a differential element on the coil, we can take dq = 4mweggVdl where dl is an element of
length along the coil. Since we seek a dimensionless representation of the electric field, I divide out the V
and since electric field is in terms of volts/meter, I multiply through by L, then compute the gradient of
the result relative to dimensionless u;.

The general formulas for the electric field are found by taking the gradient of & with the knowledge that a
is the radius of the ground sphere in units of L, b is distance from center of the fusor to the coil and is

easily found to be b=+R2+1 also in units of L. I find
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Once I had computed the magnetic fields using the above 18 equations, I modified the code to use the
same 18 subroutines with similar denominators. The parameter % was passed as an argument and both
terms at the same d¢ step were added to the integral. The plots of these dimensionless electric and mag-

netic fields are seen below:
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Figure 1. Electric field



Figure 2. Magnetic field

To approach the physics of the polywell fusor one has a lot of approximations to choose from. I choose to
use the basic plasma physics fluid model because it has a lot of history in electric and magnetic field envi-
ronments which shows how useful the model can be. The basic equations are taken from “Principles of
Plasma Physics”, N.A. Krall and A.W. Trivelpiece, McGraw-Hill. In SI units we have
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Here, f. is the electron distribution function, ¢ is the velocity vector, e is charge and m is the mass of an
electron, ﬁv is gradient with respect to velocity, n. is the average electron density, pext is external elec-
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tron distribution (not moving), Jext is the moving external current density and |. refers to collisions. This
last term will be ignored from here on out, but it should be noted this is where collisions enter the pic-
ture.

To make use of the external fields described above we can easily separate the total electric and magnetic
fields into several components. The external fields are given by
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To start with, we take the fields in the coils as steady state and voltage on them as steady state as well so
there is no electromagnetic coupling. The POPS design can include these terms later, and by writing
everything fully it is easy to see where to put the fluctuating fields back in.

Using E and B as the fields created from the electrons it is easy to find the equations that show the con-
nections between the electron fluid distribution and forces acting on it. subtracting the external equa-
tions from the particle distribution equations gives
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If we assume (for the moment) that the fields created by the electrons is much weaker than the fields cre-
ated by the coils, then we can make some very crude estimates of the behavior of the fluid. While it is
obviously inaccurate for a real fusor, it does give some ideas on where to mount electron guns for injection
and where not to mount electron guns as well.

With the weak field assumption the particle motion equation becomes
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What I’d like to do now is transform this from a unit equation to a unitless equation to make a clear con-
nection between the computed fields for the electrostatic and magnetostatic external fields already
described. The units on the distrbution function are length—2 times velocity 2. The units on ¥ is
velocity, Eext is Volt/length, and the magnetic field is described in the first equation in this article (Tesla
in ST units). To make this formula dimensionless, I multiply by (length® times velocity?) along with
writing the electric and magnetic fields in their dimensionless forms. T use f for the dimensionless par-
ticle distribution function, & and B for the dimensionless electric and magnetic fields, 1 for dimensionless
velocity and ¥ for dimensionless postion. The result of all this machination is
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where vg is some arbitrary velocity which makes the terms dimensionless (inverse time actually, but I'll fix
that in a minute). First I want to define the arbitrary velocity in terms of other variables which the
problem has control over, then I'll work on moving terms around to a more convienient description.

The most obvious choice for a fundamental velocity is to assume that an electron which accelerates from
dead still to the voltage on the grid has converted all its potential energy to kinetic energy. This gives
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Putting this in for the arbitrary velocity and moving terms around we get
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is what I call the “confinement parameter”. This parameter is dimensionless so the whole equation can be
scaled independent of real world constraints. Understanding the fluid distribution this way allows us to
find reasonable combinations of voltages and currents which will create a workable fusion device, possibly
of different sizes. It also helps to point out obvious combinations which simply can not work.

It is interesting that the time scale which makes the equation dimensionless is independent of the grid
voltage. The time scale is given by the coeflicient of the left hand side:
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The Larmor frequency of an electron in a magnetic field is given by
eB
&0 4
w=2E (43)

where B is the magnetic field in Tesla. Comparing these two equations we see that the fundamental mag-
netic field strength can be related to the Larmor frequency if we take
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The dimension of the device thus give us a fundamental scale for the Larmor frequency along with the
current in the coil and the voltage on the grid. Plots of Cpg + 1 x B for several values of C, give us an
idea of what the forces are on an electron fluid at various points in the polywell. Since this is a multidi-
mensional space (3 dimensions for space, 3 for velocity and 1 (or two) for C,) it is non-trivial to get a feel
for what is going on inside a polywell.

It should be clear that computing electron distributions over time is straight forward. Some assumptions
on where to inject electrons in the first place need to be made using real physical devices, but a study of
the “force volume” C,€ + 1 x B will help to define the ideal electron gun locations.

It is clear that even simple models are fairly complicated. Only building a polywell device will tell us the
real story. Models can help us find the best bet on what will work, and can certainly tell us what to
avoid.



Part 2: Electron fluid static field

Let’s continue the dimensionless approach with the rest of the electron fluid equations. Since I eliminated
the subscript from Eext — £ in the above, let’s transform the unsubscripted variables E — £ to be sub-
scripted. Inconsistent and insane, but for now I just want to see the math. When we write the book on
polywell we can be clean about it!
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And let us now define a new time variable which is dimensionless, based on the ”time” equation above:
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With these substitutions, the plasma equation for the electron fluid becomes (with the assumption of no
collisions)
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where 7 is unitless number density. This parameter may be meaningless since L3n =7 is just a constant
which could be incorporated into f. I leave it in the formulas just to keep track of n since we may need
it when we add in Boron and proton ion densities.

Converting the magnetic field equation to dimensionless form we get
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The coupling equation becomes

XEr=— oo (51)

At this point I have to make some kind of assumption about the fluid distribution. It requires a lot of
computer effort to follow these equations in 3D, and even then some kind of initial distribution must be
assumed. To see if the polywell concept makes any sense at all, let us assume an inital distribution of
electrons is created in the well using a microwave generator. The form will be isotropic in both space and
velocity and of course we pick a form which can be described easily in mathematics (otherwise it’s impos-
sible to proceed!)
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where we take u? =1 -1 and 2 =7%-%. This distribution is almost realistic since the velocity term is just a
Maxwellian distribution and the space term is a fast exponential decay. Some other form of space distri-
bution may also be useful for analysis, but until a real device is built and measured this is really just fun.



Integrating over velocity for the electric field gives
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Plugging this into the gradiant of the electric field equation gives
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To proceed, I assume that the A; are independent of each other, i.e.
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This is probably not a valid assumption for the real world, but it will tell us immediatly if the polywell is
impossible. The following is proof only that there are more details to look at carefully.

With the assumption that the A,’s are independent we can also assume they are isotropic and equivelent
so we have 3 equations of the form
0A; 1
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This is straight forward to solve using an integration factor (see “Advanced Calculus for Applications”’ by
F. B. Hildebrand or similar texts) and we get
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From Gradshteyn & Ryzhik 3.321.2 we have
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where erf(z) is the error function (see "Handbook of Mathematical Functions” by Abramowitz and Stegun
for details).

Then the solution to the electric field is
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What does this humongous mess really tell us? Well, for starters, it says that the electric field caused by
the electron fluid goes to zero at the center of the well and becomes more negative as we go outward. It
is proportional to the spatial distribution of the fluid near its outer edges. The constants of integration
have to be determined from other assumptions, but since this whole excersize is about theoretical consid-
erations I'll ignore them for the moment (set them equal to zero).

Let’s put the assumed electron fluid distribution function into the plasma equation and see what happens:
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The important thing to notice here is that B drops out! The isotropic velocity distribution means the
magnetic field does not participate in the fluid motion. This is counter intuitive because it is clear the
electron motion IS determined by the magnetic field.

What this really means is that simple mathematical assumptions can only take us so far. The conditions
for stability are obvious if we do a simple separation of variables argument and divide both sides of the
above by f and multiply by dv:
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The thermal properties times the electric field must be greater than the spatial properties. Otherwise,
the fluid explodes. The electric field pressure has to be large enough, and the electrons themselves
decrease this field strength as we saw above. This is a zeroth order requirement - if the thermal tempera-
ture of the electons is low then the spatial distribution will not be a problem (large o means low tempera-
ture). The physical size determines what that temperature can be.

With the theoretical description we can explore further. But real polywell parameters can be plugged
into the above theory and we can compare what works with what doesn’t to see how useful the above
theory and its associated assumptions really are.

Part 3: Single Electron Orbit

To find out if the Polywell is stable for even a single electron involves solving the fundamental Newtonian
physics of F'=ma, but in 3 dimensions. As shown in part 1, we already have a set of fixed external elec-
tric and magnetic fields. For the following we will ignore the electron’s self field and radiation as well as
relativistic corrections. While simple, it is still a messy problem analytically.

11



In full three dimensional notation, we have
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where — e is the charge on an electron, m is the electron mass and ¢ is the electron’s velocity.
Expanding this in all its glory gives
dvg
m— = e(Ey+vyB. —v.By) (69)
dvy
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This is a system of differential equations, and it is only of first order. In the following I apply the
methods described in F.B. Hildebrand “Advanced Calculus for Applications” (chapter 1). One of his

notations is to replace % with D but I wish to move into unitless form (as in sections 1 and 2 above) so

I'll start with dd_t: D’. Rewriting the above in the linear equations format gives
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— Bv, + ?D vy+ Byu,=—E, (73)
m !
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Using the same transformations as in equations 39, 41, 45, 46 and 47 the above (72 - 74) become

Du, + Buy —Byu, =—C,&, (75)
—Baug + Duy+ Byu, = —Cp&y (76)
Byuz — Bguy+ Du, =—CpE, (77)

where D = dd—u (see 47 for definition of v). As in Hildebrand, the solution for the homogeneous portion is
found from

D B. -8By
A=|-B, D B, (78)
B, —-B, D
= D*+ (B3 + B, +B2)D=0 (79)
The homogeneous solutions are of the form
up=e" (80)
so Dup =re™ and 79 becomes
r(r’+ B3+ B2+ B2)=0 (81)
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which has three solutions
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The particluar solution for u, is found by setting A equal to
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Setting 78 equal to 83, substituting u, =e™, and grinding gives
1P+ Colar? + 1 [Bo+ By + B2+ Cp(EyB. — EBy)| + Cp Bo(EeBe + EyBy + E.B.) =0 (85)

To shorten the notation, let’s write

B-B=B2+B2+B? (86)
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Using the solution to cubic equations found in CRC Handbook “Standard Mathematical Tables” 21st edi-
tion page 103, we can take

CpEa
s=r; — pT (88)
to transform 85 to the form
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Notice that there are some common terms in 90 and 91. Let’s simplify the notation some more and write

o, =B -B + Cp(EB, —E,B.) (92)
Yz = Cpgm (93)

Bz Z 3
595_5(5-3) (94)

and I use the subscript x to signify that this particular solution is for u,. The solutions for s are give

with the variables
3 b V2 a® , 3/ b b a®
A_\/_§+VZ+2_’B_\/_§_VZ+§ (95)
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and solutions s are

s=A+B,—A

+B+\/?—)A;B’_A+B_\/§A—B (96)
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Substiting 92-94 into 90 and 91 then grinding through the algebra for the insides of the cube root of 95
gives the following mess
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If the term inside the square root in 97 is negative, we have a complex number representation. We can
easily take the cube root of this going into polar notation and dividing the angle by 3 as well as taking
the cube root of the magnitude. If we take the general form of 97 to be x + iy then the cube root is given
by

L 1/6 1 1Y . 16 . (1 1Y
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(’m running out of variables, the z,z’', y, y’ here are dummy variables which represent a form, the actual
variables will be really messy!)

Note that A and B will be complex congugates if Z—Z-i- % < 0. This leads to A+ B being the real part and
A — B being the imaginary part. To find the final solution, we must unwind our way back through the
definitions of r; in 88 from the solutions s in 96 which are determined by putting 97 into 98.

The trick here is that we have solutions for every point in space. The same formula found setting 80
equal to 83 must be done for Au, and Au,. Fortunatly, the system is really symmetric, and all we really
have to do is change subscripts in 92 - 94 by sending ¢ — vy, y = z, 2z — x. This makes writing subroutines
really easy. The same basic form applies to all dimensions.

The imaginary exponential solutions need to be combined to get the sine and cosine functions out so our
computer will have a much easier time dealing with things. There is really a lot of exception handling
here. The basic process will be to start with a particle in a position similar to either the center of the
polywell or the electron source points of WB-6. Assume it has zero velocity to start, and see where it
goes by computing the solution to the equations 92, 93, 94 based on the location, then finding the r;
homogeneous and particular in all three dimensions, and find the exponents.

Since the equations change as a function of postion, and the position changes with time, we have to take
fairly small steps in time and recompute all the solutions to the differential equations. Since we already
have the fields, this is “straight forward”. The basic solution will be of the form

uj~aj+biry +cr—+dirpo+eirp + firp (99)

where the first 3 terms are the homogeneous solution and the last three will be particular to that index j.
The particle position is then simply

ti=u; Av (100)
Clearly this is a non-trival task, but it will tell for certain if the polywell has stable orbits for even a low

density electron current. Assuming these orbits can be shown, finding a fluid solution from section 2 will
be easier because we’ll have an idea of how a non-interaction current should behave.
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