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Introduction

In the previous versions of the Virtual Polywell the fundamental assumption has been that the
electron distribution just “appeared” at time zero. The idea was to follow something from a pre-
existing state or to have it be created by microwave ionization. Creating a self consistent distri-
bution based on Maxwellian thermal velocity distributions failed to work.

In this version I start from a vacuum condition and use electron sources to initialize the system.
This is exactly how a real Polywell is initialized, so in one sense this attempt is more realistic.
However, real electron sources have real velocity distributions, and even though they are small,
it is unlikely this model will be able to account for that level of detail. Instead, the electrons
will be assumed to be born with a delta function velocity and each blob of electrons will be fol-
lowed as a single particle until it either hits a wall or MaGrid coil.

The MaGrid magnetic field has been previously described in the first “Virtual Polywell” paper
(fusion.pdf). This model will continue to use that magnetic field form. The electric field is also
described, although not in as much detail, in the same paper. These external fields to the
system are fixed and for this model will not change.

An electron source is a ball of copper or some other material which can be placed in any posi-
tion outside the MaGrid. There are two main positions worth modeling, one with a source on
the face of a coil, and one in a corner between 3 coils - a cusp. Bussard’s WB-6 experiment had
electron sources in the cusp position. In either case, this model will assume symmetry all
around the "wiffleball” with 6 sources on a face or 8 sources on cusps.

The main line of attack for this article will be to derive the potential around the electron
sources. The method will be to transform to a 2D problem from symmetry, and then use a
mapping to a simpler 1D problem so that the potential can be easily found. A method to use
the mapping and the derivative of this potential will give us the electric field due to the electron
sources everywhere in the Polywell volume.

Each electron source will be divided up into a set of surfaces. Each surface will represent one
delta function particle. A simple formula will be derived so that the number of particles can be
easily changed and the areas on the electron source sphere will remain uniform. At any given
time step, these particles will be given an energy equivelent to the work function of the surface
so that they leave the electron source with very small velocity. The rest will be pure brute force
particle tracking.

The equations of the electric and magnetic fields created by the particles will be derived based
on the fact that each particle will have the same amount of charge. This makes the computa-
tions tractable, and we should be able to follow up to 1000 time steps with little trouble.

Derivation of Electric Potential from Electron Sources

The general description of the electron source is very simple. It is a solid sphere which we can
take to be “magically” suspended at some location inside the grounded sphere of the vacuum
chamber. In reality there will be some kind of insulated holder with a conductor in the middle
of it, but for an analytical treatment we can ignore this minor interruption to the potential. I
will also assume that half the sphere is insulated and the half exposed towards the center of the
Polywell is emmitting electrons. The main reason for this is to suppress current loss directly to
ground.



Call the diameter of the grounded outside sphere is labled s, the diameter of the electron source
is labled r., and the location of the electron source relative to the center of the sphere is labled
rs. Eventually we will take these as parameters relative to the MaGrid distance between coil
face and center of the Polywell which will have a real distance L. For our formulation, this dis-
tance will be 1 so that scaling will be easy.

Since everything is a sphere, cutting a plane through the centers of both spheres s and r. will
give us a two dimensional problem which is rotationally symmetric. If the sphere 7. is held at
some potential V, relative to the external ground, we can find the potential every where in the
volume by solving a two dimensional boundary value problem

V2% =0 (1)
with conditions
D(re) =Ve (2)
and
®(s)=0 (3)

This problem is actually fairly messy, so an alternative is to use conformal mapping to reduce
this to a one dimensional problem. The mapping will take the circle 7. located off center by 7
to be centered inside the circle s. To do this, we take polar coordinates r, ¢ in the base domain
(centered on s) and transform them to r,,,0 centered on r. in the solution domain.

The result is that the outside ground is like a cam rather than the inside sphere being a small
range in . If we write the form of the outside ground in Cartesian coordinates and set both
forms equal in both z and y we get

Ts+7,co86 =5 cos @ 4)
r.sinf =ssin @ (5)

where r,, is the distance from the center of the electron source to the outside ground. With
these two equations we can eliminate 7, and find ¢ in terms of #. Substitution of

_sing
" Sing’ (©6)
from (5) into (4) gives
(scos — 1) tanf =ssin ¢ (7)

Since sin ¢ = y/1 —cos?¢ we can solve this nonlinear equation directly by squaring and using
the quadratic formula. The result after a bit of algebra is

_ rsin?6 £ cos 04/ s? — r2sin? 0
s

CoS ¢

Putting this back into (4) and solving for r,, we find

r.=—rscosf++/s? —risin? @ 9)



To do the complete transform we need to map any point between the electron source and the
outside ground using the angle 6. The electron source surface itself has its center at the origin
of 6, but the outside ground has its center at y = — r, from the electron source. A reasonable
mapping will be one that can deal with both of these surfaces and transform any point in
between as well.

Placing a circle with its origin some where between the outside ground origin and the electron
source origin and using this as a mapping surface allows us to transform the region between the
two surfaces in very simple way. Take the radius of the circle to be

st)=re+t(s—re) (10)
and the origin of the circle to be

'rs(t) =1irs (11)

where 0 < ¢ < 1 so that when ¢ =0 we have s(0) = r. and 75(0) = 0 which maps the inside circle
(electron source) and when ¢t =1 we have s(1) =s and rs(1) =, which maps the outside ground.
Putting (10) and (11) into (9) in place of s and r; gives

r.(t) = —trocos 0+ \/(re +t(s —r.))? — t?r2 sin0 (12)

In the transformed domain the angle stays the same, but the distance from the center is now a
radius:

Tw(t) =re+ (s —re)t (13)
We now have a system which is independent of angle - the location between the spheres is given
by the distance from the center of the electron source and all angles are the same. Solving Pois-

sons equation is now trival even in spherical coordinates since only the derivative is radial and
all angular dependence has been removed.

The basic form of the equation is given in (1) and in cylindrical coordinates we are left with

19/ ,00
— (222 = 14
2 or (’" Br) 0 (14)
Since r =0 is not even part of the solution volume, we directly integrate this and get
K K

The boundary conditions (2) and (3) give us values for K and C with

K

Ve:_T_+C (16)
and
0=-210 (17)

Solving for K and C and putting this into (15) we find

B(ry) = Vere (i—1> (18)

S —Te\Tw



which is valid in the transformed domain. To use this, we need to go from a known position (r,
) in the original problem to (r,,6) in the shifted domain to the (7., #) in the solution domain.
The value of ®(r,,) is then the same value of the potential we need for the point (r, ¢). We can
also find the electic field at any point due to the electron source by computing the gradiant of
(18). This gives

5 0P Vere s .
B =™ T sra (19)

In other words, the electric field points towards the center of the electron source as if it were a
point particle. Since this is a conformal mapping, the angles between tangents stay the same,
so the electric field in the original domain also has the electric field pointing into the center of
the electron source.

If we pick an arbitrary point in the region between the electron source and the ground and call
this (r, ¢) which is referenced to the center of the Polywell, then we can convert to Cartesian
coordinates using

xp=rsin @ (20)
Yp=T7COS P (21)

(since ¢ is referenced to the y axis).

Calling (7, §) the same point in the referenced to the electron source this same Cartesian point
is

Tq=r,8in6 (22)
Ya=r;cos 0 +rs (23)

Setting (22) equal to (20) and (23) equal to (21) we find

ra=1/ (y» — rs)2 + a2 (24)
and

r,cos0 =1y, —rs (25)

Solving (12) for ¢ allows us to to find the location of r,, using (13). The result is

Te(s —Te) — TsT2c08 6 + \/(rsrzcos 0 —re(s —7e))’ — (r? —(s— re)Q) (r2—r?)

2

t=
s — (S _Te)2

(26)

So the process of finding the electric field due to an electron source (or the potential) is to use
(20) and (21) to convert to Cartesian form, use (24) and (25) to find the terms used in (26)
which gives the transform parameter ¢ that can be used in (13) to give us the point in the solu-
tion domain. This value of r, then can be used in (19) (or (18)) to give the Electric field (or
potential).

Initial Delta Function Phase Space

From “Classical Electrodynamics” by Jackson (pg 56) we have a relationship between the surface
charge and electric field given by

e 2 (27)



Setting this equal to equation (19) at 7, =7, we get

— EoVeS (28)
re(s—re)

which is the total charge per unit area. The total surface area of the sphere is 47r2 so the total

charge on the sphere is

4AmegVesTe
Since I only want half the sphere to be emmitting electrons, the total charge leaving at any
instant in time has to be half of (29). Since the charge distribution (28) is independent of angle,
we can divide the surface of the electron source into equal segments, each containing the same
amount of charge. By giving each of these blobs of charge an initial energy of just over the
work function of the surface, we can follow every blob as a delta function particle in phase space
assuming that its initial velocity is radially directed away from the center of the electron source
sphere.

One of the major advantages of the 6 sided cube form of the Polywell is the amount of sym-
metry. As Indrek showed before, there are 48 copies of the same corner which can be folded
around the faces with 6 sub sections in each of 8 main sections created by mid-plane cuts.
Putting an electron source on a cube face means we have 8 copies of each source section rotated
around but putting an electron source at a cusp gives us 6 copies of each source section (with 8
total cusp points for electron sources).

This symmetry greatly reduces the number of particles we need to follow so long as we can
assume all the fields stay symmetrical. Reality is never so nice, but it should give us some good
clues as to what kinds of problems we’ll see and solutions we can try to overcome them. So let’s
suppose we can divide these 6 or 8 slice sections of electron source into evenly divided areas.
What will they look like?

First, let’s create a coordinate system and call ¢ the angle from the axis pointing towards the
center of the Polywell on the electron source and x the angle from one symmetry section face.
Assume we can chop up the section into even areas. The emmision solid angle of a face electron
source will be

2T
AYAY = N (30)
and the emission from a cusp will be
2w

Where N is the total number of particles we are going to follow.

The centroid of each chunk of solid angle can be found by brute force from

g, Jor peinvdy -
) V2 sin d
and
X2
xdx
X1
Xe="pxz 7 33
These can be directly integrated and we get
o= sin ¥y — siney + 11c08 Y1 — Pacosys (34)

COs)1 — CosYs



and

=22 X (35)

It is clear we can divide the bands across each segment into equal sections no matter how the
bands are separated in 3. Let’s take 1 segment at the apex with 2 segments below that and 3
below that and so on until we get to the equator. For m bands we must have a total number of
segments equal to

_m(m+1)

Across each band j, there are j segments of x. Since the total angle across a band is either %
on a face or g on a cusp the width of each x segment must be

Ax=f§ (37)

where f=1/4 on a face and f=1/3 on a cusp.

depending on where the electron source is located. Taking the first x line to be zero, the next
one over is f= and the k*® one over will be f ”J—k If we start counting from 0, we can write the
centroid of any y segment k as

m

252+ 1) (38)

Xc:f

Putting (37) into (30)/(31) we can eliminate Ay and get

From the denominator of the ¢ centroid we know what At is so we must have
J+1_
= cos Y; —CcoSPjy1 (40)

From (36) we have a recursive formula for the angular spread in ¢ which is

2(7+1)

m(m+1) (41)

COS Y41 =COS Pj —

It is straight forward to derive from the known end points of cos 9 = 1 and cos ¥,,+1 = 0 that
(41) becomes

J(i+1)

=1 42
COS P11 m(m+1) (42)
Choosing values for m and j this is easy to verify. The trick here is that j ranges from 0 to m
but our Ay starts at j = 1 because division by 0 is not useful (in equation (37)). The software
has to keep track of which row we’re really on.

Computationally we can now find the centroid of any segment on the electron source - use (42)
to find the cut, compute the inverse cosine of this to get v¢;, and then the sine of %; for each
band so that the centroids can be computed using (34).

The next task is to convert these centroids from electron source coordinates into the 3D coordi-
nates of the Polywell system.



Cusp and Face Position and Velocity Vectors

The next step is to place the electron source in the Polywell coordinate system. For computa-
tional purposes I take the postion in spherical coordiantes (7,8, ¢) with § measured up from the
(z, y) plane instead of down from the z axis as is normally done. The velocity vector I keep in
Cartesian coordinates so that the calculation of vector additions doesn’t go haywire in the
center of the Polywell. The conversion between electron source coordinates and Polywell coordi-
nates is performed using Cartesian coordinates as a go between, so the vector direction of the
source particles becomes trivial.

Placing the electron source on the x axis with its “top” pointing toward the center of the Poly-
well and its x angle measured up from the (z, y) plane I can write the orientation of the elec-
tron source as

ge:_g (43)
Ze=2

with each of the above being a unit vector along it’s respective axis. The position of a source
point in the electron source coordinate system is

z' =recostp (44)
y' = — resinty cosy (45)
z' =resinysiny (46)

The translation from the electron source coordinate system to the Polywell coordinate system is
given by

r=(rs—a')t —y'g+2'2 (47)
The radial distance from the center of the Polywell is given by
r?=(rs— :1:’)2 +y?+2"”
or after a little algebra
r2=r2+4+rZ—2r.r.cosy (48)
The angle ¢ in the Polywell coordinate system is
—tan—1Y 49
p=tan "2 (49)

From (44), (45) and (47) we see this is

_ tan—1 [ TeSinY cosy 50
p=tan <rs—recos¢ (50)

The angle 6 in the Polywell system (for our calculations anyway) is given by

f=tan"?! tan

z _ -1 z
/Z'2+y2 Vr2— 22



Using (48) and (46) the last form is simple to derive and we get

0—tan 1 resingsiny (52)
/12 472 — 2r 1 ,c08t) — r2sinepsin

Thus, for any centroid position (., x.) on the electron source, we can find this position in the
Polywell reference frame for the source placed on the coil face position.

The direction the particle initially starts out with will be radially outward from the center of the
electron source. This vector is simply

=7 — Fy=—recos8t) £ + resint) cosy § + resinysiny 2 (53)

Now let’s look at the electron source in the cusp location. Here, I let the “top” of the electron
source point toward the center of the Polywell along the cusp axis. Placing the Z. axis in the
same plane as the 2 and Z. axies, the g, axis is parallel to the (z, y) plane. The associated
transformation vectors of the center of the electron source is then found to be

L& g_\/ié
=GB (54
A_J:A_]j
V=" (55)
s __ (2% 9 Z
2= (ﬁ*ﬂ*ﬁ) (56)

As before we can take the coordinate transformation as

e (57)

31

=7+

With the same form of (44) and (46) but the sign is now switched on (45) since we’ve accounted
for this in (55). The direction vector 7 in Cartesion form is now given by the three terms

& TeSINY cosy | Tesinysiny  recosy Ts (58)

NG NG 3 V3

g TeSing cosy  resinysiny  recosy Ts (59)

/G NG 3 V3

PR V2 resing cosy _ TeCOSY T

/3 VY

(60)

This distance r from center of Polywell to the source point is exactly the same as before (which
you can verify by squaring (58), (59) and (60) and adding them all up) to be the same as equa-
tion (48). Using (49) with (58) and (59) we find the angle from the z axis in the (z, y) plane to
be

Te [simﬁ (cosx — \/§sinx) — ﬁcomﬁ] +/2r,

Te [simﬁ(cosx + \/gsinx) — \/icos¢] 2, (61)

p=tan"!



From (51), (60) and (48) we find

0 =
Ts—Te (\/isim/)cosx + cosw)

1

tan™

\/5{1"2 (1 + %sin%{) - sim/)cosx(sim/)cosx + \/50051/1)) +73—rare [200517[’ - ﬁSinwcosx] }1/2
(62)

Using the same form as (53) we can see that the direction vector leaving the surface of the elec-
tron source located on the cusp is given by

fi(cusp) =
é: \’}6 (sines (cosx + V3sinx ) — v2cosy) (63)
g (s (cosx - V3sinx) — V2cosy) (64)
g = Tx(Vasingcosy — cosy) (65)

Particle Equations of Motion

We are now ready to start working on a very simple model of electron tracking in the Polywell
configuration. Using an electron source at either the coil face or cusp location and using the %
symmetry of the Polywell, we can follow a few particles released at every time step using the
location and vector direction described above. The amount of charge is determined by the
voltage on the electron source as shown in (29) and this is divided by the total number of blobs
to be followed, with each blob containing an equal amount of charge.

This latter approximation is very useful for speeding up computer calculations. It allows us to
give both position and velocity as delta functions as well as the amount of charge being fixed.
The electric field (in SI units) for the particles is given by

L1 (7 —7)

, 1 (7 —7%)
_ ) 68
d 4WEOLVZ: Sk (68)
5 _ L5 gy o)
Bs= LI, Z J(75) % |7—: — 73 (69)



To convert (29) to dimensionless form, let’s take
Ve=pV (70)

and include a factor f as in (37) to account for either a face or cusp location. If we also divide
by the factor of 2 since only half the sphere is assumed emmitting particles, the total charge
per “blob” is then

__ meoVL

DPeSTe
ey (1)

Putting (71) into (68) and noting that J = p@ in (69) we find

o _MZ (o (T =)

5f(r)_2N(s—re) - nz(r)|7_,_1:.i|3 "
3 2\ _ . VU0 PeSfTe #Yii(7) x LT
By(F) =0T (5= 1) Z ni(Tu(r) |7 — 73 ™

Combining the electric field from the electron source along with the MaGrid electric and mag-
netic fields shown in previous work along with the above forms of the particle fields, we can
compute the electric and magnetic fields for every particle in the Polywell. Using these fields
along with the Lorentz force equation gives a complete model of particle motion. To convert
the force equation to dimensionless form we start with

ﬁ:Qi[E+Ef+ﬁix (§+§f)] (74)
Since we are assuming the mass of each particle does not change, we can take F to be

= ’UoAﬁ
F =
m= (75)

where we are taking the acceleration as the change in velocity between time steps. The charge
per blob is given in (71). Using the same conversions between (66) — (68) and (67) — (69)
along with (71) and (75) we can write equation (74) as

voAll _ megVL , pesre |[Viz 2z pwolo- (2, =
mes = T f(s_re)[L<S+€f)+vo4ﬂLu><(B+Bf)] (76)

After a little rearranging we can turn (76) into

fPesTe g+gf+ﬁx (i+gf)

Au:2N(s—re) p

Av (77)

where I have used the same dimensionless parameters from previous papers, namely

2w [2mV
Cph=—+ 78
P ,u/0I0 e ( )
and
_ euolo
" 4rmL ¢ (79)
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Summary

The order of operations for a computer model will be to first set up dimensionless parameters
for pe,s,re,rs and C,. We can start by using reasonable values for L, V', Iy and V. to see where
this starts us, then try alternative values for the dimensionless parameters to see what happens
and work backwards to find out where that puts us for actually building something. In any
case, the static fields for the MaGrid only need be computed once and the field produced by the
electron sources (19) only needs to be computed once, then stored in a data table for the
remainder of the program run.

The changing fields and currents due to the free moving particles is modeled by (72) and (73).
All the fields are then used in (77) to determine how far every particle goes in one time step.
The change in position is computed from the change in velocity using

(v + Av) =1;(v) + Ali;(v) (80)
and
(v + av) =%(v) + Avi(v + Av) (81)

At every time step we can allow (or disallow) particles leaving the electron source surface. The
initial velocity should be close to the work function of the surface so that it is very small, but
finite and definitely leaving on a specific trajectory. The ability to control the number of parti-
cles so that we can limit either the time it takes to do a calculation or simply to limit the pulse
width of the injection current gives us a lot of flexability and learning opportunities for this
model.

Next step is to see what happens with simple and straight foward code.

11



