
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003 1

Toward a Theory of Generalization
and Learning in XCS

Martin V. Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W. Wilson

Abstract—In this paper, we take initial steps toward a theory of
generalization and learning in the learning classifier system XCS.
We start from Wilson’s generalization hypothesis, which states that
XCS has an intrinsic tendency to evolve accurate, maximally gen-
eral classifiers. We analyze the different evolutionary pressures in
XCS and derive a simple equation that supports the hypothesis
theoretically. The equation is tested with a number of experiments
that confirm the model of generalization pressure that we provide.
Then, we focus on the conditions, termed “challenges,” that must
be satisfied for the existence of effective fitness or accuracy pres-
sure in XCS. We derive two equations that suggest how to set the
population size and the covering probability so as to ensure the de-
velopment of fitness pressure. We argue that when the challenges
are met, XCS is able to evolve problem solutions reliably. When
the challenges are not met, a problem may provide intrinsic fit-
ness guidance or the reward may be biased in such a way that
the problem will still be solved. The equations and the influence
of intrinsic fitness guidance and biased reward are tested on large
Boolean multiplexer problems. The paper is a contribution to un-
derstanding how XCS functions and lays the foundation for re-
search on XCSs learning complexity.

Index Terms—Evolutionary computation, evolutionary learning,
generalization, learning classsifier systems, XCS.

I. INTRODUCTION

XCS [43] represents a major development in learning clas-
sifier systems research. Since its inception, XCS has pro-

vided repeatable results that are generally better than those pro-
duced by the majority of models developed since Holland’s
ground-breaking work [19]. XCS overcomes most of the short-
comings of previous models and has proved effective in many
domains [34]. In data analysis applications, XCS can perform
better than some well-known traditional machine learning tech-
niques [3], [12], [32], [47]. In addition, XCS provides within a
single paradigm representations of target concepts that in ma-
chine learning usually belong to different approaches, e.g., at-

Manuscript received June 6, 2002; revised June 9, 2003. The work of M.
Butz was supported in part by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under Grant F49620-00-0163. This
work was supported in part by the National Science Foundationa under Grant
DMI-9908252 and in part by the German Research Foundation (DFG) under
Grant DFG HO1301/4–3.

M. V. Butz is with the Department of Cognitive Psychology, University
of Würzburg, Würzburg 97070, Germany (e-mail: butz@psychologie.uni-
wuerzburg.de).

T. Kovacs is with the Department of Computer Science, The University of
Bristol, Bristol BS8 1UB, U.K. (e-mail: kovacs@cs.bris.ac.uk).

P. L. Lanzi is with the Dipartimento di Elettronica e Informazione, Politecnico
di Milano, Milano 20133, Italy (e-mail: pierluca.lanzi@polimi.it).

S. W. Wilson is with Prediction Dynamics, University of Illinois at Urbana-
Champaign, Concord, MA 01742 USA (e-mail: wilson@prediction-dynamics.
com).

Digital Object Identifier 10.1109/TEVC.2003.818194

tribute value and interval representations [3], [12], [47], like
those provided by C4.5 [39], CN2 [10], RISE [13], as well as
simple relations among attributes [32] similar to those provided
by FOIL [38]. Barry’s Java implementation of XCS, JXCS [1],
was used during the COIL2000 competition for the analysis of
insurance data [16]. The data analysis system built by coupling
JXCS with a powerful commercial tool for data preprocessing
(namely Model-1) scored second in the competition. NuTech
technologies developed a commercial version of XCS for data
analysis applications NuTech Solutions Inc. [36] that is based on
Wilson’s XCSI [46]. In multistep problems, such as grid envi-
ronments, XCS has shown interesting performance. In simple
environments [43], [44], XCS achieved optimal performance
and provided a minimal representation of the optimal solutions
evolved. In more complex environments [2], [31], XCS showed
certain weaknesses that could be solved by adopting specific
techniques [29]. XCS has also been applied with success to
simple robotic problems involving the real and the simulated
Khepera robot [30], [45].

XCS differs from traditional models in several respects. First,
XCS has a simplified structure since it does not have an internal
message list. In addition, XCS uses a modification of Q-learning
[41] instead of the “bucket brigade” [18]. Most important, in
XCS, classifier fitness is based on the accuracy of the classifier’s
payoff prediction instead of the prediction itself as in Holland’s
framework [18].

The principles underlying evolution in XCS were first
outlined in Wilson’s [43] generalization hypothesis, which
suggested that classifiers in XCS would evolve to be as general
as possible without losing accuracy. Reference [21] extended
Wilson’s explanation to an optimality hypothesis, supported
experimentally, in which he argued that XCS will develop
minimal representations of optimal solutions. Over time,
researchers have studied various aspects of XCSs learning
capabilities, such as: the relation between XCS performance
and problem complexity [26]–[28], [44], the performance of
accuracy based fitness with respect to that of strength-based
fitness [24], and the development of Markov models for XCS’s
genetic algorithm (GA) [4], [5]. Though these results provide
insight, there are still basic aspects of XCS that are not clear.
In essence, Wilson’s hypothesis has not been investigated
theoretically, so that precisely how XCS evolves accurate,
maximally general classifiers is not well understood.

In this paper, we investigate Wilson’s hypothesis and take the
first steps toward a fundamental theory of XCS. The analysis
focuses on XCS as a pure classifier. Features of multistep envi-
ronments such as the propagation of reward are not addressed
here. However, since our analysis concerns very general issues

1089-778X/03$17.00 © 2003 IEEE

IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

of evolution in XCS, our results should be readily applicable to
multistep problems.

The analysis is organized in two parts. In the first part, we
analyze the different evolutionary pressures that are present in
XCS: the set pressure, due to the application of the GA in en-
vironmental niches with deletion acting on the whole popula-
tion; the mutation pressure; the deletion pressure; and the sub-
sumption pressure. For the set pressure, we develop an equation
which demonstrates that the interaction between the niched GA
and panmictic deletion results in an intrinsic tendency toward
general classifiers. The equation, which supports Wilson’s hy-
pothesis from a theoretical standpoint, is confirmed through a
number of experiments. In the second part, we focus on the ten-
dency toward accurate classifiers that should result from the use
of accuracy-based fitness. In particular, we investigate the gen-
eral conditions that favor the existence of fitness (i.e., accuracy)
pressure in XCS. We develop two equations that identify two
boundaries—or, figuratively, challenges—that can decrease or
even eliminate the fitness pressure. We call them the covering
challenge and the schema challenge. The equations are highly
useful for effective parameter selection. We suggest that, once
the two challenges are met XCS is able to evolve a complete,
accurate, and maximally general problem representation reli-
ably. When the two challenges are not met, the problem may
still contain intrinsic fitness guidance or biased reward that will
permit evolution of a solution. With a set of experiments using
the Boolean multiplexer, we show the boundaries induced by the
two challenges as they show up in practice. Other results illus-
trate the effect of intrinsic fitness guidance and biased reward
functions.

A. Paper Contributions

This paper provides three major contributions. First, through
the analysis of the evolutionary pressures in XCS, the paper
provides theoretical support for Wilson’s hypothesis by
showing that the interaction between niched evolution and
panmictic deletion results in a generalization pressure. Second,
through the definition of the covering challenge and of the
schema challenge, the paper provides guidelines to set two main
XCS parameters (the population size , and the don’t-care
probability). Finally, our analysis forms the conceptual and
mathematical basis for further ongoing investigations [7].

B. Paper Organization

This paper is organized as follows. In Section II, we provide a
short overview of XCS, with all details that are important for the
remainder of the paper. In Section III, we investigate the evolu-
tionary pressures in XCS separately, and then discuss their inter-
action. The analysis is confirmed experimentally in Section IV.
In Section V, we investigate how the pressure induced by ac-
curacy-based fitness provides guidance toward accurate classi-
fiers, emphasizing the two challenges, and possible solutions.
This analysis is confirmed experimentally in Section VI. Finally,
in Section VII, we draw conclusions.

All experiments in this paper were carried out with Butz’s [6]
implementation of XCS and were repeated with Lanzi’s
[33]. The configuration files required to reproduce the results

are available on request, as are the result files for the statistical
analysis.

II. THE XCS CLASSIFIER SYSTEM

In this section, we give a short description of XCS. For a com-
plete description, we refer the interested reader to the original
papers by Wilson [43], [44], and to the recent algorithmic de-
scription by Butz and Wilson [8].

XCS acts as a reinforcement learning agent [40]: it receives
inputs describing the current state of the environment ,
it reacts with actions (or classifications) , and eventu-
ally receives reward as an indication of the value of its
actions. The goal of XCS is to maximize the amount of reward
gathered in the long run. XCS achieves this by learning an ac-
tion-value function [40], which maps state-action pairs into a
real number, called payoff, which is analogous to the value of

-learning [41].
While XCS works for either single-step or multistep prob-

lems, for present purposes we will focus on single-step problems
in which the task is to maximize the immediate reward received
from the environment as a direct consequence of an action (and
not the cumulative, discounted reward in the long run). More-
over, we restrict inputs from the environment to binary strings.
Accordingly, the input space is denoted by where

is the fixed length of the input string.
Classifiers in XCS consist of a condition, an action, and

three main parameters: The condition specifies
which input states the classifier is capable of matching
(is a “don’t-care” symbol). The action specifies the action
for which the payoff is predicted. The prediction estimates the
payoff that the system expects if the classifier matches and its
advocated action is executed. The prediction error estimates
the error in the payoff prediction . The fitness estimates the
accuracy of the payoff prediction .

XCS interacts with the environment as follows. When the
system receives an input from the environment it forms a match
set of classifiers whose conditions are satisfied by the cur-
rent input. If the match set contains less than classi-
fiers with different actions, covering classifiers are created with
a condition that matches the current input and a random action
is selected from among those not in . Specifically, each at-
tribute in the condition of a covering classifier is set to with
a probability and to the corresponding input symbol, other-
wise. For each action in , XCS computes the system pre-
diction , which is an estimate of the payoff that the system
expects when action is performed. It is computed by the fit-
ness-weighted average of all matching classifiers that specify
action . Following the notation in [9]

(1)

where is the action of classifier ; is the prediction of
classifier ; and is the fitness of classifier . The different
values of form the prediction array. XCS selects an action
with respect to the values in the prediction array. The classifiers
in that advocate the selected action are put in the action set

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 3

Fig. 1. The classifier accuracy � as a function of the classifier prediction error
". If the prediction error " is below the threshold " the classifier is assumed to
be accurate, i.e., it has an accuracy of one, otherwise, the classifier accuracy �
drops off quickly, based on the values of � and � .

. Next, the selected action is sent to the environment and a
reward is returned to the system.

A. Reinforcement Component

During each cycle, XCS uses the reward to update the pa-
rameters of the classifiers in . Note that the only the classi-
fiers in are updated. Initially, the classifier prediction is
updated as follows:

(2)

where () denotes the learning rate; the reward
received from the environment. Next, the prediction error is
updated

(3)

The update of the classifier fitness is slightly more complex.
First, the classifier accuracy and the classifier relative accu-
racy are computed as

if

otherwise
(4)

(5)

The parameter () controls the tolerance for predic-
tion error ; the parameter () and the parameter
() are constants controlling the rate of decline in accuracy

when is exceeded. The classifier accuracy is calculated
from the prediction error as follows [see (4)]: if the prediction
error is below the threshold the classifier is said to be accu-
rate (it has an); otherwise, the accuracy drops
off quickly, dependent on the values of and . The accuracy
values in the action set are then converted to relative accu-
racies [see (5)]. Finally, classifier fitness is updated toward
the classifier’s current relative accuracy as follows:

(6)

The idea behind the accuracy calculation is visualized in Fig. 1.
is a threshold measuring the extent to which errors are ac-

cepted, causes a strong distinction between accurate and not
quite accurate classifiers, and the steepness of the succeeding
slope is influenced by , as well as . To summarize, in XCS
the classifier fitness is an estimate of the classifier’s accuracy

relative to other classifiers in and behaves inversely to the
reward prediction error; errors below the threshold are re-
garded as having equal accuracy.

B. Discovery Component

In XCS, a GA [17] is applied to the classifiers in the current
action set if the average time since the last GA application
to the classifiers in exceeds a threshold . For this pur-
pose, each classifier keeps an additional parameter recording
the last time that the classifier was in an action set to which the
GA was applied. The GA selects two parental classifiers with
probability proportional to their fitness. Two offspring are gen-
erated by reproducing, crossing, and mutating the parents. The
offspring are inserted into the population. As happens in all the
other models of classifier systems, parents stay in the population
competing with their offspring. So far, with XCS, two types of
mutation have been used, namely, free mutation [43] and niche
mutation [8]. In free mutation, an attribute of the classifier con-
dition is mutated to the other two possibilities with equal proba-
bility. In niche mutation, a classifier condition is mutated so that
it still matches the current input, i.e., a don’t-care symbol is mu-
tated to the corresponding input value, while 0 or 1 is mutated to
don’t-care. Niche mutation generally results in a faster conver-
gence time, whereas free mutation causes broader exploratory
behavior, faster knowledge transfer and, thus, higher robustness.

C. Classifier Deletion

If the number of classifiers in the population exceeds the
threshold , excess classifiers are deleted to keep the popula-
tion size constant. The deletion process is applied to the classi-
fiers in the whole population . It selects classifiers with prob-
ability proportional to an estimate of the size of the action sets
that the classifiers occur in. This estimate is stored in the classi-
fier action set size parameter . If the classifier is sufficiently
experienced and its fitness is significantly lower than the av-
erage fitness of classifiers in , its deletion probability is fur-
ther increased.

D. Macroclassifiers

In XCS, a macroclassifier technique is used to speed pro-
cessing and provide a more perspicuous view of population
contents. Macroclassifiers represent a set of classifiers with
the same condition and the same action by means of a new
parameter called numerosity. Whenever a new classifier is
generated by the GA (or covering), is scanned to see if
there already exists a classifier with the same condition and
action. If so, the numerosity parameter of the existing classifier
is incremented by one, and the new classifier is discarded.
If not, the new classifier is inserted into . The resulting
population consists entirely of structurally unique classifiers,
each with numerosity . If a classifier is chosen for deletion,
its numerosity is decremented by 1, unless the result would
be 0, in which case the classifier is removed from . All
operations in a population of macroclassifiers are carried out as
though the population consisted of conventional classifiers; that
is, the numerosity is taken into account. In a macroclassifier
population, the sum of numerosities equals , the traditional

IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

population size. ’s actual size in macroclassifiers, is of
interest as a measure of the population’s space complexity.

E. Subsumption Deletion

Wilson [44] introduced two subsumption deletion procedures
to broaden the generalization capability of XCS. The first
procedure, GA subsumption, checks offspring classifiers to
see whether their conditions are logically subsumed by the
condition of an accurate and sufficiently experienced parent.
If an offspring is “GA subsumed,” it is not inserted in the
population but the parent’s numerosity is increased.

The second procedure, action set subsumption, searches in
the current action set for the most general classifier that is both
accurate and sufficiently experienced. Then, all the classifiers in
the action set are tested against the general one to see whether
it subsumes them and the subsumed classifiers are eliminated
from the population.

III. EVOLUTIONARY PRESSURES IN XCS

We begin our analysis by studying the different evolutionary
pressures in XCS and their interaction. To accomplish this, we
first analyze five different pressures in XCS separately: 1) set
pressure; 2) mutation pressure; 3) deletion pressure; 4) sub-
sumption pressure; and 5) fitness pressure. As will be seen over
this and the next three sections, the interaction of the pressures
leads toward a population consisting of accurate, maximally
general classifiers.

A. Set Pressure

The basic idea behind the set pressure is that XCS reproduces
classifiers in action sets , whereas it deletes classifiers from
the whole population . The set pressure is a combination of
the selection pressure produced by the GA applied in and the
pressure produced by deletion applied in . The set pressure
was first identified by Wilson [43] in his generalization hypoth-
esis and was later extended and experimentally investigated by
Kovacs [22] who proposed the optimality hypothesis. Briefly,
the reasoning behind the generalization hypothesis is that gen-
eral classifiers appear more often in action sets and, there-
fore, they are more often reproduced by the GA. This causes an
intrinsic tendency toward generality that, combined with dele-
tion from , we call the set pressure. Kovacs’ optimality hy-
pothesis [22] suggests that because of the set pressure, XCS can
develop a complete, accurate, and maximally compact solution
(i.e., an “optimal” solution) for a given problem.

To formalize the set pressure, we calculate the expected speci-
ficity of the classifiers in an action set with respect to
the current expected specificity of the classifiers in the popula-
tion , denoted by . Expected specificity measures the
average proportion of non don’t-care symbols in the conditions
of classifiers of a particular classifier set.

At the beginning of an experiment, the specificity of the initial
random population, corresponds to the don’t-care prob-
ability , i.e., . To calculate the specificity
in the action set from the specificity in the population,

, we assume that the specificity in the population is bino-
mially distributed, as is the case in a randomly generated popu-
lation with don’t-care probability . With this assumption, we
can determine the probability that a randomly chosen classifier

has specificity as follows:

(7)

where is a classifier, is the length of classifier conditions,
and is the number of specified bits in the condition, i.e.,
number of bits different from a don’t-care symbol; and
denotes the specificity of classifier . The equation essentially
estimates the proportion of different specificities assuming an
infinite population size.

The probability that a classifier matches a certain input
depends on the classifier specificity. To match, a classifier
with specificity must match all the specific bits. This
event has probability since each specific attribute matches
with probability 0.5. Therefore, the proportion of classifiers in

with a specificity that match in a specific situation is

(8)

To derive a specificity of a match set , it is first
necessary to specify the proportion of classifiers in with
specificity given the population specificity . This
proportion, , can now be derived by

(9)

To compute , we multiply actual specificity values
by the proportions and sum up the
values to derive the resulting specificity of . Since the action

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 5

Fig. 2. Specificity of the action set [A] as a function of the specificity of the
population [P]. Note that except at the end points s([A]) is always smaller than
s([P]).

set has on average the same specificity as the match set
(), can be derived as follows:

(10)

The equation can be used to determine the mean specificity
in an action set assuming a binomially distributed

specificity with mean in the population. This assumption
is always valid in the beginning of an experiment when the pop-
ulation is initialized with respect to . In this case, the average
specificity will be . Fig. 2 depicts (10). Note that (except
at the end points) the specificity of is always smaller than
the specificity of . Thus, since selection takes place in the ac-
tion sets but deletion occurs in the population as a whole, there
should be a tendency for the generality of the population to in-
crease—in line with Wilson’s generalization hypothesis. In the
absence of fitness pressure, the equation provides an estimate of
the difference in specificity of selected and deleted classifiers as
long as an approximately binomial distribution is present. Equa-
tion (10) is enhanced in Section III-F and experimentally vali-
dated in Section IV.

B. Mutation Pressure

Although usually only a low mutation probability is applied,
mutation still influences specificity. In the absence of other
forces, mutation causes a population to tend toward specific
proportions of zeros, ones, and don’t-cares. Specifically,
free mutation (Section II) pushes toward a distribution of
1:2 general:specific, while niche mutation pushes toward a
distribution of 1:1 general:specific. The average change in
specificity between the parental classifier and the
mutated offspring classifier for the niche mutation
case can be written as

(11)

For free mutation, it is

(12)

Thus, by itself, mutation pushes the population toward a speci-
ficity of 0.5 when niche mutation is applied and 0.66 with free
mutation. The intensity of the pressure depends on the mutation
type, on the frequency of the GA application (influenced by the
parameter), and on the mutation probability .

C. Deletion Pressure

The probability of a classifier being deleted depends on its
action set size estimate as and (depending on classifier expe-
rience) its fitness (Section II). Due to the resulting bias to-
ward deleting classifiers that occupy larger action sets, deletion
pushes the population toward an equal distribution of classifiers
in each environmental niche. Therefore selection, from , of
classifiers for deletion is essentially random, and there is no par-
ticular deletion pressure for or against general classifiers. In the
absence of other biases, the specificity of deleted classifiers will
be, on average, equal to the average specificity in the population

.

D. Subsumption Pressure

The subsumption deletion mechanism adds another evolu-
tionary pressure to XCS. The mechanism applies only to clas-
sifiers that are accurate and sufficiently experienced. Once ac-
curate classifiers are found, subsumption deletion pushes to-
ward maximal syntactic generality in contrast to the set pres-
sure which only pushes toward generality if contains inputs
which permit more-general classifiers to be more active. In par-
ticular, GA subsumption deletion prevents the insertion into
of offspring whose parents are accurate, experienced, and for-
mally more general than the offspring. Action set subsumption is
stronger than GA subsumption since it allows an accurate more
general classifier in an action set to eliminate all classifiers in
the set that are more specific.

To summarize, subsumption pressure is an additional pres-
sure toward accurate, maximally general classifiers (i.e., classi-
fiers that are as general as possible while still being accurate)

IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

from the over-specific side. It applies only once accurate clas-
sifiers are found. Thus, subsumption pressure is helpful mainly
later in the learning process once accurate classifiers are found.
It usually results in a strong decrease of population size.

E. Fitness Pressure

Until now, we have not considered the effect of fitness (ac-
curacy) pressure which, as noted previously, can influence sev-
eral other pressures. Fitness pressure is highly dependent on the
particular problem being studied and is therefore difficult to for-
malize. In general, fitness results in a pressure which pushes

from over-general classifiers toward accurate classifiers as
is further analyzed in Section V. Broadly speaking, fitness pres-
sure toward accuracy counters the set pressure toward generality
resulting in a population consisting primarily of accurate, max-
imally general classifiers.

F. Interaction of Pressures

We will now begin to combine the evolutionary pressures dis-
cussed so far and analyze their interaction. Initially, we con-
sider the interaction of set pressure, mutation pressure, and dele-
tion pressure which yields an important relationship we call the
specificity equation. Next, we consider the effect of subsump-
tion pressure. Finally, we provide a visualization of the interac-
tion of all the pressures. The analyses are experimentally tested
in Section IV.

Specificity Equation: Set pressure, mutation pressure, and
deletion pressure all influence the average specificity in the pop-
ulation. Due to the problem dependence of fitness pressure, we
cannot formulate that pressure and consequently will assume a
similar fitness of all classifiers in our analysis. As shown later
in Section IV, this assumption holds when all classifiers are ac-
curate and nearly holds when all are similarly inaccurate.

Despite the fitness equality assumption, deletion is also de-
pendent on the action set size estimate of a classifier. How-
ever, in accordance with Kovacs’s insight on the relatively small
influence of this dependence [23], we assume a random deletion
from the population in our formulation. Thus, as stated above, a
deletion results on average in the deletion of a classifier with a
specificity equal to the specificity of the population . The
generation of an offspring, on the other hand, results in the inser-
tion of a classifier with an average specificity of
() dependent on the type of mutation used. Putting the
observations together, we can now calculate the average speci-
ficity of the resulting population after one time step

(13)
The parameter denotes the frequency of a GA application
per time step. The formula adds to the current specificity in the
population the expected change in specificity calcu-
lated as the difference between the specificity of the two repro-
duced and mutated classifiers, i.e., and .
Note that although the frequency is written as a constant in
the equation, actually depends on , as well as the
specificity distribution in the population. Thus, in general
cannot be written as a constant. However, by setting to 1,

Fig. 3. Interaction of different pressures in XCS: 1) the fitness pressure
pushes [P] toward accuracy where the slope and the initial gap are controlled
by parameters � , " , and � as shown in Fig. 1; 2) the set pressure pushes
[P] toward classifiers that are general with respect to the input set S ; 3) the
optional subsumption pressure pushes the population toward classifiers that are
syntactically general; and 4) the mutation pressure pushes to a fixed proportion
of symbols in classifier conditions. Overall, these pressures lead the population
toward a population of accurate maximally general classifiers.

it is possible to force to be 1 since the average time since
the last application of the GA in an action set (not generated by
covering) will always be at least 1.

Subsumption: XCS’s tendency toward accurate, maximally
general classifiers is not dependent on the use of the subsump-
tion deletion operations which, as noted earlier, are optional. For
this reason, and because we have not developed an analysis of
subsumption pressure, it is left out of the specificity equation
and is included only qualitatively in Fig. 3. Subsumption is not
used in the experiments of Section IV.

Interaction of all Pressures: The interaction of all the pres-
sures is visualized in Fig. 3. In particular, the fitness pressure
pushes toward more accurate classifiers; the set pressure
pushes toward more general classifiers; the subsumption
pressure pushes the population toward classifiers that are accu-
rate and syntactically maximally general; the mutation pressure
pushes toward a fixed proportion of symbols in classifier con-
ditions. Deletion pressure is implicitly included in the notion of
set pressure. More detailed effects of deletion are not depicted.
Overall, these pressures lead the population toward a popula-
tion of accurate maximally general classifiers. While set pres-
sure and mutation pressure (free mutation is represented) are
independent of classifier accuracy, subsumption pressure and of
course fitness pressure are influenced by accuracy.

IV. VALIDATION OF THE SPECIFICITY EQUATION

We now present a set of experiments to validate the influ-
ences of the evolutionary pressures identified in Section III. In
particular, we validate the specificity equation, formulated in
(13), which summarizes the effect of the three main evolutionary
pressures in XCS: set pressure, mutation pressure, and deletion
pressure.

We apply XCS to Boolean strings of length with
different settings. The following figures show runs with muta-
tion rates varying from 0.02 to 0.20. In each plot, solid lines
denote the result from (13); while dotted lines represent the re-
sult of actual XCS runs. Curves are averages over 50 runs. If

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 7

Fig. 4. Specificity of [P] when the classifier fitness is fixed, deletion is
random, and niche mutation is used. Solid lines represent the specificity as
predicted by (13). Dotted lines represent the actual specificity in [P]. Note
that without the fitness influence, the actual specificity in XCS behaves nearly
exactly as predicted by the model given in (13).

not stated differently, the population is initially filled up with
random classifiers with don’t-care probability . Niche
mutation is applied. The other XCS parameters are set as fol-
lows: ; ; ; ; ;

; ; ; , ; ; and
. Note that the discount factor is irrelevant here since

this are classification or single-step problems. Since this section
is concerned with the set pressure, subsumption is turned off to
prevent the additional generalization effect due to the subsump-
tion pressure.

A. Fixed Fitness

We begin the validation of (13) examining runs where there
is neither fitness pressure nor deletion pressure. Fitness pressure
as well as deletion pressure are eliminated by deleting classifiers
randomly. With these settings, we now investigate the influence
of: 1) free mutation; 2) niche mutation; 3) the GA threshold ;
and 4) the initialization of the population.

Experiment 1. Niche Mutation: Fig. 4 depicts the specificity
of the population when the fitness is fixed, deletion is
random, and niche mutation is used. As the plot in Fig. 4 shows,
the runs match very closely to the model expressed in (13).
The initial specificity of 0.5 drops off quickly in the beginning
due to the strong set pressure. However, soon the effect of the
mutation pressure becomes visible and the specificity in the
population converges as predicted. Furthermore, we note that
the higher the mutation rate , the stronger the influence of
mutation, which is manifested in the higher convergence value
in the curves with higher .

Experiment 2. Free Mutation: Fig. 5 depicts the specificity
of the population when free mutation is used. Although the
mutation pressure becomes visible in the variation of , Fig. 5
further reveals the influence of mutation. As formulated in (12),

Fig. 5. Specificity of [P] when the classifier fitness is fixed, deletion is
random, and free mutation is used instead of niche mutation. Solid lines
represent the specificity as predicted by (13). Dotted lines represent the actual
specificity in [P]. As predicted, the pressure toward specificity caused by free
mutation is higher than the one caused by niche mutation.

the mutation pressure is slightly higher when applying free mu-
tation. When directly comparing Figs. 4 and 5, we note that the
higher the parameter , the higher the influence of mutation
pressure and, thus, the higher the differences in the two muta-
tion types.

Experiment 3. The Threshold: As noted in Section III-F,
the GA frequency in (13) should not be written as a constant
value, since it actually depends on the specificity of
the population. However, the GA frequency equals 1 when
the GA threshold is set to 1. When setting to a higher
value (100), Fig. 6 reveals the lower GA frequency effect. Once
the specificity in the population has dropped, the action set sizes
increase since more classifiers match a specific state. Conse-
quently, more classifiers take part in a GA application, more
time stamps are updated, the average time since the last GA
application in the population and in the action sets decreases,
and finally, the GA frequency decreases. The decrease is observ-
able in the slower specificity decrease. However, as predicted by
(13), despite its dependence on the actual specificity, does
not influence the convergence value.

Experiment 4. The Initialization of : Until now, we initial-
ized the population with random classifiers. This hypothesis as-
sures a perfect binomial specificity distribution in the beginning
of the run. However, the hypothesis of an initial random popu-
lation appears not to be strictly necessary. Fig. 7 reports runs
in which this hypothesis is relaxed. The population is initially
empty and first classifiers are generated by covering. The only
noticeable effect in Fig. 7, with respect to Fig. 4, is that in the
very beginning of a run the specificity drops off slightly faster
than in the case of an initial random population (see Fig. 4). This
is easily explained: since the population does not contain 2000
classifiers initially, the specificity pressure is stronger, as also
observable in (13) when is initially smaller than 2000.

IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Fig. 6. Specificity of [P] when the classifier fitness is fixed, deletion is
random, niche mutation is used, and the threshold � = 100. Solid lines
represent the specificity as predicted by (13). Dotted lines represent the actual
specificity in [P]. Note that when using a threshold � of 100 instead of 1,
the GA frequency and, consequently, the specificity pressure decreases once
the specificity drops.

Fig. 7. Specificity of [P] when the classifier fitness is fixed, deletion is
random, niche mutation is used, and population is initially empty. Solid lines
represent the specificity as predicted by (13). Dotted lines represent the actual
specificity in [P]. With an initially empty population, the specificity drops
slightly faster in the beginning.

B. Constant Function

While in the previous section fitness has been intentionally
omitted, in this section and in the next one we study the actual
influence of fitness on . In particular, in this section, we
apply XCS to a constant Boolean function which always returns
a reward of 1000. With these settings, all classifiers turn out to be
accurate since their prediction error is always zero. Note, how-
ever, that a zero prediction error does not necessarily mean con-
stant fitness values. In fact, since fitness is determined as the
classifier’s relative accuracy, fitness can still influence evolu-
tionary pressure. Fig. 8 reports runs in which random deletion is
used (i.e., deletion is proportional to numerosity). It also shows

Fig. 8. Specificity of [P] when XCS is applied to a constant function.
Deletion is random, niche mutation is used. Solid lines represent the specificity
as predicted by (13). Dotted lines represent the actual specificity in [P]. Note
that when applied to a constant function with random deletion, the changing
specificity still matches the proposed theory.

Fig. 9. Specificity of [P] when XCS is applied to a constant function; deletion
is based on the action set size parameter as, niche mutation is used. Solid lines
represent the specificity as predicted by (13). Dotted lines represent the actual
specificity in [P]. Due to the slower adaptation of the action set size estimate
parameter, specificity convergence takes longer when the usual deletion is
applied.

that the assumption of a binomial distribution indeed holds later
in the run, or is at least not too harsh since the specificity be-
haves exactly as predicted.

But the behavior of changes when we apply the dele-
tion method used in XCS, based on the action set size parameter

. Fig. 9 reports runs in which the population is initially empty
and the usual deletion is used. Note that in Fig. 9, the slope of
the curves decreases. However, in the end the specificity of

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 9

Fig. 10. Specificity of [P] when XCS is applied to a random Boolean function;
deletion is random; niche mutation is used. Solid lines represent the specificity
as predicted by (13). Dotted lines represent the actual specificity in [P]. Applied
to a random function, the specificity stays on a higher level due to the continuous
larger noise in more specific classifiers.

converges near the value predicted by the theory. The differ-
ence between the results in Fig. 9 and those in Fig. 8 is easily
explained noting that the difference can only be caused by the
bias of the deletion method toward classifiers in larger niches.
As the specificity of decreases, the action set size increases
as noted before. Thus, since more general classifiers are more
often present in action sets, their action set size estimate is
more sensitive to the change in the action set size and, conse-
quently, it is larger in more general classifiers while specificity
drops. Eventually, all values will have adjusted to the change
and the predicted convergence value is met. This explanation is
further confirmed by the fact that the difference between the ac-
tual runs and the curves given by (13) become smaller and equal
faster for higher mutation rates since the specificity slope is
not as steep as in the curves with lower values.

C. Random Function

The results in the previous section show that the influence
of the fitness in XCS with a constant function is rather small.
Accordingly, we now apply XCS with the two different
deletion strategies, to a much more challenging problem: a
random Boolean function which randomly returns rewards of
1000 and 0. Fig. 10 reports the runs in which XCS with random
deletion is applied to the random function. Fig. 10 shows that
in the case of a random function the fitness influences the
specificity slope as well as the convergence value. In fact, the
convergence value is larger than that predicted by the model
in (13). Two factors cause this effect: 1) the parameter initial-
ization technique and 2) the high variance in low-experience
classifiers. Since the possible rewards are 0 and 1000 and
assuming accurate parameter estimates in a classifier, classifier
predictions fluctuate around 500, and consequently also the

Fig. 11. Specificity of [P] when XCS is applied to a random Boolean function;
deletion is random; niche mutation is used. Solid lines represent the specificity
as predicted by (13). Dotted lines represent the actual specificity in [P]. The
fitness biased deletion method further influences the specificity.

prediction errors fluctuate around 500. As in the case of the
more sensitive action set size estimates in Section IV-B, here,
the sensitivity is manifested in the prediction error . More
specific classifiers have a less sensitive and, consequently, a
higher variance in the values. Since the accuracy calculation
expressed in (4) scales the prediction error to the power

—which is set to the usual value 5—the higher variance
causes on average higher accuracy and, thus, higher fitness.
Different parameter initialization techniques in combination
with the moyenne adaptive modifiée technique enhance this
influence. The more a classifier is inexperienced, the more the
classifier parameters are dependent on the most recent cases.
This, in combination with the scaled fitness approach, can
make the effect even stronger. Since we set the experience
of a new classifier to 1 (which differs from the algorithmic
description in which is set to 0), XCS keeps the decreased
parental parameter estimates so that fitness overestimation is
prevented. In fact, experimental runs with show that
the specificity can increase to a level of even 0.2 independent
of the mutation setting when or the prediction error
estimate is set to 0 initially.

When applying the usual deletion strategy, based on and
the fitness estimate , deletion causes an increase in the speci-
ficity of early on as shown in Fig. 11. This longer conver-
gence time is attributable to the bias on as already observed
in Fig. 9. The additional fitness bias causes hardly any observ-
able influence.

Overall, it can be seen that in a random function fitness causes
a slight intrinsic pressure toward higher specificity. This pres-
sure is due to the parameter initialization method and the higher
variance in more specific classifiers. The on-average higher fit-
ness in more specific classifiers causes fitness pressure and dele-
tion pressure to favor those more-specific classifiers; thus, the
resulting undirected slight pressure toward higher specificity.

IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Note that the specificity change and the convergence to a par-
ticular specificity level observed in Fig. 11 should essentially
take place in all problems that are similar to a random func-
tion. As we will see, this is particularly the case if classifiers are
over-general and the investigated problem provides no fitness
guidance from the over-general side in the form of layered re-
ward or biased generality.

V. EVOLVING ACCURATE CLASSIFIERS

In the previous sections, we analyzed the different evolu-
tionary pressures in XCS. With (13), we provided a model to
predict the change of specificity in the population. The experi-
ments in Section IV confirmed the validity of the model.

Although the experiments revealed fitness influences, we did
not consider the fitness pressure explicitly since, as noted in
Section III, fitness pressure depends heavily on the problem def-
inition. Therefore, it is impossible to formalize a problem-in-
dependent fitness pressure. Nevertheless, we can still investi-
gate what are the general conditions in XCS that guarantee
that fitness pressure applies. In this section, we derive condi-
tions which must be satisfied to guarantee that there is fitness
pressure. The derived conditions, termed challenges, are worst
case bounds. Several common problem properties are outlined
that ease the derived boundaries. Note that we do not provide a
formal model of how fitness pressure acts; instead we analyze
the conditions which favor the existence of fitness pressure in
XCS.

There are two general conditions which must be satisfied to
guarantee that fitness pressure exists. The first (rather obvious)
condition is that classifier fitness must be meaningful, i.e., the
XCS parameters must be set so as to guarantee that the GA acts
and that classifiers stay in the population long enough to have
their fitness adequately evaluated through on-line experience.
The second (more problem-dependent) condition is that the ap-
plication of the GA must result in an effective pressure toward
high fitness classifiers, i.e., toward accurate classifiers. Each
of these conditions can be viewed as a challenge which must
be met to guarantee that fitness pressure exists. We call these
challenges, respectively: the covering challenge and the schema
challenge.

A. Covering Challenge

The covering challenge deals with the problem of setting XCS
parameters so that the GA takes place on meaningful fitness
values. In fact, classifier fitness is not just computed as in GAs,
but must be evaluated through online experience. This requires
that classifiers be applied enough times to allow an adequate
evaluation of their fitness. If this is not the case, classifier fitness
does not provide any information about the problem solution
and therefore fitness pressure does not apply through the GA.

We remember from Section II that in XCS covering usually
occurs at the beginning of a run. Then, when most of the pos-
sible input configurations are covered by some classifier, the GA
starts acting in the action sets. However, under certain circum-
stances, covering might go on indefinitely because there con-
tinue to be some inputs that are not covered. When this hap-
pens, XCS enters a cover-delete cycle which prevents classi-

fiers from remaining in long enough to have their fitness
evaluated. More precisely, at the beginning, has an average
specificity which depends on the specificity of initial classifiers,
determined by the parameter . When XCS receives an input
configuration, it builds the match set . If the specificity of
is too high due to a small , tends to contain overspecific
classifiers and the complete input space might not be well cov-
ered. As a consequence, covering is likely to be applied when
building and one or more classifiers are inserted in the pop-
ulation. At the same time, excess classifiers must be deleted to
keep the population size constant. Note that in this early stage
classifiers have little experience and therefore both their fitness

and their action set size estimate are basically meaningless.
Thus, deletion will select classifiers essentially at random. Con-
sequently, important classifiers that cover other input configura-
tions will often be deleted. The result is a continual cover-delete
cycle in which XCS tries to cover the new inputs with classifiers
that are overspecific, while it randomly deletes other covering
classifiers to make room for the new ones. Separately, the GA
selects classifiers for reproduction randomly, since classifier fit-
ness is not reliable due to limited experience. Overall these three
effects cause a lack of significant fitness pressure among the
classifiers in . Clearly, the covering challenge can be met by
setting and so that inputs have a reasonable probability of
being matched so as to avoid the firing of the covering operator.

The situation can be formalized by determining the proba-
bility that an input is covered by at least one classifier
in a randomly generated population, as a function of the speci-
ficity in the population (initially equal to). First,
we compute the probability that a random classifier
matches an input

(14)

where is the length of the input string (see Section II). Then,
we compute the probability that no clas-
sifier in a randomly generated population matches the current
input string

where denotes the size of the population. Finally, the prob-
ability that at least one classifier matches the current
input string is derived from the previous equations as

(15)

Equation (15) is correct for the usual ternary coding when
the population is initially filled up with random classifiers.
Moreover, the equation assumes a uniform and complete distri-
bution of all possible binary problem instances. In real-world
problems, this property can be often relaxed since a data set usu-
ally does neither contain all expressible problem instances nor

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 11

Fig. 12. P (cover) as a function of the don’t-care probability P (initially
s([P]) = 1� P) for different values of L and N .

a uniform distribution over the expressible instance space. Note
that the property is also violated in multistep problems in which
the behavioral strategy causes a further skew in the instance dis-
tribution. Equation (15) provides a rough approximation of the
real situation. In fact, (15) does not take into account many fac-
tors which influence the covering challenge, such as the use of
the MAM technique for speeding up the estimate of classifier
parameters, the learning rate , and the parameters used for the
evaluation of classifier fitness (, , and).

The covering challenge is overcome if is large
enough to avoid the cover-delete cycle. This essentially should
already be the case for rather small values of since
once the GA kicks in, more general classifiers are generated
and covering does not take place anymore. Fig. 12 depicts
(15) for different values of the problem size and of the
population size . When the problem is simple, e.g., ,
even for small values of we have high values of
suggesting that the covering challenge is relatively easy to
meet. As the problem complexity increases, we need a larger

to avoid the cover-delete cycle. For instance, when
and , covering classifiers must contain at least 75%
of don’t-cares to have a reasonably high ; with more
classifiers, e.g., , smaller values of can be
used.

Note that the covering challenge can be easily met by setting
very high. However, as increases, the population tends

to be filled up with overgeneral classifiers which—because they
contain few specified bits—can accumulate little information
about the optimal solution. When this happens, XCS may find it
difficult to develop an effective pressure toward accurate classi-
fiers. Providing enough specificity in the population is the sub-
ject of the schema challenge, considered next.

B. Schema Challenge

Satisfaction of the covering challenge guarantees that the GA
acts on reliable information, since classifiers stay in the popu-
lation long enough to be evaluated adequately. Once the cov-
ering challenge is met, we can analyze how the proposed evo-
lutionary pressures (see Section III) result in the evolution of

accurate, maximally general classifiers in XCS. As shown in
Fig. 3 above, fitness pressure is the only pressure that pushes
toward specificity in a directed (accuracy dependent) way. Ac-
curacy-based fitness favors reproduction of classifiers which are
more accurate. However, the strength of the fitness pressure is
highly problem dependent so that it is impossible to derive a fit-
ness pressure measure in general.

Assuming the worst-case scenario in which there is no fitness
guidance, we can derive a worst-case bound on the conditions
that assure proper convergence. These conditions define what
we call the schema challenge.

General Case: The essence of the schema challenge is that
classifiers must contain enough specified bits in their conditions
to give the GA sufficiently accurate classifiers to work with. In
general, we cannot make any assumption about the problem we
are tackling and, therefore, it is basically impossible to deter-
mine what number of specified bits is enough to allow the GA to
work properly. One way to guarantee that XCS can reach an ac-
curate solution from the overgeneral side consists of setting
small enough so that accurate classifiers for most environmental
niches are present due to covering. Let us calculate the proba-
bility that an environmental niche is represented by at least one
classifier in . For this purpose, we think of an environmental
niche as a schema (see, e.g., [15] and [17]) of order combined
with an action. A classifier represents an environmental niche
if: 1) it has the same action and 2) all the positions specified
in the schema are also specified in the classifier condition. The
probability that a schema of order is rep-
resented in is computed as follows. First, we compute the
probability that one classifier correctly
represents an environmental niche as

where denotes the number of possible actions; is the schema
order of the environmental niche. It is now possible to determine
the probability that contains at least one
representative of the niche as:

(16)

Fig. 13 depicts (16) for different values of and . As can be
seen, generally speaking the schema challenge can be met by
setting small enough. In fact, small values of , in Fig. 13,
correspond to high values of suggesting that
each niche will be represented in . Accordingly, for small

, XCS should be able to develop an accurate maximally gen-
eral solution since accurate classifiers are already present in .
Note also that the specificity of classifiers converges to a cer-
tain specificity dependent on mutation type, mutation strength

, population size , and GA frequency as formulated in
(13) and validated in Section IV. Thus, it needs to be assured that
specificity is not lost initially when fitness values may not pro-
vide any meaningful values. This can for example be prevented
by setting large enough. Note also that while the schema
challenge can be solved by setting small enough, the cov-
ering challenge requires that is set large enough to guarantee

IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Fig. 13. P (representative) as a function of the don’t-care probability P
(initially, P = 1� s([P])) for different values of o and N .

that the input space is covered appropriately by . Thus, the
interaction of two challenges induces boundaries which must
be considered when applying XCS. These boundaries are fur-
ther discussed in Section VI, where (15) and (16) are validated
through a set of experiments.

As mentioned earlier, the schema challenge represents a
worst-case bound which assumes that there exists no fitness
guidance in a problem. However, in most problems this may not
be the case. The following paragraphs point out some typical
properties that ensure fitness guidance.

Layered Payoff: Strong fitness pressure that guides overgen-
eral classifiers toward accurate generalizations is often present
in problems with layered payoff in which more than two reward
values are provided. Classifier specialization toward accuracy
may then decrease the possible payoff levels and, thus, increase
accuracy.

Layered payoff could essentially be provided in classification
problems in which the degree of class affiliation is known rather
than only the class itself. For example, in medical data problems
the degree of a sickness may be included in the payoff function.
Interestingly, in multistep problems the payoff is inherently lay-
ered due to the discounted reward propagation.

Layered payoff was first used by Wilson [43] to simulate in
a single-step problem the multiple payoff levels of typical mul-
tistep reinforcement learning problems. Kovacs [25] used lay-
ered payoff to develop a theory of strong overgenerals, and de-
fined a function that creates such landscapes as a biased reward
function. The easing of the schema challenge induced by lay-
ered payoff is further discussed and experimentally validated in
Section VI-C.

Biased Generality: While layered payoff introduces an ex-
plicit bias in the reward function, biased generality is often in-
trinsically present, even when the reward function is not biased.
The idea behind biased generality is that an overgeneral classi-
fier will often be correct more often than wrong (or vice-versa).
Any change in the classifier’s condition due to the GA will be
reflected in a change in its statistical correctness—and thus its
error —and this will tend to guide the system toward increas-
ingly accurate classifiers. Biased generality can be approached

mathematically. Let us assume a two-level payoff land-
scape, where is provided if the prediction is correct, 0, oth-
erwise. Let denote the probability that classifier pre-
dicts the correct outcome. Due to the assumed payoff landscape
and the assumption of a uniformly random encountering of both
cases, the reward prediction of classifier eventually oscil-
lates around ,where the amount of oscillation can be
influenced by . Neglecting the oscillation and consequently
setting equal to the following derivation is ob-
tained:

(17)

Equation (17) sums the two cases of executing a correct or
wrong action with the respective probabilities. It expresses
the prediction error of classifier as a parabolic function
of the probability . The curve reaches its maximum of

for the prediction error of classifier in the case of
; it is 0 for and . It is worth

noting that (17) shares some similarities with the entropy of
, which is maximal for 0.5 and minimal for 0 and 1. In

this respect, we might read the above equation as an estimate
of the amount of information that conveys about the
problem solution. If is completely incorrect or completely
correct, conveys the largest amount of available infor-
mation; in fact the “entropy” is minimal. If is 0.5,
conveys almost no information about the problem solution; in
fact the “entropy” which is a measure of confusion is maximal.
Equation (17) shows that if the consistency of a correct/wrong
prediction increases, the accuracy and, consequently, the fitness
of a classifier increases. The easing of the schema challenge
due to biased generality is further discussed and experimentally
validated in Section VI-D.

VI. VALIDATION OF FITNESS GUIDANCE

The covering and schema challenges, as well as the fitness
benefit due to layered payoff and biased generality will now
be validated in several Boolean multiplexer problems. Boolean
multiplexer problems have often been used to evaluate LCS
<Author: Please define “LCS”> performance [42], [43]. Jong
and Spears [20] showed that LCSs typically outperform other
machine learning algorithms (such as C4.5) in these problems.

First, we study the boundaries induced by the covering
challenge and by the schema challenge on the 20-multiplexer
problem. We then move to the 37- and 70-multiplexers, which
have more severe boundaries. Using a two-level R/0 payoff
scheme, XCS is able to solve both problems, while layered
payoff is shown to permit faster solutions. Finally, we show
the effect of biased generality by applying XCS to a modified
multiplexer function.

A. Boolean Multiplexer Problems

Boolean multiplexers are defined for strings of bits, where
the first bits, represent an address

which indexes the remaining bits, ; the function
returns the value of the indexed bit. For instance, in the six-

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 13

Fig. 14. The boundaries induced by the covering challenge and by the
schema challenge in the 20-multiplexer when the population size is 2000.
P (cover), dashed line, represents the covering challenge as stated in (15);
P (representative), solid line, represents the schema challenge as stated in
(16). L is 20; o is 5.

multiplexer function , we have that ,
while . More formally, the six-multiplexer
can be represented by the following disjunctive normal form:

Because of their symmetry, Boolean multiplexers are biased
neither toward over general nor toward overspecific classifiers,
i.e., the probability that an over-general classifier is correct is
close to 50%. Applying a 1000/0 reward regime, the payoff is
not layered so that there is no biased reward benefit.

B. XCS in the 20-Multiplexer: The Two Challenges

To show the boundaries introduced by the covering chal-
lenge and by the schema challenge, we apply XCS to the
20-multiplexer for different values of with a population of
2000 classifiers.

First, we consider the boundaries determined by
(15), and by (16), respectively, for the cov-
ering and for the schema challenge. Fig. 14 reports the plots of

, dashed line, and , solid line, when
is 2000, is 20, is 5.1

When applying XCS we are interested in those values of
which produce both a sufficiently high value of and
a high value of . A high value of
means that classifiers in cover most of the input configura-
tions to guarantee that the covering challenge is met. A high
value of means that is more likely to
guarantee that the schema challenge is met. Thus, with respect
to Fig. 14, we are interested in the area below the intersection of
the two plots where both and have
non zero values. In particular, the values of between 0.3 and
0.6 seem to guarantee reasonably high values of and

1The schema order o is 5 since in the 20-multiplexer accurate and maximally
general classifiers have five specific bits, i.e., they belong to schemata of order
5.

Fig. 15. XCS in the 20-multiplexer when P is 0.15, 0.20, 0.30, 0.40, and
0.50. Population size is 2000 classifiers. Curves are averages over 50 runs.

. Thus, we should expect that XCS will per-
form better for such values.

We apply XCS to the 20-multiplexer for different values of
. XCS parameters are set as follows: , ,

, , , , , ,
, , , , and ;

both GA subsumption and action set subsumption are applied.
Since we are now interested in how fast XCS evolves accurate
classifiers, subsumption is applied to ensure fast convergence
once accurate classifiers evolved. The performance measure of
XCS is not influenced by subsumption.

The covering challenge is easily observable in Fig. 15. For
values of near to 0, XCS slowly converges to an optimal so-
lution. In particular, when is 0.1 (not reported here), XCS
does not reach the optimum, but its performance remains at the
random level 0.5 indicating that it is trapped in the proposed
covering/deletion loop. As increases, XCS performance im-
proves. When is 0.15, after 80 000 problems, XCS perfor-
mance is near .85, i.e., XCS correctly classifies around 85% of
the input configurations. When reaches 0.3 the performance
dramatically improves and as further increases, XCS learns
even faster. The relation between the proposed model in Fig. 14
and the experiments in Fig. 15 is quite evident. For a don’t-care
probability of 0.15, is very close to 0 predicting that
the covering challenge will show up, which actually happens in
the experiments. With increasing values of , in-
creases predicting that the effect of covering challenge will di-
minish and eventually disappear, which is confirmed by the ex-
periments.

Fig. 16 illustrates the schema challenge. When is close
to 1, the initial populations tend to be filled up with over-gen-
eral classifiers; thus, it is more difficult for XCS to converge to
the optimal solution made of accurate and maximally general
classifiers. However, as decreases, the performance of XCS
improves and the system learns faster. It is interesting to note
that XCSs best performance is reached when approximates
0.6 even though the maximally general solution for the 20-mul-
tiplexer involves only classifiers with don’t-care
symbols. This validates the schema challenge and essentially
the benefit of an appropriate supply of accurate classifiers since

IE
EE

Pr
oo

f

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Fig. 16. XCS in the 20-multiplexer when P is 0.60, 0.70, 0.80, 0.90, and
1.00. Population size is 2000 classifiers. Curves are averages over 50 runs.

XCS performs better for values of that are significantly
smaller than the percentage of don’t cares found in the optimal
solution. The relation between the proposed model, Fig. 14, and
the experimental results, Fig. 16, is evident.

Note, however, that even for values of near to 1, which
yields close to 0, XCS is still able to evolve
a complete and accurate model and, thus, reaches 100% perfor-
mance. Two effects account for this observation.

1) The set pressure investigated in Section III causes the
specificity to increase early on. In particular, mutation in-
creases the specificity of completely general classifiers as
expressed in (13). Moreover, the inaccuracy of the fitness
estimate in the more specialized classifiers causes a fur-
ther bias as shown in Fig. 11.

2) The multiplexer problem provides fitness guidance. Al-
though it is a hard problem, a small (but sufficient) de-
gree of fitness guidance is present. Essentially, any classi-
fier that has some of the referenced bits specified will
have a more probable outcome of either 1 or 0. Conse-
quently, according to (17), such a classifier will approx-
imate a lower prediction error , so that its accuracy and
consequently its fitness will be higher. Thus, the multi-
plexer problem provides implicit fitness guidance albeit
small and rather undirected which results in a small bi-
ased generality benefit.

Statistical Analysis: We performed an analysis of variance
(ANOVA) to test whether the influence of on XCS perfor-
mance, as reported in Figs. 15 and 16, is statistically signif-
icant. Note that we do not test just the final performance, as
usually done to test machine learning algorithms (e.g, [3], [12],
[32], and [35] for learning classifier systems), but the differ-
ences among the entire learning curves. At the very first step, we
apply a two-way ANOVA [14] to the learning curves obtained
for the values of between 0.15 and 1.00. For this purpose,
we use the basic setting discussed in [11] and [37]. For every
value of , we consider the 50 curves produced by each run;
we sample the curves and consider only one point every 10 000
problems; overall we analyze 5000 curves, each one consisting
of 100 points; as in [11] and [37], the first factor is the value of

, the second factor is the number of problem considered (i.e.,

10000, 20000, etc.); the confidence level is 10 . For the first
factor, the two-way ANOVA returns ,
indicating that the effect of values on the curves in Figs. 15
and 16 is statistically significant.

Since has some significant effect on XCS performance,
we applied appropriate multiple comparison procedures (also
known as post hoc tests [14]) to find for which values of
XCS performance is statistically significant. We considered four
post hoc tests: Tukey HSD, Scheffé, Bonferroni, and Student-
Neumann-Keuls Glantz and Slinker [14]. The first three tests
(Tukey HSD, Scheffé, and Bonferroni) individuate for which
values of XCS performs significantly different; in addition
Tukey HSD and Scheffé tests also find groups of values
with similar performance; the Stewart–Neunmann–Keuls ho-
mogeneity test only finds groups of values which result
in similar XCS performance. When applied to the data from
Figs. 15 and 16, all the four post hoc tests identified the same
two groups of values for which the difference in XCS per-
formance was not statistically different; A group with
and for which the first three tests returned ,
while the Stewart–Neunmann–Keuls homogeneity test returned

; a group with and for which
the first three tests returned , the Tukey HSD homo-
geneity test returned , the Sheffé homogeneity test
returned , while the Stewart–Neunmann–Keuls ho-
mogeneity test returned . Note that the difference in
XCS performance for all the remaining values is statistically
significant.

Discussion: In sum, we note that the boundaries induced by
our theoretical model apply quite well as a lower and upper
bound for and, thus, for an initial specificity. As suggested
by Fig. 14, XCS performed best for values of between 0.3
and 0.6; in particular, the statistical analysis of the reported re-
sults showed no significant difference between the performance
of XCS when is 0.5 and 0.6. However, the theoretical bound-
aries are not as strong as suspected by the theory. For the cov-
ering challenge this is due to the fact that the covering challenge
only applies early in the run. Once some more general clas-
sifiers are generated, the GA kicks in and the challenge does
not apply anymore. In addition, the boundary provided by the
schema challenge appears to be less severe than that provided
by the covering challenge. In fact, XCS performs better for high
values of , when the schema challenge should be more diffi-
cult, than for smaller values of , when the covering challenge
should be more severe. The weak boundary of the schema chal-
lenge can be accounted for by the neglected set pressure and
the slight implicit fitness guidance in the multiplexer problem
which causes the biased generality benefit. Finally, we note that
since the covering challenge depends only on general problem
settings (i.e., the population size and the input size) it can
be actually exploited to select adequate values of and that
can favor evolution in XCS. In contrast, the schema challenge
requires knowledge about the problem solution and, therefore,
the boundary that the schema challenge provides is less useful
in practice. On the other hand, from a theoretical standpoint, this
boundary helps in understanding why, even in simple problems,
high values might be less effective.

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 15

Fig. 17. The boundaries induced by the covering challenge and by the
schema challenge in the 37-multiplexer when the population size N is 5000.
P (cover), dashed line, identifies the covering challenge as stated in (13);
P (representative), solid line, identifies the schema challenge as stated in
(16); L is 37; o is 6.

C. XCS in the 37-/70-Multiplexer: Layered Payoff Benefit

To study how XCS benefits from layered payoff, we com-
pare XCS on the 37-multiplexer and on the 70-multiplexer with
two different reward functions. The former is the usual 1000/0
reward function; the latter is a biased reward function that pro-
vides layered payoff.

The 37-Multiplexer: Fig. 17 reports the plots of ,
dashed line, and , solid line, when the pop-
ulation size is 5000, , and .2 As before, to
solve the problem, we are interested in the values of which
correspond to high values of and .
Fig. 17 suggests that the 37-multiplexer is far more difficult than
the 20-multiplexer. In fact, the interval of feasible values
is smaller and the feasible values of correspond to smaller
values of and . Nonetheless, XCS
is able to solve the problem with a population size of

classifiers. Fig. 18 reports the performance of XCS with
the usual 1000/0 reward function (solid upper curve) and the
percentage of macroclassifiers in the population (solid lower
curve); don’t-care probability is set to 0.65. As can be noted,
XCS solves the 37-multiplexer problem with a close to 100%
performance after 700 000 problem instances which is far below
the 2 actual possible instances.

We now illustrate the possible benefit due to layered payoff.
For this purpose, we define the following biased reward func-
tion:

where correctness is 1 if the action is correct, 0, otherwise. This
biased reward function has the advantage that any specification
of one of the address bits results in a decrease in the number
of possible rewards and therefore in a decrease in the predic-
tion error. As a result, classifiers that are closer to accuracy are

2The schema order o is 6 since in the 37-multiplexer, accurate and maximally
general classifiers have six specific bits, i.e., they belong to schemata of order 6.

Fig. 18. XCS in the 37-multiplexer with 1000/0 reward, solid line; XCS with
biased reward, dashed line. Population size is 5000 classifiers. For 1000/0
reward, � = 0:1 and " = 10; for biased reward, � = 0:1 and " = 1. Curves
are averages over 50 runs. XCS with 1000/0 reward reaches the optimum after
700 000 learning problems, but XCS with biased reward learns much faster.

more likely to be selected. We apply XCS with this biased re-
ward function to the 37-multiplexer with a population of 5000
classifiers. Fig. 18 reports the performance of XCS with biased
reward (dashed upper curves) and the percentage of macroclas-
sifiers in the population (dashed lower curves) when
and ; don’t-care probability is set to 0.65. The curves
show a strong improvement in XCS performance when biased
reward replaces the 1000/0 regime. While XCS with the 1000/0
reward reached 100% performance after about 700 000 prob-
lems, XCS with the biased reward function reaches 100% per-
formance just after 100 000 problems (dashed line in Fig. 18).
Note that with biased reward the difference between successive
reward levels is smaller than with 1000/0 reward. Accordingly,
XCS appears to have problems distinguishing between the suc-
cessive levels unless ; completely stable 100% perfor-
mance was not reached when . To test whether the dif-
ference between the performance of XCS with 1000/0 reward
and XCS with biased reward (as depicted in Fig. 18) is statis-
tically significant, we applied the same procedure used for the
20-multiplexer. Note that we did not apply multiple comparison
procedures (or post hoc tests[14]) since only two settings are
compared. The ANOVA, performed according to the basic set-
tings in [11] and [37] indicates that the difference is significant,
as we would expect from the two plots.

The 70-Multiplexer: The utility of biased reward is even
more evident when we compare the 1000/0 reward policy and
the biased reward policy on a much more difficult problem,
the 70-multiplexer, that involves 2 input configurations.
Fig. 19 reports the plots of , dashed line, and

, solid line, when the population size is
50 000, , and .3 The boundaries are extremely
severe: feasible values of range between 0.6 and 0.8;
in such an interval the maximum values of and

are below 10%. Fig. 20 compares the

3The schema order o is 7 since in the 70-multiplexer, accurate and maximally
general classifiers have seven specific bits, i.e., they belong to schema of order
7.

IE
EE

Pr
oo

f

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Fig. 19. The covering challenge and the schema challenge for the
70-multiplexer with a population size of N = 50000.

Fig. 20. XCS in the 70-multiplexer with 1000/0 reward (solid line) and biased
(layered) reward (dotted line). Population size is 50 000 classifiers when 1000/0
is used; 20 000 classifiers when biased reward is used. In both cases, P is 0.75,
� = 0:1, and " = 1.

performance of XCS with 1000/0 reward and XCS with biased
reward in the 70-multiplexer. Population size is 50 000
classifiers when 1000/0 reward is used but just 20 000 when
biased reward is used; in both experiments is .75, is
0.1, and is 1. Curves are averages over ten runs; both
performance and population size are reported as the average
over the last 100 000 test problems. This large moving window
is needed to clearly highlight the initial learning of XCS;
shorter moving windows would result in too much noise and
would not allow a clear study of XCS behavior. Fig. 19 shows
that XCS solves the 70-multiplexer with the 1000/0 reward
regime, which so far has not been reported in the literature.4

As in the case of the 37-multiplexer, with 1000/0 reward the
convergence is much slower: it takes between 1 and 1.5 million
problems before learning shows up and the performance begins
to move away from 0.5 (i.e., 50%). However, XCS is learning

4Since the problem is huge, it is not practical to test optimal performance
using a performance average. Instead, optimal performance was confirmed by
examining the classifiers in the final populations.

during the first million problems. We can see this because
inspection shows small groups of classifiers that solve part
of the problem. However, since the problem is so large, the
contribution of these small partial solutions is hardly visible
from the performance plot. For instance, during the first million
problems, XCS performance rises from .50 to around .53 over
an average of ten runs. Once learning starts, the performance
reaches the optimum after more or less 2.5 millions problems.
That is quite fast if compared with the number of experiments
needed at the beginning to rise from 0.5 performance. With the
additional information provided through biased reward XCS
learns much faster. After just one million problems, XCS with
biased reward reaches optimal performance stably (Fig. 19,
dotted line), just when XCS with 1000/0 reward is starting
to learn (Fig. 19, solid line). Also, in this case, the ANOVA
we performed according to the settings discussed in [11] and
[37] indicates that again the difference of XCS performance
in the case of 1000/0 reward and biased reward is statistically
significant (as expected).

Finally, it is interesting to compare the learning curves ob-
tained for the 37-multiplexer and the 70-multiplexer, in Fig. 18
and in Fig. 20, respectively. First, we note that the two curves of
XCS performance for the 1000/0 reward policy are very similar
in shape. This suggests that in the Boolean multiplexer, XCS has
a similar learning behavior despite the size of the search space.
Second, we note that although the input space of the 70-multi-
plexer is times bigger than the search space of the 37-mul-
tiplexer, to solve the 70-multiplexer XCS with 1000/0 reward
needs only ten times more classifiers and five times more prob-
lems. These results are in part consistent with Wilson’s claim
Wilson [44] that in XCS the complexity of learning depends on
the size of the solution as measured by the size of the Boolean
formula, not on the size of the input space; see also Butz, Gold-
berg, and Tharakunnel [7].

D. -Biased Multiplexer: Biased Generality Benefit

Finally, we show the benefit of biased generality. For this
purpose, we define an artificial problem, namely the -biased
multiplexer, that is biased toward generality. First, we define a
biased multiplexer, then we use a set of biased multiplexers to
build an -biased multiplexer. Roughly, a biased multiplexer is
a Boolean multiplexer whose output is biased toward a specific
value: a zero-biased multiplexer is a modification of a Boolean
multiplexer in which the zero output is more likely to be correct;
a one-biased multiplexer is a modification of a Boolean multi-
plexer in which the one output is more likely to be correct. A
biased multiplexer, is defined over bits; as
in the Boolean multiplexer the first bits represent an address
which indexes the remaining bits. Note, however, that
in a biased multiplexer, it is not possible to address one of the
configurations: address bits would address bits, but in this
case only bits are available. The missing configuration
represents the bias. A one-biased multiplexer always returns one
when the address bits are all 1, i.e., the output one is correct for
one configuration more than would be in the case in a Boolean
multiplexer with address bits. For instance, in a one-biased
multiplexer with two address bits the condition 11### always

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 17

corresponds to the output 1. A zero-biased multiplexer always
returns to 0 when the address bits are all 0s, i.e., the 0 output
is more likely to be correct.

A set of biased multiplexers can be used to build an -biased
multiplexer as follows. An -biased multiplexer is a Boolean
function which forms a hierarchy of depth two where: refers
to the number of bits used to address one of the biased mul-
tiplexers involved; refers to the size of each one of the biased
multiplexers involved, each one consisting of bits;
half of the biased multiplexers are zero biased, half are one
biased; overall, the conditions consist of
bits. The bias comes in when an extreme position is referenced
by the position bits. Dependent on whether a zero or a one bias is
applied, the biased multiplexer, respectively, returns 1) always
zero if the position bits are all zero or 2) always one if the posi-
tion bits are all one. The bias depends on whether the value cor-
responding to the first position bits is bigger than .
In fact, the first half of the biased multiplexers in an -bi-
ased multiplexer will be zero biased while the second half will
be one biased. Note that although the -biased multiplexer is
an artificial problem, many classification problems have a sim-
ilar bias, i.e., the specification of relevant bits of a problem usu-
ally results in a higher classification accuracy.

As an example, let us consider the 11-biased multiplexer
(11bmp). The first bit of the multiplexer, , refers to one of the
two biased multiplexers, which consist of 2 bits; the first biased
multiplexer is zero biased, the second biased multiplexer is one
biased. The 11-biased multiplexer for input 00 111 outputs 0
because the first 0 refers to the (first) zero-biased multiplexer
and the second 0 determines output 0; input 01 011 has output
0 as well; input 10 010 has output 1 since the one-biased
multiplexer is now referenced; input 10 000 would be output
0. More formally, the 11-biased multiplexer can be written in
disjunctive normal form as

To study how XCS can benefit from the biased generality, we
apply XCS to the -biased multiplexer for the following values
of and : , , and . We set the don’t-care prob-
ability to 0.95 to guarantee that at the beginning con-
tains only overgeneral classifiers. To have an idea of how com-
plex the three problems are, we use the function intro-
duced by Kovacs and Kerber [28]. This defines the complexity
of a problem as the size of the minimal, accurate, nonover-
lapping population that covers all environmental niches accu-
rately. We note that , ,
and , suggesting that is the simplest
problem, while is the most difficult one. Results are de-
picted in Fig. 21. The three plots confirm the prediction of the
function . In fact, Fig. 21 shows that in XCS learns
faster, suggesting that this is the simplest problem; in XCS
learns more slowly. Regarding the three plots it is worth noting
that, apparently, the input length does not influence the per-
formance. In fact, although has the smallest input size,

, it still remains the most difficult to solve. Like-
wise, although and these prob-
lems are more easy to solve. However, why the performance in
all three cases is much better than the performance in the 20

Fig. 21. The increasing consistency in classification when getting
closer to being accurate helps XCS in evolving a complete and accurate
representation—the biased generality benefit becomes obvious.

multiplexer, where and is not explainable by
either measure. Also, the fact that the problem appears to
have difficulty similar to the problem is not explainable.
Finally, the plateau in the curve is not explainable, either.

Overall, the curves in Fig. 21 suggest that XCS can exploit
the implicit fitness guidance in the problem to solve the schema
challenge which should be present when is 0.95. In fact:
1) despite the low specificity in the beginning of all runs, XCS
evolves the necessary specializations fast and 2) despite the
higher measure in the run, XCS is able to exploit
the problem bias in this setting more and, consequently, reaches
a 100% knowledge as fast as in the 3,1 run. The plateau in the
run for reveals that XCS first discovers the necessary
specificity of the first bit, which results in a 0.75% correctness
once specified in a classifier. However, due to the minor bias in
the remaining three or four to be specified bits, it takes longer
to proceed to a 100% knowledge. The case has a lower
bias in the specification of the first bit, but a stronger bias in
the remaining specifications. Thus, in this case, it takes longer
to reliably evolve the first specializations but once the first
positions are specified, the remaining positions are detected
faster.

VII. CONCLUSION

This paper provides a foundation for the development of a
theory of generalization and learning in XCS. In particular, it
proposes a theoretical basis for the principal performance and
generalization properties of the system, namely, the tendency
to evolve classifiers that are as general as possible, while still
predicting accurately. A pressure toward increasing generality
was shown theoretically to result from the higher generality
of classifiers in action sets versus the population as a whole.
Selection from the action sets together with deletion from the
whole population leads to the pressure. Mutation causes an ad-
ditional, but small, pressure toward a fixed average specificity.
The combined pressures were formulated in a specificity equa-
tion and demonstrated in several experiments. The simple equa-
tions we developed represent the first theoretical confirmation
of Wilson’s generalization hypothesis.

IE
EE

Pr
oo

f

18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Next, the inherent pressure toward accurately predicting clas-
sifiers due to XCS’s fitness function was examined. Two qualifi-
cations, or challenges, came to light that might prevent this pres-
sure. One, the covering challenge, was a requirement for suffi-
cient generality (#’s) in the initial classifiers to permit covering
of inputs to cease and allow created classifiers to have sufficient
experience so that their fitnesses get adequately evaluated. The
other, the schema challenge, was a requirement that—in con-
trast to generality—the initial classifiers contain sufficient spec-
ified bits to permit the GA to build classifiers specific enough to
be accurate. Satisfaction of these conflicting challenges roughly
defines an interval of initial don’t-care probabilities () and
population sizes () for which XCS is likely to reach accurate,
maximally general solutions.

The effect of the challenges was tested on several large
Boolean multiplexer problems, where it was found that the
region of solution was indeed given by values where the
two challenges were simultaneously met. The influence of
mutation formulated in the specificity equation was located as
well. Consistent data for were found. The extent to which
the reward landscape could provide fitness guidance for the
GA was also examined. Experiments with a correspondingly
layered payoff landscape and a biased multiplexer function
confirmed that the guidance was present.

The results presented in this paper lead to a broader under-
standing of XCS and its learning and generalization power.
Some of the findings form the basis for further analyses in [7].
Moreover, the formulas for the challenges offer useful rules of
thumb for setting XCS parameters in actual problems. From
a theoretical standpoint, this paper provides a foundation for
future investigations of XCS’s learning complexity.

ACKNOWLEDGMENT

M. V. Butz and P. Luca are more than grateful to D. E. Gold-
berg, X. Llora, M. Pelikan, K. Sastry for their help and the useful
discussions.

P. Luca wishes to thank M. Colombetti and S. Ceri for invalu-
able support; F. Ferrandi and the Computer Architecture Labo-
ratory for the CPU time provided to run massive experiments;
G. Author: Please provide LAST NAME for her endless pa-
tience and cynical humor.

M. V. Butz, T. Kovacs, and P. Luca wish to thank S. Author:
Please provide LAST NAME for invaluable discussions and
inspiration.

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any
copyright notation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or im-
plied, of the Air Force Office of Scientific Research, the Na-
tional Science Foundation, or the U.S. Government.

REFERENCES

[1] A. Barry. (2003) Java Implementation of XCSC. [Online]. Available:
http://www.cs.bath.ac.uk/ amb/LCSWEB/computer.htm

[2] A. M. Barry, “The stability of long action chains in XCS,” J. Soft
Comput., vol. 6, no. 3-4, pp. 183–199, 2002.

[3] E. Bernadó, X. Llorà, and J. M. Garrell, “XCS and GALE: A Compar-
ative study of two learning classifier systems with six other learning al-
gorithms on classification tasks,” in Proc. 4th Int. Workshop Learning
Classifier Systems (IWLCS-2001), Short version published in Proc. Ge-
netic and Evol. Comput. Conf. (GECCO2001), 2001, pp. 337–341.

[4] L. Bull, “Simple Markov models of the genetic algorithm in classifier
systems: Accuracy-based fitness,” in Advances in Learning Classifier
Systems: Proc. 3rd Int. Workshop , P. L. Lanzi, W. Stolzmann, and S. W.
Wilson, Eds. Berlin, Germany: Springer-Verlag, 2001a, LNAI 1996,
pp. 21–28.

[5] , “Simple Markov models of the genetic algorithm in classifier
systems: Multi-step tasks,” in Advances in Learning Classifier Systems:
Proc. 3rd Int. Workshop , P. L. Lanzi, W. Stolzmann, and S. W. Wilson,
Eds. Berlin, Germany: Springer-Verlag, 2001b, LNAI 1996, pp.
29–36.

[6] M. V. Butz, “An implementation of the XCS classifier system in C,” The
Illinois Genetic Algorithms Laboratory, CITY, IL, Tech. Rep. 99 021,
1999.

[7] M. V. Butz, D. E. Goldberg, and K. Tharakunnel, “Analysis and im-
provement of fitness exploitation in XCS: Bounding models, tourna-
ment selection, and bilateral accuracy,” Evol. Comput., vol. 11, no. 3,
pp. 239–278, 2003.

[8] M. V. Butz and S. W. Wilson, “An algorithmic description of XCS,”
in Advances in Learning Classifier Systems: Proc. 3rd Int. Workshop,
P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin, Germany:
Springer-Verlag, 2001a, LNAI 1996, pp. 253–272.

[9] , “An algorithmic description of XCS,” in Advances in Learning
Classifier Systems, P. L. Lanzi, W. Stolzmann, and S. W. Wilson,
Eds. Berlin, Germany: Springer-Verlag, 2001b, vol. 1996, LNAI, pp.
253–272.

[10] P. Clark and T. Niblett, “The CN2 induction algorithm,” Mach. Learn.,
vol. 3, no. 4, pp. 261–283, 1989.

[11] P. R. Cohen, Empirical Methods for Artificial Intelligence. Cambridge,
MA: MIT Press, 1995.

[12] P. W. Dixon, D. W. Corne, and M. J. Oates, “A preliminary investi-
gation of modified XCS as a generic data mining tool,” in Advances
in Learning Classifier Systems, P. L. Lanzi, W. Stolzmann, and S. W.
Wilson, Eds. Berlin, Germany: Springer-Verlag, 2002, vol. 2321,
LNAI, pp. 133–150.

[13] P. Domingos, “Rule induction and instance-based learning: A unified
approach,” in Proc. 14th Int. Joint Conf. Artificial Intelligence (IJCAI
95), Montreal, QC, Canada, Aug. 1995, pp. 1226–1232.

[14] S. A. Glantz and B. K. Slinker, Primer of Applied Regression & Analysis
of Variance, 2nd ed. New York: McGraw-Hill, 2001.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[16] A. Greenyer, “CoIL Challenge 2000: The Insurance Company Case,”
Sentient Machine Research, Amsterdam and Leiden Inst. Advanced
Comput. Sci., Leiden, The Netherlands, Tech. Rep. 2000–09, P. van der
Putten and M. van Someren, Eds., 2000.

[17] J. H. Holland, Adaptation in Natural and Artificial Systems, 2nd
ed. Ann Arbor, MI: Univ. Michigan Press, 1992.

[18] , “Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems,” in Machine
Learning, an Artificial Intelligence Approach, Mitchell, Michalski, and
Carbonell, Eds. San Mateo, CA: Morgan Kaufmann, 1986, vol. II,
ch. 20, pp. 593–623.

[19] J. H. Holland and J. S. Reitman, “Cognitive systems based on adap-
tive algorithms,” in Reprinted in: Evolutionary Computation. The Fossil
Record, D. B. Fogel, Ed. Piscataway, NJ: IEEE Press, 1978.

[20] K. A. D. Jong and W. M. Spears, “Learning concept classification rules
using genetic algorithms,” in Proc. 12th Int. Conf. Artificial Intelligence
IJCAI-91, vol. 2, Sydney, Australia, 1991, pp. 651–656.

[21] T. Kovacs, “Evolving Optimal Populations with XCS Classifier
Systems,” M.S. thesis, School Comput. Sci., Univ. Birmingham,
Birmingham, U.K., 1996.

[22] , “XCS classifier system reliably evolves accurate, complete, and
minimal representations for boolean functions,” in Soft Computing in
Engineering Design and Manufacturing, Roy, Chawdhry, and Pant,
Eds. London, U.K.: Springer-Verlag, 1997, pp. 59–68.

[23] , “Deletion schemes for classifier systems,” in Proc. Genetic and
Evolutionary Computation Conf. (GECCO-99), W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith,
Eds., San Francisco, CA, 1999, pp. 329–336.

IE
EE

Pr
oo

f

BUTZ et al.: TOWARD A THEORY OF GENERALIZATION AND LEARNING IN XCS 19

[24] , “Strength or accuracy? Fitness calculation in learning classifier
systems,” in Learning Classifier Systems: From Foundations to Appli-
cations, P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin,
Germany: Springer-Verlag, 2000a, LNAI 1813, pp. 143–160.

[25] , “Toward a theory of strong overgeneral classifiers,” in Founda-
tions of Genetic Algorithms (FOGA), W. Martin and W. M. Spears,
Eds. San Mateo, CA: Morgan Kaufmann, 2000b, vol. 6, pp. 165–184.

[26] , “What should a classifier system learn?,” in Proc. 2001 Congress
on Evolutionary Computation (CEC01), 2001, pp. 775–782.

[27] T. Kovacs and M. Kerber, “Some dimensions of problem complexity
for XCS,” in Proc. 2000 Genetic and Evolutionary Computation Conf.
Workshop Program, A. S. Wu, Ed., 2000, pp. 289–292.

[28] , “What makes a problem hard for XCS?,” in Advances in Learning
Classifier Systems: Proc. 3rd Int. Workshop, P. L. Lanzi, W. Stolzmann,
and S. W. Wilson, Eds. Berlin, Germany: Springer-Verlag, 2001,
LNAI 1996, pp. 80–99.

[29] P. L. Lanzi, “A study of the generalization capabilities of XCS,” in Proc.
7th Int. Conf. Genetic Algorithms (ICGA97), T. Back, Ed., 1997, pp.
418–425.

[30] , “Reinforcement Learning by Learning Classifier Systems,” Ph.D.
dissertation, Politecnico di Milano, Milan, Italy, 1998.

[31] , “Extending the representation of classifier conditions Part I:
From binary to messy coding,” in Proc. Genetic and Evolutionary
Computation Conf. (GECCO-99), W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds., 1999, pp.
337–344.

[32] , “Mining interesting knowledge from data with the XCS classifier
system,” in Proc. Genetic and Evolutionary Computation Conf.
(GECCO-2001), L. Spector, E. D. Goodman, A. Wu, W. Langdon, H.
Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E.
Burke, Eds., San Francisco, CA, July 7–11, 2001, pp. 958–965.

[33] , (2003) The XCS Library. [Online]. Available: http://xcslib.source
forge.net

[34] P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Learning Classifier Sys-
tems. From Foundations to Applications. Berlin, Germany: Springer-
Verlag, 2000, vol. 1813, LNAI.

[35] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[36] (2003). NuTech Solutions Inc. [Online]. Available: http://www.nutech-

solutions.com/
[37] J. H. Piater, P. R. Cohen, X. Zhang, and M. Atighetchi, “A random-

ized ANOVA procedure for comparing performance curves,” in Proc.
15th Int. Conf. Machine Learning (ICML), Madison, WI, July 1998, pp.
430–438.

[38] R. Quinlan, “Learning first-order definitions of functions,” J. Artif. In-
tell. Res., vol. 5, pp. 139–161, Oct. 1996.

[39] R. J. Quinlan, C4.5 Programs for Machine Learning. San Mateo, CA:
Morgan Kauffmann, 1993.

[40] R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduc-
tion. Cambridge, MA: MIT Press, 1998.

[41] C. J. C. H. Watkins, “Learning from Delayed Rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, U.K., 1989.

[42] S. W. Wilson, “Classifier systems and the animat problem,” Machine
Learn., vol. 2, pp. 199–228, 1987.

[43] , “Classifier fitness based on accuracy,” Evol. Comput., vol. 3, no.
2, pp. 149–175, 1995.

[44] , “Generalization in the XCS classifier system,” in Proc. 3rd Annu.
Conf. Genetic Programming 1998, J. R. Koza, W. Banzhaf, K. Chel-
lapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg,
H. Iba, and R. Riolo, Eds., 1998, pp. 665–674.

[45] , “XCS tutorial,” presented at the Int. Conf. Genetic and Evolu-
tionary Computation 1999 (GECC099), LOCATION, 1999.

[46] , State of XCS Classifier Syst. Res., pp. 63–82, 2000.
[47] , Mining Oblique Data with XCS, P. L. Lanzi, W. Stolzmann, and S.

W. Wilson, Eds. New York: Springer-Verlag, 2001, vol. 1996, Lecture
Notes in Computer Science, pp. 158–176.

Martin Butz received the Diploma degree in
computer science from the University of Würzburg,
Würzburg, Germany, in 2001 and is working
toward the Ph.D. degree in computer science at the
University of Illinois at Urbana-Champaign.

He is working at the Illinois Genetic Algorithms
Laboratory (IlliGAL), LOCATION, and at the
Department of Cognitive Psychology, University
of Würzburg. His major research interest lies in
the study of anticipatory learning and anticipatory
behavior. The goal is to analyze such processes in a

facet-wise manner increasing understanding and applicability. The processes
are related to general learning theories in machine learning, as well as cognitive
mechanisms. Applications span from data classification to the simulation of
competent adaptive behavior and learning.

Tim Kovacs received the B.A. (honors) degree
in psychology from Carleton University, Ottawa,
ON, Canada, in 1995, and the M.Sc. and Ph.D.
degrees in computer science from the University of
Birmingham, Birmingham, U.K., in 1996 and 2002,
respectively.

He joined the University of Bristol, Bristol, U.K.,
as a Lecturer in machine learning in 2001. His re-
search interests are in machine learning, artificial in-
telligence, cognitive science, and more specifically,
in evolutionary computation, reinforcement learning,

and learning classifier systems. He has published on game playing, the com-
plexity of learning, methodological issues in machine learning, and various as-
pects of learning classifier systems.

Dr. Kovacs was awarded a British Computer Society/Conference of Profes-
sors and Heads of Computing Distinguished Dissertation Award for his Ph.D.
dissertation which is to be published by Springer-Verlag.

Pier Luca Lanzi was born in Turin, Italy, in 1967.
He received the Laurea degree in computer science
from the Università degli Studi di Udine, Udine, Italy,
in 1994 and the Ph.D. degree in computer and au-
tomation engineering from the Politecnico di Milano,
Milan, Italy, in 1999.

Since 2001, he has been an Assistant Professor
with the Department of Electronics and Information,
Politecnico di Milano. His research areas include
evolutionary computation, reinforcement learning,
and machine learning. He is interested in applica-

tions to data mining and autonomous agents. He is a Member of the Editorial
Board of the Evolutionary Computation Journal.

Stewart W. Wilson was born in Rochester, NY, in
1937. He received the B.S. degree in physics and
the Ph.D. degree in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
in 1960 and 1967, respectively.

From 1960 to 1983, he did research on educational
technology and machine learning at Polaroid Corpo-
ration, LOCATION. From 1983 to 1998, he was a
Senior Scientist at the Rowland Institute for Science,
Cambridge, MA. Since 1998, he has headed the re-
search and consulting firm of Prediction Dynamics,

Concord, MA. He is an Associate Editor of Adaptive Behavior and is a Member
of the Editorial Boards of Evolutionary Computation and Artificial Life. He is
an Adjunct Professor in the Department of General Engineering, University of
Illinois at Urbana-Champaign and a Technical Consultant for NuTech Solutions,
Inc., LOCATION. He is interested in intelligence and learning in machines and
organisms. As a vehicle for this, his research is focused primarily on learning
classifier systems.

