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ABSTRACT

It is shown that a certain model of the primate
retino-cortical mapping “sees” all centered objects
with the same “object-resolution”, or number of dis-
tinct signals, independent of apparent size. In an
artificial system, this property would permit recog-
nition of patterns using templates in a cortex-like
space. It is suggested that with an adaptive produc-
tion system such as Holland’s classifier system, the
recognition process could be made self-organizing.

INTRODUCTION

Templates are generally felt to have limited use-
fulness for visual pattern recognition. Though they
provide a simple and compact description of shape,
templates cannot directly deal with objects that, as
is common, vary in real or apparent (i.e., imaged)
size. However, the human visual system, in the step
from retina to cortex, appears to perform an auto-
matic size-normalizing transformation of the retinal

Figure 1.
each connected to an “MSU” in the “cortex” of
Fig. 2.

“Retina” consisting of “data fields”
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image. This suggests that pattern recognition using
templates may occur in the cortex, and that artifi-
cial systems having a similar transformation should
be investigated. Properties of the retino-cortical
mapping which are relevant to pattern recognition
are discussed in the first half of this paper. In the
second half, we outline how an adaptive production
system having template-like conditions might recog-
nize patterns that had been transformed to a “cor-
tical” space.

THE RETINO-CORTICAL MAPPING

Recent papers in image processing and display,
and in theoretical neurophysiology, have drawn at-
tention to a nonlinear visual field representation
which resembles the primate retino-cortical system.
Weiman and Chaikin 1] propose a computer archi-
tecture for picture processing based on the complex
logarithmic mapping, the formal properties of which
they analyze extensively. They and also Schwartz |2]
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Figure 2. Each MSU receives signals from a data
field in Fig. 1. Letters indicate connection pat-

tern.



present physiological and perceptual evidence that
the mapping from retina to (striate) cortex embod-
ies the same function. Wilson [3] discusses the map-
ping in the light of additional evidence and exam-
ines 1ts potential for pattern recognition. Early re-
lated ideas in the pattern recognition literature can
be found in Harmon’s [4] recognizer and in certain
patents |5].

A hypothetical structure (adapted from [3]) sche-
matizing important aspects of the retino-cortical
(R-C) mapping is shown in Figures 1 and 2. The
“retina” of Figure 1 consists of “data fields” whose
size and spacing increase linearly with distance from
the center of vision. The “cortex” of Figure 2 is a
matrix of identical “message-sending units” (MSUs)
each of which receives signals from its own retinal
data field, processes the signals, and generates a rel-
atively simple output message that summarizes the
overall pattern of light stimulus falling on the data
field. The MSU’s output message is drawn from
a small vocabulary, i.e.;, the MSU’s input-output
transform is highly information-reducing and prob-
ably spatially nonlinear.

Further, all MSUs are regarded as computing the
same transform, except for scale. That is, if two
data fields differ in size by a factor of d, and their
luminance inputs have the same spatial pattern ex-
cept for a scale factor of d, then the output messages
from the associated MSUs will be identical. (Physi-
ologically, the cortical hypercolumns [6] are hypoth-
esized in (3] to have the above MSU properties.)

The pattern of connections from retina to cortex
is as suggested by the letters in Figures 1 and 2.
Data fields along a ray from center to periphery map
into a row of MSUs, and simultaneously, each ring
of data fields maps into a column of MSUs. The
leftmost column corresponds to the innermost ring,

the 12 o’clock ray maps into the top row, and so
forth.

It is convenient to describe position in retinal
space by the complex number z = re*4, where r and
¢ are polar coordinates. We can denote cortical po-
sition by w = u + fv, where u is the column index
increasing from left to right and v is the row in-
dex increasing downwards. For the mapping to have
complex logarithmic form, it must be true that the
position w of the MSU whose data field is at =z satis-
fies w = log 2z or, equivalently, v = logr and v = ¢.

That the equations do hold can be seen from Fig-
ure 1. The distance Ar from one data field center
to the next 1s proportional to r itself, which implies
that u is logarithmic in r. Similarly, the fact that
all rings have equal numbers of data fields directly
implies that v is linear in polar angle. Thus (with
appropriate units) we have w = logz. (The sin-
gularity at z = O can be handled by changing the

function within some small radius of the origin. For
present purposes we are interested in the mapping’s
logarithmic property and will ignore this necessary
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Figures 3-5 (at end of article) review three salient
properties of the R-C mapping that have been noted
by previous authors. The photos on the left in each
figure are “retinal” (TV camera) images. On the
right are crude “cortical” images obtained by the
expedient of sampling the retinal data field centers.
The mapping used has 64 MSUs per ring and per
ray.

Figure 3 shows a clown seen at two distances
differing by a factor of three. The cortical im-
ages, though “distorted”, are of constant size and
shape. Also shown is the result of rotating the clown
through 45 degrees; again, cortical size and shape re-
main the same. The pictures show how retinal scale
change and rotation only alter the position of the
cortical image. Figure 4 illustrates these effects for
a texture. The cortical images are again the same
except for a shift. The mapping thus brings about a
kind of size and rotation invariance which one would
expect to be useful for pattern recognition.

Figure 5, in contrast, shows that the mapping
lacks translation invariance. The same clown is seen
at a constant distance but in three different posi-
tions with respect to the center of vision. Transla-
tion mon-invariance would appear to be a distinct
disadvantage for pattern recognition.

As the clown recedes from the center in Figure
5, its cortical image gets smaller and less defined.
The effect illustrates how in a sense the mapping
optimizes processing resources through a resolving
power which is highest at the center and decreases
toward the periphery. This variation is sometimes
cited as a useful property of the eye, and was dis-
cussed in connection with an artificial retina-like
structure by Sandini and Tagliasco [7].

OBJECT-RESOLUTION

The pattern recognition potential of the map-
ping’s size-normalizing property is best seen by defin-
ing a somewhat unusual notion of resolution. Recall
first that the resolving power p of a sensor is the
number of distinct signals per unit visual angle; in
the case of a linear sensor (such as a TV camera), p
is a constant. Suppose we ask of a system: when its
sensor images a centered object of half-angle A, how
many distinct signals, corresponding to the object,
will the sensor produce? Let us name this quan-
tity the system’s object-resolution, R,. Then, in the
case of a linear system, it is clear that R, will be
proportional to p?A%. That is, R, will depend on
the distance or “apparent size” of the object, or on
the relationship between perceiver and object.



The resulting amount of information may be in-
sufficient for recognition, it may be Just right, or
it may overload and therefore confuse the recogni-
tion process. This uncertainty leads to the scale or
“grain” problem noted by Marr {8] and others and
to Marr and Hildreth’s |9] proposed solution of com-
putations at several resolutions which are later to be
combined. The grain problem is also a motivation
for the application of relaxation techniques [10] in
pattern recognition.

Let us now ask what is the object-resolution of an
R-C system. For such a system the resolving power
is p = ¢/r, with r the distance from the center of vi-
sion. The constant ¢ can be defined as the number
of MSU outputs per unit visual angle at an eccen-
tricity of r = 1. Object-resolution R, can be found
by taking a centered object of half-angle A and in-
tegrating over the object from a small inner radius
€A (e < 1) out to A. We have
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independent of A.

Thus the mapping’s object-resolution or spatial
quantization of the seen object is independent of the
object’s apparent size or distance, and independent
of its actual size as well. It depends only on ¢ (and
€). Given a fixed value of ¢, the system may be
sald to see every centered object, regardless of size,
equally well, independent of the perceiver-object re-
lationship. (Strictly speaking, the above integral in-
cludes only a fraction 1—¢2 of the object, the “outer”
fraction. But if ¢ is very small the omitted fraction
€? will contain an insignificant portion of the object’s
pat,tern.)

The object-resolution of the R-C mapping can
be thought of in terms of the number of data fields
per retinal ring. By mentally superimposing and
then expanding and contracting a centered object
on Figure 1, one can see that it is examined in an
equivalent way at any scale. In fact, it is convenient
to use the number of fields per ring as a measure of
R,.

The R-C mapping’s constant object-resolution is
the significant difference between it and a linear sys-
tem. In the remainder of the paper we will develop
implications of this difference. First, why in an im-
portant sense the “grain” problem disappears. Sec-
ond, why Gestalt-like templates are, cortically, suit-
able for pattern recognition. Third, in outline, how
the cortical approach with templates allows a sepa-
rate adaptive theory due to Holland [11] to be ap-
plied to pattern recognition-—and in the process may
solve the mapping’s apparent problem of translation
non-invariance.

THE “GRAIN” PROBLEM

Basically, a “grain” problem exists if there is no
a priori way to tell whether the size of the elements
with which the perceiver is looking is the same as
that of the optimally informative element of the ob-
Ject or scene. In the linear case, we found that the
information about an object may be insufficient, just
right, or overloading depending on (1) the perceiver-
object relationship and of course on (2) the amount
of detail in the object itself.

In the R-C mapping case, the information is
constant, dependent only on the perceiver. Thus
(1) above—uncertainty due to the percelver-object
relationship—disappears. But the information may
still, it seems, be insufficient, just right, or overload-
ing—depending on obhject detail.

We can develop a criterion for the latter as fol-
lows. Let an object’s “object frequency spectrum”
be the two-dimensional Fourier spectrum of a geo-
metrically similar object of unit size, and let f, be
the highest significant (for discrimination) frequency
in such a spectrum. Then, roughly, we may say that
a mapping with resolution R, (in units of fields per
ring) provides sufficient information about an object

if RoZf,.

But this bound is not ultimately limiting. It only
says whether information from one fization is suffi-
cient for recognition. Peculiarly, by the mapping’s
constancy of information, any fixated local part of
an object is seen in as much detail as is the whole ob-
Ject. Thus, if R, < f,, the system can always gather
enough information by scanning, i.e., by moving the
center of fixation to any part not seen clearly. R, is
therefore always sufficient, though several fixations
may be required.

Can there be too much resolution? Only if ob-
Jects turn out to be simpler than expected. But
often this can be known in advance. In contrast,
in the linear case, superfluous resolution will always
occur whenever object images become large.

TEMPLATES

In any digital computer implementation, a tem-
plate for pattern matching consists of a finite (usu-
ally rectangular) array of cells in each of which the
relative brightness to be matched is specified. The
array has a fixed resolution since the number of cells
is fixed.

One major traditional problem with templates is
a variation of the “grain” problem: Unless the tem-
plate’s resolution is the same as the system’s object-
resolution, there is virtually no chance of getting a
correct match. The R-C mapping offers a solution
since the system’s object-resolution is fixed, and the
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resolution of all stored templates can be made ex-
actly commensurate. For instance, the system can
acquire its templates by copying its own cortical
MSU output images of identified objects. The same
objects when later presented in other sizes will be
“seen” in the same way.

Templates have other problems, e.g., orientation
and brightness variations may lead to mismatch.
These will be taken up later. Our analysis suggests,
however, that templates may yet have an important
role to play in general pattern recognition, provided
the matching occurs in a cortex-like space.

OUTLINE OF AN ADAPTIVE CORTICAL
PATTERN RECOGNITION SYSTEM

This section will outline a system concept com-
bining the R-C mapping, a production system based
on cortical templates, and the theory of adaptation
due to Holland.

A wvisual world mapped as in Figures 1 and 2
suggests a natural polarity between center and pe-
riphery. The same centered object, as it grows big-
ger, expands toward the periphery, and its cortical
image, as noted, shifts as a unit from the left side
of the “cortex” toward the right side. The implica-
tion is strong that processing, in the cortex, should
consist of a column-by-column scan {12} from left to
right. The pattern of an object, whatever its degree
of shift from the left, will be encountered “sooner
or later” and thus be available for matching against
templates.

Further reflection suggests that rather than work-
ing with two-dimensional templates, it might be
simpler to use one-dimensional column templates—
the identification of a pattern consisting of succes-
sive matching of the appropriate column templates.
Storage would be saved because a given column tem-
plate would often be a contributor in more than one
two-dimensional match.

An appropriate structure for performing the cor-
relation of successively matching column templates
1s a form of production system in which (1) the con-
dition of each production includes a column tem-
plate pattern and one or more internal message pat-
terns, and (2) the action is an internal message to
be placed on the common message list. (These in-
ternal messages are distinct from the MSU output
messages. To avoid confusion, the internal messages
will be called i-messages.)

In addition, a separate set of “effector” produc-
tions, whose conditions consisted only of i-message
patterns, would monitor the i-message list. When
an appropriate i-message appeared on the list, the
effector would fire. Its “action” would be (1) an ex-
ternal action such as moving the center of vision, or
(2) an “internal” action also modifying the system’s

frame of reference but not directly observable from
the outside (more on this later), or (3) a signal to
the outside world denoting a pattern name.

Many details need to be filled in to make this an
operating system. However, enough has been given
to suggest a process in which starting at the left end
of the cortex, columns would be scanned and pro-
ductions would fire in dependent sequence (the de-
pendency based on i-messages as well as the column
information being matched), resulting ultimately in
an effector firing whose signal named the object in
view.

Production systems have not usually been con-
sidered in connection with pattern recognition be-
cause production conditions typically deal with “nor-
malized” or logical variables and, given the grain
problem, patterns in linear vision are anything but
normalized. In cortical space, however, patterns are
normalized so that there the power of productions
can potentially be exploited.

But we can go farther. One part of the adaptive
theory due to Holland is concerned with “cognitive
systems” based on sets of productions called “clas-
sifiers”. The form of a classifier is, most generally, a
string whose condition part consists of a fixed length
“environmental detector pattern” together with one
or more i-message patterns, and whose action part
is an output i-message or effector action. The im-
portant point for us is that the “environmental de-
tector pattern” has exactly the form of the column
templates we have been considering, so that clas-
sifier systems and the adaptive theory may be di-
rectly applicable to “cortical” pattern recognition.
It has been demonstrated [13-16] that given an ap-
propriate external reward regime a classifier system
can evolve a set of classifiers that is adapted to, or
“fit”, in its environment. This means in particular
that the conditions of the classifiers recognize what
matters, and the i-messages and actions are appro-
priate. Much further research must be done, but by
combining classifiers with R-C vision, a new path
would appear to be open to the objective of a self-
organizing visual pattern recognition system.

If the adaptive properties of the Holland sys-
tem be assumed, we can suggest how the produc-
tion structure given earlier might deal with non-
centered objects. They look different from their cen-
tered forms: this is the mapping’s translation non-
invariance. The problem would be solved if classi-
fiers existed which would react to the off-center form
and lead to an effector which would move the center
of vision so as to center the object (at which point
“standard” classifiers could recognize it).

At first sight, the evolution of this kind of se-
quence seems iImplausible: you would need classifiers
for every object in every peripheral position. How-
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ever, the mapping helps by reducing the detail seen
in an object as it recedes toward the periphery; in
the limit, every object becomes just a “blob”. This
suggests that only a relatively small number of dis-
tinct classifiers would be needed to “acquire” any
object for standard (centered) inspection.

There remains the problem, not of the isolated
object, but of the more-or-less centered one—such as
a face——which is still not centered quite well enough
to fire its standard classifiers. How can an appro-
priate centering movement come about? For this
question, and related ones, we need to consider the
“internal effectors” mentioned earlier.

Three are important in the present discussion:
Object-Resolution (OBRES), Azimuth (AZIM), and
Brightness Gain (BGAIN). OBRES is an effector (or
set of them) which, given appropriate i-messages,
will alter the system’s object-resolution (in effect
changing the number of data fields per ring in Fig-
ure 1). This permits seeing an object (regardless,
of course, of its apparent size) in detail, or more
coarsely, depending on the i-message list circum-
stances. The evolution of OBRES effectors ap-
propriate to different circumstances would occur
through the adaptive mechanisms.

If we now recall the problem of the slightly off-
center face, it seems plausible that, given some re-
duced level of object-resolution, most different faces
with that degree of decentering could be matched
by a relatively small (and thus practical) set of clas-
sifiers. These would lead to a movement command
bringing the face to the center, where it would be
recognized in detail (after, perhaps, restoration by
OBRES of a higher R,).

The AZIM internal effectors set the direction
the system regards as “up”. In cortical space, this
amounts to shifting the input column vector along
its length by a definite amount before matching clas-
sifier template patterns against it. The purpose of
AZIM is, of course, to allow a given set of classi-
fiers to be effective for recognition even if the object
1s not in standard orientation. But how will the
right azimuth be set in such a case? We again have
recourse to the evolution of relatively coarse classi-
fiers which, given reduced object-resolution through
OBRES, will recognize the presence of a nonspe-
cific (“oblong”, say) object at a certain orientation.
These would lead to the right AZIM acting, and spe-
cific recognition could then occur.

Finally, BGAIN is a set of internal effectors to
deal with the persistent problem of setting the right
brightness level for template matching. The intent
is that the appropriate gain will be determined (via
the i-message list) by what is seen, and that the
evolution of an appropriate set of BGAIN effectors
will again be under adaptive control in the Holland
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sense,

The various internal effectors, and the external
one resulting in movement, are concerned with the
system’s “point of view” on its visual input, that
is, with systematic transformations which will allow
the system’s form detector set—the classifiers—to
function efficiently.

SUMMARY

We began this paper with the retino-cortical
mapping and showed how it “saw” centered objecis
with a resolution independent of the object’s size.
Constant object-resolution led to a renewed prospect
for template matching in general pattern recogni-
tion. Fixed size templates permitted the power of
production systems to be brought to bear. Finally,
the applicability of Holland’s adaptive theory to pro-
duction systems allowed us to suggest that a recog-
nition system based on the mapping might be made
self-organizing, in the process overcoming the map-
ping’s “problem” of translation non-invariance.
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