
SPECIAL ISSUE

A brief history of learning classifier systems: from CS-1 to XCS
and its variants

Larry Bull

Received: 25 February 2014 / Revised: 16 October 2014 / Accepted: 11 January 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract The direction set by Wilson’s XCS is that

modern Learning Classifier Systems can be characterized

by their use of rule accuracy as the utility metric for the

search algorithm(s) discovering useful rules. Such search-

ing typically takes place within the restricted space of co-

active rules for efficiency. This paper gives an overview of

the evolution of Learning Classifier Systems up to XCS,

and then of some of the subsequent developments of

Wilson’s algorithm to different types of learning.

Keywords Anticipation � Classification � Clustering �
Function approximation � Reinforcement learning

1 Introduction

Learning Classifier Systems (LCS) are rule-based systems,

where the rules are usually in the traditional production

system form of ‘‘IF condition THEN action’’. An evolu-

tionary algorithm and/or other heuristics are used to search

the space of possible rules, whilst another learning process

is used to assign utility to existing rules, thereby guiding

the search for better rules. The LCS formalism was intro-

duced by Holland [55] and based around his better known

invention—the Genetic Algorithm (GA) [54]. A few years

later, in collaboration with Judith Reitman, he presented

the first implementation of an LCS, termed ‘‘Cognitive

System Level 1’’ (CS-1) [60]. Holland then revised the

framework to define what would become the standard

system for many years [56]. However, Holland’s full

system was somewhat complex and practical experience

found it difficult to realize the envisaged behaviour/per-

formance, despite numerous modifications (e.g., see [119]),

and interest waned. Some years later, Stewart Wilson

introduced a form of LCS in which rule fitness is calculated

solely by the accuracy of the predicted consequences of

rule actions—XCS [113]. The following two decades have

seen a resurgence in the use of LCS as XCS in particular

has been found able to solve a number of well-known

problems optimally (e.g., see [23]). Perhaps more impor-

tantly, LCS have been applied to a number of real-world

problems (e.g., see [11]), particularly data mining (e.g., see

[21]), to great effect. Formal understanding of LCS has

also increased (e.g., see [18]). The purpose of this paper is

to provide some historical context to the area of modern

accuracy-based Learning Classifier Systems before pre-

senting some of the main developments since the intro-

duction of XCS 20 years ago (see [70, 105] for a previous

historical reviews). The use of evolutionary algorithms to

design whole rule sets, i.e., so-called Pittsburgh-style LCS

[85], is not considered here.

2 The evolution of LCS

Holland developed the LCS formalism as an approach to

reinforcement learning, that is, learning through trial-and-

error. Reinforcement learning methods seek to ascertain the

value of executing each possible action (assertion) avail-

able within each state (condition) of a given problem (see

[96] for an introduction). Within psychology, the study of

trial-and-error learning can be traced back to Edward

Thorndike and his ‘‘Law of Effect’’ [99], and within

computer science to Alan Turing and his ‘‘P-type unor-

ganised machine’’ [104]. Farley and Clark [41] were

L. Bull (&)

Department of Computer Science and Creative Technologies,

University of the West of England, Bristol BS16 1QY, UK

e-mail: larry.bull@uwe.ac.uk

123

Evol. Intel.

DOI 10.1007/s12065-015-0125-y



perhaps the first to implement reinforcement learning

within a computer, Holland was influenced by Arthur

Samuel’s seminal early work on draughts/checkers [80],

which itself drew upon Claude Shannon’s work on chess,

seemingly the first consideration of learning a value func-

tion through experience [84]. Samuel [80] described a

scheme for adjusting temporally successive estimates of

the end reward value from a sequence of moves (improved

in [81]).

Holland’s [55] interest was in how an artificial system

may continuously adapt to novelty, significantly, extending

previous studies by also considering how to build suitable

knowledge representations thereby enabling flexible, con-

tinual learning through trial-and-error to maximise reward.

A variant of his Genetic Algorithm was incorporated as an

effective approach to this ability. The suggestion that a

simulated evolutionary process may prove useful in artifi-

cial systems was first made by Turing [104], with early

implementations within a computer by Fraser [45] and Box

[10] (see [40] for an introduction). The combined rein-

forcement learning and evolutionary computing architec-

ture was termed CS-1 [60]. Figure 1 shows a family tree of

the LCS considered as the significant steps in the evolution

of XCS from CS-1 to be discussed in this paper, beginning

with CS-1.

2.1 Cognitive system Level 1

On each discrete time cycle, CS-1 receives a binary

encoded description of the current state of its environment.

The system determines an appropriate response based on

this input, its last action, and the current contents of an

internal memory space, termed a message list (Fig. 2). The

rule-base consists of a population of N condition-assertion

rules or ‘‘classifiers’’. The rule conditions are strings of

characters from the ternary alphabet {0, 1, #}. The # acts as

a wildcard allowing generalisation such that the rule con-

dition 1#1 matches both the input 111 and the input 101,

for example. Rule assertions contain both an action and an

internal message, both formed from binary strings. All rule

components are initialised randomly. Also associated with

each rule are a number of parameters, including age, fre-

quency of use, and a prediction of the typical reward

received from its use, which is also the fitness metric

(explained later).

On receipt of an input message, the rule-base is

scanned and any rule whose condition matches the

external message, the content of the message list, and the

previous action becomes a member of the current

‘‘match set’’ [M]. A heuristic considering aspects such as

the specificity of matching and the predicted future

reward is then used to determine the top ten eligible

rules. The system response is then chosen probabilisti-

cally from that set. The chosen rule’s action is executed

in the environment, the message list updated, its age

halved, and frequency increased.

CS-1 uses an epochal reinforcement learning scheme

such that the identification of all rules that have provided

an action is recorded, in order, between rewards. If an

external reward is received, the predicted reward of each

Fig. 1 Learning classifier

systems’ family tree

Evol. Intel.

123



rule in this set [E] is adjusted at a rate inversely pro-

portional to their frequency parameter ‘‘to reflect their

accuracy in anticipating this reward. Those predicted

payoffs that were consistent with (not greater than) this

reward are maintained or increased; those that overpre-

dicted are significantly reduced’’ [60]. A further heuristic

is applied to the predictions such that the actual value of

reward used to update each member of [E] is ‘‘attenu-

ated’’, an adjustment based on the relative size of reward

predicted by rules and by their successors in [E], it being

incremented each time the latter is higher than the for-

mer. ‘‘This parameter is highly correlated with the delay

between a response and the reward’’ [60] and may be

seen as an early form of temporal difference learning.

After every ten rewards received, the contents of the rule-

base are altered by the simulated evolutionary process of the

GA. The implemented CS-1 could take one of two actions

and so ran the evolutionary search process within the two

sub-populations, that is, action niches. Fitness proportionate

selection using the predicted reward of each rule as the fitness

value picks two parents from the rule-base population. These

are then combined using one-point crossover (mutation is not

mentioned). One of the two offspring produced is selected at

random to be inserted into the rule-base. Replacement uses

the age of rules. ‘‘Recall that a classifier with a poor predicted

payoff rarely wins competitions; without a win, its age

increases steadily. Age therefore, reflects the classifier’s

quality as well as its frequency of use. To make room for the

new classifier therefore, one with an old age is deleted.’’ [60].

Moreover, from the set of oldest rules within the niche, the

one closest in Hamming(-like) distance is chosen; a form of

crowding is used.

CS-1 was shown able to solve a simple maze task with

seven locations, two actions, and two types of reward, before

being applied to an extended maze. Holland and Reitman

report faster learning of the second maze using a system

previously trained on the smaller maze, in comparison to a

naı̈ve system. Analysis of the external input patterns indi-

cates minor changes in effective general rules in the smaller

maze are close in rule-space to those in the larger, as might be

expected (see [66] for related recent work).

LCS aim to build an efficient representation of any

underlying regularities within the given problem domain

during learning. The inherent pressure within CS-1 to dis-

cover maximally general rules—rules which aggregate the

most problem states together from which the same action

results in the same reward—over more specific (less #

symbols in their condition) but equally accurate predictors

comes from the evolutionary deletion scheme. More specific

rules tend not to match so often and so their age increases

more rapidly than more general, but also accurate rules; the

probability of removal of specific rules from the rule-base

increases with specificity. Similarly, the pressure to remove

over general rules—rules that aggregate too many states

together such that the level of reward received from their use

varies—comes from the reinforcement scheme and evolu-

tionary selection. Over or under prediction of a reward value

results in a significant reduction in the predicted reward of a

Fig. 2 Schematic of CS-1

Evol. Intel.

123



rule, the parameter used as the fitness measure for repro-

duction by the GA; inaccurate rules have lower fitness and

hence are unlikely to be selected.

However, the described system struggles to maintain

more than one or a very few rules within a population. That

is, the GA tends to converge upon a single (maximally

general) solution. This explains why CS-1 runs the GA in

the two explicit action sub-population niches. In the two

mazes, CS-1 always started in the middle and had to

maintain the same action across a number of states to an

end goal state where reward was given. Whether the system

should go left or right depended upon an internal value.

Hence a rule which generalised over all the states to the left

and one which generalised over all the states to the right

was the optimal solution. By running the GA in two niches

based on actions, both were sustainable indefinitely.

With this apparent limitation, Holland subsequently

altered a number of aspects of CS-1 in his ‘‘standard sys-

tem’’, most notably removing the use of reward prediction

accuracy and frequency of rule use. CS-1’s use of both in

part anticipated XCS’s dependence on similar qualities.

2.2 Holland’s standard architecture

A few years later Holland [56] revised CS-1 and described

what would become the standard architecture, here termed

‘‘Learning Classifier System’’ (LCS). It should be noted that

Holland seems not to have used the prefix ‘‘learning’’ at the

time; Goldberg [49] may have been first to add the emphasis.

The main change from CS-1 was to introduce a reinforcement

learning scheme based upon an economic metaphor, known as

the ‘‘bucket brigade’’ (after the water passing chains of fire

fighters), in which rule utility is judged by the accrual of credit.

In this way, rules acting in temporal chains leading to external

reward are viewed as the middlemen of supply and demand

chains. Rules maintain a single parameter of credit (termed

strength) received. This is used both for action selection and in

rule discovery by the GA. The message list is extended to

enable multiple rules to post their assertions. Rule conditions

no longer have a fixed structure to consider the current envi-

ronmental state, the contents of the message list and the last

action. Instead, all conditions and assertions are of the same

length, with conditions also able to include a logical NOT.

Assertions are now built from the same alphabet as conditions

{0, 1, #} such that information may ‘‘pass through’’ from

either the condition or the string (external input or internal

message) which the rule matches where a # exists.

On each cycle, a binary external state description is placed

onto the message list, the rule-base is scanned, and any rule

whose condition matches the external message and/or the

other contents of the message list becomes a member of [M]

(Fig. 3). Rules are selected from those comprising [M],

through a bidding mechanism, firstly to become the system’s

external action and then to post their assertion onto the (fixed

size) message list for the next cycle. This selection is per-

formed by the roulette wheel scheme based on rule bids.

Rules’ bids consist of two components, their strength and the

specificity (fraction of non-# bits) of their condition. Further,

a constant (here termed b, where 0 \b\ 1) is factored in,

i.e., for a rule C in [M] at time t:

BidðC; tÞ ¼ b � specificityðCÞ � strengthðC; tÞ

Reinforcement consists of redistributing bids made

between subsequently chosen rules. The bid of each winner

at each time-step is placed in a ‘‘bucket’’. A record is kept

of the winners on the previous time step and they each

receive an equal share of the contents of the current bucket;

fitness is shared amongst concurrently activated rules. If a

reward is received from the environment then this is paid to

the winning rule which produced the last system output.

However whether all rules that have posted a message

share the external reward appears to vary in the literature,

being both included [57] and excluded [58]. ‘‘Thus, the

bucket brigade assures that early-acting, stage-setting

classifiers receive credit if they (on average) make possible

later, overtly rewarding acts’’ [58]. The emphasis upon

average ability relaxes the previous explicit focus on

accurately predicting reward; there is an apparent reduction

in the selective pressure for consistent behaviour which

formed the basis of CS-1. With hindsight, this change was

perhaps the most significant between the two LCS.

As noted above, the periodically applied GA uses rule

strength to select two parents, these are then combined

using one-point crossover and mutated. Both offspring are

inserted into the rule-base, replacing rules chosen inversely

proportional to their strength. Since reward is shared

amongst rules, the GA is in principal able to maintain

multiple useful rules within the rule-base (discussed later).

A number of other mechanisms were proposed by

Holland but for the sake of clarity they are not described in

detail here. These include the idea that hierarchical rule

associations could emerge via specific rules out-bidding

more general rules in certain important situations, and extra

‘‘tag’’ regions of conditions and assertions being added

would aid the formation of sequential induction (see [61]

for a full treatment). These ideas do not feature in modern

LCS (see [87] for an exception).

2.3 GOFER

Booker [6] presented a form of Holland’s standard LCS

which extends the principle of using a GA to discover

any underlying regularities in the problem space, divid-

ing the task of learning such structure from that of

supplying appropriate actions to receive external reward

(see [8] for an overview]). Here a separate LCS exists

Evol. Intel.

123



for each of these two aspects. A first LCS receives

binary encoded descriptions of the external environment,

with the objective to learn appropriate regularities

through generalizations over the ‘‘perception’’ space.

This is seen as analogous to learning to represent cate-

gories of objects. The matching rules not only post their

messages onto their own message list but some are

passed as inputs to a second LCS. The second LCS

therefore only receives reward when it correctly exploits

such categorizations with respect to the current task.

GOFER contains a number of innovations including

partial matching and rule excitation levels, however it is

the use of restricting the process of rule-discovery to

concurrently active rules which has proven most influ-

ential (see [7]). Here parents are chosen from within a

given [M] thereby avoiding the mixing of rules with

generalizations which (potentially) consider markedly

different aspects of the problem. Booker [9] later

extended the idea to trigger the GA during learning

whilst also leaving it running at a constant rate under the

reinforcement process as Holland did. In particular, rules

maintain an approximation of their ‘‘consistency’’, a

measure of the variance in the reward they receive. If a

given percentage of rules in [M] have a level of

inconsistency above a threshold, the fitness of all con-

sistent rules is increased and the GA run: ‘‘… consistent

classifiers are thereby made more attractive to the

genetic algorithm’’ [ibid.]. XCS uses both a form of

triggered niche GA and rule consistency.

2.4 ANIMAT and ZCS

Stewart Wilson began to develop versions of Holland’s LCS

as an approach to understanding animal/human intelligence

through the computer simulation of simple agents in pro-

gressively more complex domains—termed the animat

approach. The first of these, ANIMAT [110], makes a

number of simplifications to Holland’s architecture. In par-

ticular, the message list is removed and matching rules are

grouped by their action in the bucket brigade process,

forming action sets [A]. The GA is also sensitive to rule

actions, somewhat akin to CS-1: a first parent is chosen based

upon its strength from the rule-base, the second is then

chosen from the subset of the population with the same

action. ANIMAT controlled a simple agent in a 2D grid-

world, able to sense the contents of the eight locations sur-

rounding it and able to move in each such direction if clear.

Wilson showed learning was possible such that effective

paths to food reward signals were discovered. However, he

noted that the system had ‘‘nothing which preferentially

reinforces the most expeditious classifiers’’ [ibid.]. To

encourage the shortest path to reward from a given start

location, rules were extended to maintain an estimate of the

number of subsequent steps to reward from their use, updated

locally based upon the estimates of successor rules. This was

factored into action selection via dividing strength by dis-

tance. ANIMAT also includes a guided recombination

operator, replacing dissimilar bits in parent conditions with a

# to aid the formation of useful generalizations.

Fig. 3 Schematic of Holland’s

LCS

Evol. Intel.

123



Wilson later returned to ANIMAT, further simplifying it

in his ‘‘zeroth-level’’ classifier system (ZCS) [112] (Fig. 4).

Importantly, the bucket brigade was again modified to

incorporate a mechanism from temporal difference learn-

ing [95] (see also [37] for an early connection). Here the

fraction of the total strength of a given [A] in the bucket is

further reduced by a discount rate c (0 \ c\ 1) before

being shared equally amongst the rules of the previous

action set [A]-1. Discounting allows systematic control over

the influence of future rewards, replacing Wilson’s previ-

ous distance approximation mechanism. The effective

update of action sets is thus (0 \b\ 1):

strengthð½A�; t þ 1Þ ¼ strengthð½A�; tÞ þ b � ½Rewardþ c
� strengthð½A�þ1Þ�strengthð½A�; tÞ�

To give increased focus to the search, rules in a given

[M] but not [A] have their strengths reduced by a tax; rules

can only persist if they regularly receive (high) reward. A

‘‘create’’ mechanism in ANIMAT is also retained in ZCS,

but slightly modified. Here, if an [M] is empty or if the total

strength of [M] is below a given threshold, a new rule is

created to cover the current environmental input, randomly

augmented with some #, and given a random action. The

action niche restriction and generalization mechanisms of

the GA are removed. Parental rules give half of their strength

to their offspring under the GA which fires at a fixed rate q.

Results with ZCS indicated it was capable of good, but not

optimal, performance [112, 33]. Wilson [112] also included a

version of the off-policy temporal difference learning

algorithm Q-learning [109] to some benefit. He also pro-

posed to use the triggered niche GA of GOFER on top of the

panmictic/global scheme described above. Bull [12] showed

the potential for disruption of the reward sharing scheme

using just a niche GA in a similar LCS but no combination is

known. It has been shown that ZCS is capable of optimal

performance in a number of well-known test problems but

that it appears to be particularly sensitive to some of its

parameters [16], and it has been shown to outperform XCS in

classes of noisy domain [92]. XCS maintains a number of

ZCS’s basic features but makes significant alterations.

2.5 BOOLE, NEWBOOLE and AU-BOOLE

After introducing a number of modifications to Holland’s

architecture in ANIMAT, but before ZCS, Wilson pre-

sented a specialised form designed for reinforcement

learning tasks where immediate reward is given. In par-

ticular, his BOOLE system was designed for binary deci-

sion tasks [111]. BOOLE maintains the

[M] ? [A] mechanism of ANIMAT, also removing the

message list. The GA no longer restricts selection of the

second parent to having the same action when using

crossover, and reproduction causes the strength of parents

to be reduced and donated to offspring akin to the mech-

anism later used in ZCS. It has been shown that reducing

strength can create a pressure for more general rules as they

update more frequently and therefore regain reward faster

[12]. Again, as in the later ZCS, rules in [M] but not

Fig. 4 Schematic of Wilson’s

ZCS

Evol. Intel.

123



[A] have their strengths reduced by a tax. BOOLE was

shown able to learn two- and three-address bit multiplexer

problems (6MUX and 11MUX, respectively), with the

effects of varying the tax rates, genetic operators and

including a reward bias based upon the degree of gener-

alisation in rules explored.

Bonelli et al. [5] made the significant step of presenting

a form of LCS for supervised learning tasks, that is, tasks

where the correct response is known at the point of internal

updating. Extending BOOLE, they noted that the set of

rules in [M] providing the correct response, regardless of

whether they formed [A], should receive reward. Hence

they split [M] into the correct set [C] and incorrect set

Not[C] for their NEWBOOLE system. BOOLE’s uses of

taxes and a bias in the distribution of reward based upon

generality were kept. They showed significant improve-

ment in learning speed compared to BOOLE and to an

artificial neural network using backpropagation on the

6MUX and 11MUX tasks. Hartley [51] showed NEW-

BOOLE to be competitive with XCS on a well-known set

of binary classification tasks, although XCS’s maintenance

of a full state-action-reward map gave it an advantage in

some forms of non-stationary task (see [16] for discussion).

Seemingly independently, Frey and Slate [46] also pre-

sented a variant of BOOLE for supervised learning tasks in

which they also update the correct set within [M] regardless

of the output. Having struggled to find the correct balance of

taxing and bid biasing for a letter recognition task, with

reference to Holland’s [55] original ideas, they introduced

the accuracy-utility system (here termed AU-BOOLE). Here

each rule maintains two parameters: accuracy, the ratio of

correct bids to total bids made; and, utility, the ratio of cor-

rect bids when chosen to total number of times chosen as the

output. Accuracy is used in bidding in [M] and for repro-

duction, and utility is used for deletion. Whilst performance

with AU-BOOLE was found to be similar to their version of

NEWBOOLE, they report greater ease in finding useful

parameters. As will be discussed, these ideas have been

incorporated into XCS, resulting in the ‘‘sUpervised Clas-

sifier System’’ (UCS) [3].

2.6 CFSC2 and ACS

Holland and Reitman [60] suggested a number of exten-

sions to CS-1 at the end of their paper, particularly ways by

which to learn more sophisticated cognitive maps than the

stimulus–response relations they had achieved. ‘‘Cognitive

maps allow the system to use lookahead to explore, without

overt acts, the consequences of various courses of action.’’

[ibid.]. Again, following Samuel [80], they describe a

scenario of rules being linked over system cycles through

the message list which do not cause external actions on

each step. Holland [59] later returned to this aspect,

proposing that the aforementioned extra ‘‘tag’’ regions of

conditions and assertions that can be added as arbitrary

patterns would aid the formation of sequential induction of

the necessary form: IF condition AND assertion THEN

next-condition. That is, Holland did not seek to change the

rule structure from his standard LCS to this direct form.

Riolo [78] was first to implement lookahead capabilities

within LCS with his CFSC2. He allowed the system to

execute more than one cycle before providing an action,

added tags along the lines Holland [59] had suggested, and

introduced an extra strength parameter to represent the

predictive accuracy of a rule. Through tags, rules are either

connected to external or internal events, or both. Bidding is

adjusted to also factor the accuracy of predicted next states

of a rule (if any). Rule chains which accurately map fea-

tures in simple mazes with or without overt reward (latent

learning) are reported to emerge under a rule discovery

process which is driven by internal and external messages

rather than a GA. That is, when no rules match or none are

chained across system cycles, various heuristics are used to

form appropriate rules via tags. Roberts [79] presented a

related approach within ANIMAT which maintained

‘‘followsets’’, time-stamped information regarding rewards

received or next states obtained after a rule had fired. The

value of such rewards is factored into rule strengths.

Wilson [113] proposed altering the rule structure to con-

tain the anticipated next state, with an ‘‘expecton’’ in XCS.

Stolzmann [90] presented a system in which such a rule

structure is used (the expecton component termed the

‘‘effect’’)—the Anticipatory Classifier System (ACS).

Drawing upon a learning theory from cognitive psychology,

sub-populations of rules are learned per [A] via a speciali-

sation heuristic (not a GA) for rules based upon the envi-

ronmental input, both in the condition and effect

components. Rule utility is represented by the accuracy of

anticipations whilst external reward is used in bidding. A

famous experiment with rats in a T-maze [83] is simulated

and the results indicate similar behaviour from the ACS. A

combination of ACS and XCS has been presented to achieve

such model learning, as will be discussed (e.g., see [25]).

3 Wilson’s XCS

The most significant difference between XCS (Fig. 5) and

all other LCS prior to its presentation is that rule fitness for

the GA is not based on the amount of reward received by

rules but purely upon the accuracy of predictions (p) of

reward. The intention in XCS is to form a complete and

accurate mapping of the problem space (rather than simply

focusing on the higher payoff niches in the environment)

through efficient generalizations: XCS learns a value

function over the complete state-action space. On each

Evol. Intel.

123



time step a match set is created. A system prediction is then

formed for each action in [M] according to a fitness-

weighted average of the predictions of rules in each [A].

The system action is then selected either deterministically

or randomly (usually 0.5 probability per trial). If [M] is

empty covering is used.

Fitness reinforcement in XCS consists of updating three

parameters, e, p and F for each appropriate rule; the fitness

is updated according to the relative accuracy of the rule

within the set in five steps:

1. Each rule’s error is updated: ej = ej ? b (| Reward-pj

| - ej)

2. Rule predictions are then updated: pj = pj ? b
(Reward-pj)

3. Each rule’s accuracy jj is determined: jj = a(e0/e)m or

j = 1 where e\ e0 where m, a and e0 are constants

controlling the shape of the accuracy function.

4. A relative accuracy jj

0
is determined for each rule by

dividing its accuracy by the total of the accuracies in

the action set.

5. The relative accuracy is then used to adjust the

classifier’s fitness Fj using the moyenne adaptive

modifee (MAM) [107] procedure: If the fitness has been

adjusted 1/b times, Fj = Fj ? b(jj

0
- Fj). Otherwise Fj

is set to the average of the values of j
0
seen so far.

In short, in XCS fitness is an inverse function of the

error in reward prediction, with errors below e0 not

increasing fitness. The maximum P(ai) of the system’s

prediction array is discounted by a factor c and used to

update rules from the previous time step. Thus XCS

exploits a form of Q-learning [109] in its reinforcement

procedure. The GA originally occurred in [M] but Wilson

[114] later move it to [A] to further reduce the potential for

recombining rules inappropriately, i.e., when there is sig-

nificant asymmetry in the generalisation space for each

action in a given match set (see [15] for discussion). Two

rules are selected based on fitness from within the chosen

[A]. Rule replacement is global and based on the estimated

size of each action set a rule participates in with the aim of

balancing resources across niches. The GA is triggered

within a given action set based on the average time since

the members of the niche last participated in a GA (after

[9]). See [24] for a full algorithmic description of XCS.

Wilson originally demonstrated results on multiplexer

functions and a maze problem. Importantly, he shows how

maximally general solutions are evolved by XCS. This is

explained by his ‘‘generalization hypothesis’’:

Consider two classifiers C1 and C2 having the same

action, where C2’s condition is a generalization of

C1’s. … Suppose C1 and C2 are equally accurate in

that their values of e are the same. Whenever C1 and

C2 occur in the same action set, their fitness values

will be updated by the same amounts. However, since

C2 is a generalization of C1, it will tend to occur in

more [niches] than C1. Since the GA occurs in

[niches], C2 would have more reproductive

Fig. 5 Schematic of Wilson’s

XCS

Evol. Intel.

123



opportunities and thus its number of exemplars would

tend to grow with respect to C1’s. … C2 would

displace C1 from the population’’ [113].

Butz et al. [26] studied this hypothesis formally, intro-

ducing the concept of different pressures acting within

XCS and then examined how they interact. They term the

process described by Wilson above as the set pressure,

which occurs due to the niche GA for reproduction and

global GA for deletion. Kovacs [67] extended Wilson’s

idea, presenting the ‘‘optimality hypothesis’’ which sug-

gests that due to the set pressure, XCS has the potential to

evolve a complete, accurate and maximally general (com-

pact) description of a state-action-reward space. Butz et al.

[26] begin by approximating the average specificity of an

action set s([A]) given the average specificity in the pop-

ulation s([P]):

sð½A�Þ ¼ sð½P�Þ=ð2� sð½P�ÞÞ

For an initially random population, this indicates that the

average specificity of a given [A] is lower than that of the

population [P]. Opposing the set pressure are the pressures

due to fitness and mutation since the former represses the

reproduction of inaccurate overgeneral rules and the latter

increases specificity. They then extend the set pressure

definition to include the action of mutation, resulting in the

‘‘specificity equation’’:

sð½Pðt þ 1Þ�Þ ¼ sð½PðtÞ�Þ þ fgaðð2 � ðsð½A�Þ þ dmut

� sð½PðtÞ�ÞÞ=NÞ

where dmut is the average change in specificity between a

parent rule (cl) of specificity s(cl) and its offspring under

mutation, defined as 0.5l(2–3 s(cl)), and fga is the fre-

quency of GA application per cycle. It is shown that, for a

number of simple scenarios such as a random Boolean

function, this equation is a good predictor of resulting

specificity and they note this ‘‘represent[s] the first theo-

retical confirmation of Wilson’s generalization hypothesis’’

[ibid.]. The ability of XCS to maintain niches was explored

formally in Butz et al. [30].

Butz et al. [26] also identified two potentially conflicting

challenges for XCS, namely that the population of rules

needs to be sufficiently general to cover the input space,

whilst rules must be specific enough such that there is an

effective fitness gradient towards accuracy. Butz [23] later

showed how, by giving consideration to the bounds of

these challenges, together with those of reproduction and

niche support, XCS can PAC-learn a sub-class of k-DNF

problems, i.e., learn their correct solution in polynomial

time with high probability.

Since its introduction, a number of aspects from the

wider field of machine learning have been explored within

XCS (see [68] for a general review). From evolutionary

computing, techniques such as rank-based selection (e.g.,

[27]), parameter self-adaptation (e.g., [64]), local search

(e.g., [120]), and estimation of distribution algorithms (e.g.,

[29]) have been explored, along with non-binary repre-

sentation schemes. The conditions in XCS have been rep-

resented by things such as real-valued intervals (e.g., see

[91] for discussions), trees (e.g., [69], after a proposal in

Wilson [112]) and developmental approaches [118]. The

actions of rules have been represented by trees (e.g., [65],

after [1]) and linear approximators (e.g., [103], after [116]).

A whole rule in XCS has also been represented using fuzzy

logic (e.g., [32], after [106]), neural networks (e.g., [17]),

and logic networks (e.g., [13]). Techniques considered

from reinforcement learning include gradient descent [28]

and eligibility traces [38]. Moreover, general ideas such as

the use of ensembles (e.g., [19, 20]) and multi-agent sys-

tems (e.g., [52]) have also been considered with XCS.

Wilson removed the message list from LCS in his

ANIMAT and didn’t return to the concept until he pre-

sented ZCS. As a possible area of future research, Wilson

[112] describes a ‘‘memory register’’. Here a global inter-

nal register’s current content/state would be matched by a

defined part of each rule’s condition, along with the

external stimulus. Similarly, rule actions would contain an

element to update the content of the register, as well as

supply the external response. As such, this is very similar

to the original structure of CS-1. Lanzi and Wilson [71]

showed it was possible to solve non-Markov mazes through

the development of the idea in XCS. An alternative

approach to memory was suggested by [119] wherein rules

link together to form ‘‘corporations’’. Tomlinson and Bull

[102] showed some success with the idea in XCS.

Wilson prophetically suggests at the end of his paper

introducing XCS: ‘‘The results point to the conclusion that

accuracy-based fitness and a niche GA form a promising

foundation for future classifier system research’’ [113]. As

mentioned above and shown in Fig. 1, XCS and these key

features have been extended from reinforcement learning

as will now be discussed.

4 The evolution of XCS

4.1 UCS: Supervised Learning

Starting with NEWBOOLE, it has long been noted that in

the use of LCS for tasks where there is an immediate

reward indicating correctness, the standard reinforcement

learning approach can be altered. UCS [3] uses the accu-

racy calculation of AU-BOOLE to replace the standard

running average error update in XCS. That is, jj = number

of correct classifications/experience, with experience

defines as the number of times a rule has matched.

Evol. Intel.

123



Thereafter, Fj = (jj)
m and the GA is run in the correct set

[C], with deletion a global operation based upon the size of

[C] (Fig. 6).

The main effect of the change to a supervised update is

that UCS only maintains a set of rules which receive high

payoff, as opposed to XCS’s construction of a full state-

action-reward map. As a consequence, UCS was shown to

learn more quickly than an equivalent XCS on a number of

benchmark tasks. As well as the reduced generalization

task, it was also shown to learn more effectively due to the

change in the fitness pressure for certain types of problem

from the simplified fitness function. UCS and XCS are

shown to be competitive with a number of well-known

machine learning techniques over well-known real-world

datasets.

In a few cases, XCS was found to outperform UCS on

the real-world datasets and it was speculated this is due to

in part to a lack of fitness sharing within niches. Later

inclusion of the same relative accuracy calculation into

UCS gives improved performance, particularly with

unbalanced datasets [74]. However, XCS remains a robust

classification data mining algorithm (see [43]).

Like XCS, a number of techniques have been incorpo-

rated into UCS, such as the use of rank-based selection

(e.g., [74]) and fuzzy logic (e.g., [75]). It has also been used

within ensembles, including with the use of neural net-

works to provide the action (e.g., [35]). Ideas from the

wider ensemble/mixture-of-experts literature have also

been used to understand and refine UCS (e.g., [39]).

4.2 XCSC: unsupervised learning

Unsupervised learning describes those tasks under which

structure is sought in unlabelled data without further

external input. Perhaps somewhat surprisingly, no previous

suggestion of the use of LCS for such learning is known in

the literature until the work of [97, 98] on clustering (see

Fig. 7). Clustering is an important unsupervised learning

technique where a set of data are grouped into clusters in

such a way that data in the same cluster are similar in some

sense and data in different clusters are dissimilar in the

same sense (see [121] for an overview). Most clustering

algorithms require the user to provide the number of

clusters, and the user in general has no idea about the

number of clusters (e.g., see [100]). Hence this typically

results in the need to make several clustering trials with

different numbers of clusters from 1 to the square-root of

the number of data points, and select the best clustering

among the partitioning with different number of clusters.

Tammee et al. show how the generalization mechanisms of

XCS can be used to identify clusters – both their number and

description. Rules in their XCSC use an interval representation

of the form {{c1,s1}, … {cd,sd}}, where c is the interval’s range

centre from [0.0,1.0] and s is the ‘‘spread’’ from that centre from

the range (0.0,s0] and d is a number of dimensions. Each interval

predicates’ upper and lower bounds are calculated as follows:

[ci- si, ci ? si]. If an interval predicate goes outside the

problem space bounds, it is truncated. Rule fitness consists of

updating the matching error e which is derived from the

Fig. 6 Schematic of UCS

Evol. Intel.

123



Euclidean distance with respect to the input x and c in the

condition of each member of the current [M] using the Widrow-

Hoff delta rule with learning rate b:

ej  ej þ b
Xd

l¼1

ðxl � cljÞ2
 ! !1=2

�ej

0

@

1

A

The rest of XCS processing remains unchanged. Hence

the set pressure encourages the evolution of rules which

cover many data points and the fitness pressure acts as a

limit upon the separation of such data points, i.e., the error.

Tammee et al. [97] began by using a slightly simplified

version of XCS as the underlying LCS (YCS) [12], but

found that XCS’s relative accuracy fitness function was

more effective than a function directly inversely propor-

tional to error [98]. Note this is similar to the aforemen-

tioned findings with UCS [74]. Moreover, since thee0

parameter controls the error threshold of rules, Tammee

et al. investigated the sensitivity of XCSC to its value by

varying it. Their experiments show that, if e0is set high,

e.g., 0.1, in less-separated data the contiguous clusters are

covered by the same rules. They therefore developed an

adaptive threshold parameter scheme which uses the

average error of the current [M]:

e0 ¼ s
X

ej=N½M�

� �

where ej is the average error of each rule in the current

match set and N[M] is the number of rules in the current

match set. This is applied before the fitness function cal-

culations. Experimentally Tammee et al. found s = 1.2

was most effective for the problems they considered.

This work has recently been extended to include hier-

archical cluster/rule merging and voting (e.g., [77]).

4.3 XCSF: function learning

Wilson [113] proposed that XCS could be modified to learn

functions, i.e., problems of the general form y = f(x), and

subsequently presented XCSF [115] [116]. Rules in XCSF

typically use an interval representation of the form {{l1
u1}, … {ld,ud}}, where li (‘‘lower’’) and ui (‘‘upper’’) are

integers. A rule matches an input x with attributes xi if and

only if li B xi B ui for all xi. Having first used the standard

prediction creation of XCS, Wilson introduces piecewise-

linear approximators to each rule, i.e., functions of the form

h(x) = w0 ? w1x1 ? … wdxd. Rather than add the weights

wj to the rule representation to be learned under the GA, a

variant of a simple gradient descent method is employed:

Dwj = (g/|x0|2) (t - o)xj, where t is the target, o is the

output and g is a learning rate.

Wilson shows the basic XCSF learning a sine function

and multi-dimension root-mean-squared functions wherein

the local approximations are shown to be adaptive to the

function being approximated such that the size of the local

interval responds to the curvature of the function. This

increases efficiency and as well introduces an additional

Fig. 7 Schematic of XCSC

Evol. Intel.

123



kind of generalization. This has subsequently been

explored extensively, using a variety of rule condition

representations and function approximation techniques

(e.g., see [31, 72]). The theoretical underpinnings of XCS

have also been extended to XCSF (e.g., [88]) (Fig. 8).

Wilson [116] extended the idea to propose a generalized

rule format such that the prediction associated with a state-

action rule under reinforcement leaning is computed in the

same way, as opposed to maintained as (an adjusted)

parameter (see also [48]). Again, this has been explored

using a variety of rule representations and approximators

(e.g., see [73]). It can be noted that in rule representations

which can also provide memory through individual rule-

internal structures, such as recurrent connections in a net-

work, this opens up new ways by which to solve non-

Markov tasks (e.g., see [76]).

4.4 XACS: model learning

As noted above, Stolzmann [90] presented an accuracy-

based LCS in which rules are extended to predict the

subsequent sensory state from their use. That is, rules are of

the general form ‘‘IF condition AND assertion THEN

effect’’. The mechanism through which such rules are

learned is based upon the theory of Anticipatory Behav-

ioural Control [53] and not a simulated evolutionary pro-

cess. The search algorithm, termed the Anticipatory

Learning Process (ALP), has thus far relied upon the

traditional ternary alphabet {0,1,#} (see [47] for related

systems). Butz et al. introduced the use of a niched GA

alongside the ALP to improve the generalization abilities

of ACS, termed ACS2 (see [22] for full details). Whilst

effective, ACS2 was found to sometimes struggle to form

both accurate environment models and state-action-reward

models simultaneously. Drawing on XCSF, ACS2 was

subsequently extended in XACS [25] (Fig. 9).

XACS maintains the principle features of ACS(2), using

the ALP to specialize rules when their anticipated effect

does not match the next state. As in ACS2, a # symbol in an

effect indicates that the bit is not anticipated to change in

the next state, whereas defined bits are anticipated to

change to that value (unlike ACS). The GA is the same as

in ACS2, using the time triggered scheme of XCS, with the

mutation process only introducing #’s and crossover only

happening over conditions. Running alongside ACS2 is a

variant of XCSF to learn the value of states. The rules

consist of a condition and prediction parameter, as in the

first version of XCSF described above. The XCSF com-

ponent is used each time external reward is received from

the environment, updating predicted values using both its

own current prediction and the model knowledge of the

ACS2 component.

Butz and Goldberg [25] report improved performance

over ACS2 in blocks world problems of varying sizes.

Benefits of the model include a mechanism through which

to bias action selection such that those rules whose

Fig. 8 Schematic of XCSF

Evol. Intel.

123



anticipations are least accurate are chosen preferentially

over a random action, the ability to learn multiple tasks

simultaneously over the same environment by including an

XCSF component per task (see [94] for a related study),

etc. Given the supervised learning-like nature of building

anticipations, they have also been learned in a version of

XCSF using a neural network to predict the next state (e.g.,

[19, 20]).

5 Conclusion

Architecturally, XCS can be traced from ANIMAT via

ZCS, with GOFER’s triggered niche GA being included.

The use of accuracy began with CS-1, although it was

focused on the highest reward per niche. Moreover, XCS’s

generalization pressure shares features with that in CS-1

since it is also based on accuracy and rate of use. In CS-1

predicted rewards are only updated if they are accurate or

below the current estimate, with action and GA selection

based upon this parameter: more accurate rules are more

likely to reproduce. Rule ages are reset after use and

deletion is based upon age: more frequently used rules are

less likely to be replaced. Thus accurate, more general

(frequently used) rules are propagated in CS-1. XCS

combines both accuracy, in its pure form, and frequency of

use into the selection process of the GA. This creates a

generalization pressure but, importantly, also frees the

deletion process of the GA to be used to maintain multiple

niches in an emergent way thereby addressing one of the

main issues in CS-1 that Holland sought to tackle by

switching to strength sharing in his subsequent LCS. Much

has subsequently been explored with XCS, and there

remains much to explore.

XCS has been used effectively to control physical robots

in continuous time and space where the action space was

discrete and relatively small (e.g., [93]). Wilson [117] has

presented a ‘‘generalized classifier system’’ concept

whereby LCS can work in a continuous-valued action

space. Whilst studies have shown progress in this area for

regression problems (e.g., [76]), there is still more to be

done for reinforcement learning problems (e.g., [32, 62]).

As highlighted in Bull [14], XCSC can in hindsight be

viewed as a type of Artificial Immune System (AIS). For

nearly 30 years (starting with [42]) similarities between

LCS and AIS have periodically been noted, but the two

fields have developed independently. The use of selection

within niches of co-active rules is akin to the scheme used

in a general class of AIS known as clonal selection algo-

rithms (e.g., CLONALG [36]). The use of a time-delayed

evolutionary process is also similar to the dendritic cell

AIS (e.g., [50]). It can also be noted that the adaptive

affinity threshold finding in XCSC [98] is much like the

result reported in Bezerra et al. [4] with an AIS. A potential

area for future research would therefore appear to be to

explore the cross-fertilization of mechanisms between what

are now two relatively mature fields (e.g., see [101] for an

overview of AIS).

Fig. 9 Schematic of XACS

(without XCSF component)

Evol. Intel.

123



LCS were presented as an architecture through which to

study cognitive systems. Whilst the reinforcement learning

element has a clear connection to neuroscience (e.g., [82]),

the use of an evolutionary process to build knowledge

representations has lacked a strong connection. The general

similarities between LCS and artificial neural networks

have long been noted (e.g., [86]), and as mentioned above

such networks have been used as rules, including spiking

models (e.g. [63]). However, there are suggestions that

neurogenesis may be significant in adult learning (e.g., [2])

and that such neurons may vary genetically upon produc-

tion (e.g., [34]). Selectionist models of brains, i.e., forms of

neural Darwinism, continue to be developed (e.g., [44]). It

has recently been shown [89] that XCSF can be very

similar to the locally-weighted projection regression algo-

rithm [108], suggesting its rules may be seen to specify

local receptive fields. Another potential area for future

research would therefore appear to be to move LCS closer

to computational neuroscience.

References

1. Ahluwalia M, Bull L (1999) A genetic programming-based

classifier system. In: Banzhaf W et al (eds) GECCO-99: pro-

ceedings of the genetic and evolutionary computation confer-

ence. Morgan Kaufmann, Burlington, pp 11–18

2. Becker S (2005) A computational principle for hippocampal

learning and neurogenesis. Hippocampus 15(6):722–738

3. Bernado Mansilla E, Garrell J (2003) Accuracy-based learning

classifier systems: models, analysis and applications to classifi-

cation tasks. Evol Comput 11(3):209–238

4. Bezerra G, Barra T, de Castro L, Von Zuben (2005) Adaptive

radius immune algorithm for data clustering. In: Pilat C et al

(eds) Proceedings of the 4th international conference on artifi-

cial immune systems. Springer, New York, pp 290–303

5. Bonelli P, Parodi A, Sen S, Wilson SW (1990) NEWBOOLE: a

fast GBML system. In: International conference on machine

learning. Morgan Kaufmann, Burlington, pp 153–159

6. Booker L (1982) Intelligent behavior as an adaptation to the task

environment. Ph.D. Thesis, the University of Michigan

7. Booker LB (1985) Improving the performance of genetic algo-

rithms in classifier systems. In: Grefenstette JJ (ed) Proceedings

of the first international conference on genetic algorithms and

their applications. Lawrence Erlbaum Associates, New York,

pp 80–92

8. Booker L (1988) Classifier systems that learn internal world

models. Mach Learn 3:161–192

9. Booker L (1989) Triggered rule discovery in classifier systems.

In Schaffer J (ed) Proceedings of the international conference

on genetic algorithms. Morgan Kaufmann, Burlington,

pp 265–274

10. Box G (1957) Evolutionary operation: a method for increasing

industrial productivity. J R Stat Soc C 6(2):81–101

11. Bull L (ed) (2004) Applications of learning classifier systems.

Springer, New York

12. Bull L (2005) Two simple learning classifier systems. In: Bull L,

Kovacs T (eds) Foundations of learning classifier systems.

Springer, New York, pp 63–90

13. Bull L (2009) On dynamical genetic programming: simple

boolean networks in learning classifier systems. Int J Parallel

Emergent Distrib Syst 24(5):421–442

14. Bull L (2011) Towards a mapping of modern AIS and LCS. In:

Lio P et al (eds) Proceedings of the tenth international confer-

ence on artificial immune systems. Springer, New York

pp 371–382

15. Bull L (2014) Exploiting generalisation symmetries in accuracy-

based learning classifier systems: an initial study. http://arxiv.

org/abs/1401.2949

16. Bull L, Hurst J (2002) ZCS Redux Evol Comput 10(2):185–205

17. Bull L, O’Hara T (2002) Accuracy-based neuro and neuro-fuzzy

classifier systems. In: Langdon WB et al (eds) GECCO-2002:

proceedings of the genetic and evolutionary computation con-

ference. Morgan Kaufmann, Burlington, pp 905–911

18. Bull L, Kovacs T (eds) (2005) Foundations of learning classifier

systems. Springer, New York

19. Bull L, Lanzi P-L, O’Hara T (2007) Anticipation mappings for

learning classifier systems. In: Proceedings of the IEEE congress

on evolutionary computation. IEEE Press, Piscataway,

pp 2133–2140

20. Bull L, Studley M, Bagnall A, Whittley I (2007) Learning

classifier system ensembles with rule sharing. IEEE Trans Evol

Comput 11(4):496–502

21. Bull L, Bernado Mansilla E, Holmes J (eds) (2008) Learning

classifier systems in data mining. Springer, New York

22. Butz M (2002) Anticipatory learning classifier systems. Kluwer,

New Yokr

23. Butz MV (2006) Rule-based evolutionary online learning sys-

tems. Springer, New York

24. Butz MV, Wilson SW (2002) An algorithmic description of

XCS. Soft Comput 6(3–4):144–153

25. Butz MV, Goldberg DE (2003) Generalized state values in an

anticipatory learning classifier system. In: Butz MV, Sigaud O,

Gérard P (eds) Anticipatory behavior in adaptive learning sys-

tems. Springer, New York, pp 282–301

26. Butz MV, Kovacs T, Lanzi P-L, Wilson SW (2004) Toward a

theory of generalization and learning in XCS. IEEE Trans Evol

Comput 8(1):28–46

27. Butz MV, Sastry K, Goldberg DE (2005) Strong, stable, and

reliable fitness pressure in XCS due to tournament selection.

Genet Program Evol Mach 6(1):53–77

28. Butz MV, Goldberg DE, Lanzi P-L (2005) Gradient descent

methods in learning classifier systems: improving XCS perfor-

mance in multi-step problems. IEEE Trans Evol Comput

9(5):452–473

29. Butz MV, Pelikan M, Llora X, Goldberg DE (2006) Automated

global structure extraction for effective local building block

processing in XCS. Evol Comput 14(3):345–380

30. Butz MV, Goldberg D, Lanzi P-L, Sastry K (2007) Problem

solution sustenance in XCS: markov chain analysis of niche

support distributions and the impact on computational com-

plexity. Genet Program Evol Mach 8(1):5–37

31. Butz MV, Lanzi P-L, Wilson SW (2008) Function approxima-

tion with XCS: hyperellipsoidal conditions, recursive least

squares, and compaction. IEEE Trans Evol Comput

12(3):355–376

32. Casillas J, Carse B, Bull L (2007) Fuzzy XCS: a michigan

genetic fuzzy system. IEEE Trans Fuzzy Syst 15(4):536–550

33. Cliff D, Ross S (1995) Adding Temporary Memory to ZCS.

Adapt Behav 3(2):101–150

34. Coufal N et al (2009) L1 retrotransposition in human neural

progenitor cells. Nature 460:1127–1131

35. Dam H, Abbass H, Lokan C, Yao X (2008) Neural-based

learning classifier systems. IEEE Trans Knowl Data Eng

20(1):26–39

Evol. Intel.

123

http://arxiv.org/abs/1401.2949
http://arxiv.org/abs/1401.2949


36. De Castro L, Von Zuben F (2002) Learning and optimization

using the clonal selection principle. IEEE Trans Evol Comput

6(3):239–251

37. Dorigo M, Bersini H (1994) A comparison of Q-learning and

classifier systems. In: Cliff D, Husbands P, Meyer J-A, Wilson

SW (eds) From animals to animats 3: proceedings of the third

international conference on simulation of adaptive behaviour.

MIT Press, Cambridge, pp 248–255

38. Drugowitsch J, Barry A (2005) XCS with eligibility traces. In:

Beyer HG et al (eds) GECCO-2005: proceedings of the genetic

and evolutionary computation conference. Morgan Kaufmann,

Burlington, pp 1851–1858

39. Edakunni N, Brown G, Kovacs T (2011) Online, GA based

mixture of experts: a probabilistic model of UCS. In: GECCO-

2011: Proceedings of the genetic and evolutionary computation

conference. ACM Press, New York, pp 1267–1274

40. Eiben A, Smith J (2003) Introduction to evolutionary comput-

ing. Springer, New York

41. Farley B, Clark W (1954) Simulation of self-organizing systems

by digital computer. IRE Trans Inf Theory 4:76–84

42. Farmer JD, Packard N, Perelson A (1986) The immune system,

adaptation and machine learning. Phys D 22:187–204

43. Fernández A, Garcı́a S, Luengo J, Bernadó-Mansilla E, Herrera

F (2010) Genetics-based machine learning for rule induction:

state of the art, taxonomy, and comparative study. IEEE Trans

Evol Comput 14(6):913–941

44. Fernando C, Szathmary E, Husbands P (2012) Selectionist and

evolutionary approaches to brain function: a critical appraisal.

Front Comput Neurosci 6:24

45. Fraser A (1957) Simulation of genetic systems by automatic

digital computers. I. Introduction. Aust J Biol Sci 10:484–491

46. Frey P, Slate D (1991) Letter recognition using holland-style

adaptive classifiers. Mach Learn 6:161–182

47. Gererd P, Sigaud O (2001) YACS: combining dynamic pro-

gramming with generalization in classifier systems. In: Lanzi

P-L, Stolzmann W, Wilson SW (eds) Advances in learning

classifier systems: proceedings of the third international work-

shop on learning classifier systems. Springer, New York,

pp 52–69

48. Giani A, Baiardi F, Starita A (1995) PANIC: a parallel evolu-

tionary rule based system. In: McDonnell J, Reynolds R, Fogel

D (eds) Proceedings of the fourth annual conference on evolu-

tionary programming. MIT Press, Cambridge, pp 753–772

49. Goldberg D (1985) Genetic algorithms and rule learning in

dynamic system control. In: Grefenstette JJ (ed) Proceedings of

the first international conference on genetic algorithms and their

applications. Lawrence Erlbaum Associates, New York, pp 8–15

50. Greensmith J, Feyereisl J, Aickelin U (2008) DCA: some

comparison. Evol Intel 1(2):85–112

51. Hartley A (1999) Accuracy-based fitness allows similar perfor-

mance to humans in static and dynamic classification environ-

ments. In: Banzhaf W et al (eds) GECCO-99: proceedings of the

genetic and evolutionary computation conference. Morgan Ka-

ufmann, Burlington, pp 266–273

52. Hercog L, Fogarty TC (2002) Coevolutionary classifier systems for

multi-agent simulation. In: Proceedings of the IEEE congress on

evolutionary computation. IEEE Press, Piscataway, pp 1798–1803

53. Hoffmann J (1993) Vorhersage und Erkenntnis. Hogrefe,

Goettingen

54. Holland JH (1975) Adaptation in natural and artificial systems.

University of Michigan Press, Ann Arbor

55. Holland JH (1976) Adaptation. In: Rosen and Snell (eds) Pro-

gress in theoretical biology, vol 4. Plenum, Berlin, pp 263–293

56. Holland JH (1980) Adaptive algorithms for discovering and

using general patterns in growing knowledge bases. Int J Policy

Anal Inf Syst 4(3):245–268

57. Holland JH (1985) Properties of the bucket brigade. In: Gre-

fenstette JJ (ed) Proceedings of the first international conference

on genetic algorithms and their applications. Lawrence Erlbaum

Associates, New York, pp 1–7

58. Holland JH (1986) Escaping brittleness: the possibilities of

general-purpose learning algorithms applied to parallel rule-

based systems. In: Michalski R, Carbonell J, Mitchell T (eds)

Machine learning, an artificial intelligence approach. Morgan

Kaufmann, Burlington, pp 593–623

59. Holland JH (1990) Concerning the emergence of tag-mediated

lookahead in classifier systems. Phys D 42:188–201

60. Holland JH, Reitman JH (1978) Cognitive systems based in

adaptive algorithms. In Waterman DA, Hayes-Roth F (eds)

Pattern-directed inference systems. Academic Press, New York,

pp 313–329

61. Holland JH, Holyoak KJ, Nisbett RE, Thagard PR (1986)

Induction: processes of inference, learning and discovery. MIT

Press, Cambridge

62. Howard D, Bull L, Lanzi P-L (2009) Continuous actions in

continuous space and time using self-adaptive constructivism in

neural XCSF. In: GECCO-2009: proceedings of the genetic and

evolutionary computation conference. ACM Press, New York,

pp 1219–1226

63. Howard D, Bull L, Lanzi P-L (2010) A spiking neural repre-

sentation for XCSF. In: Proceedings of the IEEE congress on

evolutionary computation. IEEE Press, Piscataway, pp 1–8

64. Hurst J, Bull L (2002) A self-adaptive XCS. In: Lanzi P-L,

Stolzmann W, Wilson SW (eds) Advances in learning classifier

systems: proceedings of the 4th international workshop on

learning classifier systems. Springer, New York, pp 57–73

65. Iqbal M, Browne W, Zhang M (2013) Evolving optimum pop-

ulations with XCS classifier systems—XCS with code frag-

mented action. Soft Comput 17(3):503–518

66. Iqbal M, Browne W, Zhang M (2014) Reusing building blocks

of extracted knowledge to solve complex, large-scale boolean

problems. IEEE Trans Evol Comput 18(4):465–480

67. Kovacs T (1997) XCS classifier system reliably evolves accu-

rate, complete, and minimal representations for boolean func-

tions. In: Roy, Chawdhry, Pant (eds) Soft computing in

engineering design and manufacturing. Springer, New York,

pp 59–68

68. Lanzi P-L (2008) Learning classifier systems: then and now.

Evol Intel 1(1):63–82

69. Lanzi P-L, Perrucci A (1999) Extending the representation of

classifier conditions part II: from messy coding to S-expressions.

In: Banzhaf W et al (eds) GECCO-99: proceedings of the

genetic and evolutionary computation conference. Morgan Ka-

ufmann, Burlington, pp 345–352

70. Lanzi P-L, Riolo R (2000) A roadmap to the last decade of

learning classifier system research. In: Lanzi P-L, Stolzmann W,

Wilson SW (eds) Learning classifier systems: from foundations

to applications. Springer, New York, pp 33–62

71. Lanzi P-L, Wilson SW (2000) Toward optimal classifier system
performance in non-markov environments. Evol Comput

8(4):393–418

72. Lanzi P-L, Loiacono D, Wilson SW, Goldberg D (2007) Gen-

eralization in the XCSF classifier system: analysis, improve-

ment, and extension. Evol Comput 15(2):133–168

73. Loiacono D, Lanzi P-L (2009) Recursive least squares and

quadratic prediction in continuous multistep problems. In: Ba-

cardit J et al (eds) Learning classifier systems: revised selected

papers. Springer, New York, pp 70–86

74. Orriols-Puig A, Bernado Mansilla E (2008) Revisiting UCS:

description, fitness sharing, and comparison with XCS. In: Ba-

cardit J et al (eds) Learning classifier systems: revised selected

papers. Springer, New York, pp 96–116

Evol. Intel.

123



75. Orriols-Puig A, Casillas J, Bernadó Mansilla E (2009) Fuzzy-

UCS: a michigan-style learning fuzzy-classifier system for

supervised learning. IEEE Trans Evol Comput 13(2):260–283

76. Preen R, Bull L (2013) Dynamical genetic programming in

XCSF. Evol Comput 21(3):361–388

77. Qian L, Shi Y, Gao Y, Yin H (2013) Voting-XCSc: a consensus

clustering method via learning classifier system. In: Yin H et al

(eds) Intelligent data engineering and automated learning—

IDEAL. Springer, New York, pp 603–610

78. Riolo R (1991) Lookahead planning and latent learning in a clas-

sifier system. In: Meyer J-A, Wilson SW (eds) From animals to

animats: proceedings of the first international conference on sim-

ulation of adaptive behaviour. MIT Press, Cambridge, pp 316–326

79. Roberts G (1993) Dynamic planning for classifier systems. In:

Forrest S (ed) Proceedings of the 5th international conference on

genetic algorithms. Morgan Kaufmann, Burlington, pp 231–237

80. Samuel AL (1959) Some studies in machine learning using the

game of checkers. IBM J Res Dev 3:211–229

81. Samuel AL (1967) Some studies in machine learning using the

game of checkers. II. Recent progress. IBM J Res Dev

11:601–617

82. Schultz W (1998) Predictive reward signal of dopamine neu-

rons. J Neurophysiol 68:1190–1208

83. Seward J (1949) An experimental analysis of latent learning.

J Exp Psychol 39:177–186

84. Shannon C (1950) Programming a computer for playing chess.

Phil Mag 41:256–275

85. Smith SF (1980) A learning system based on genetic adaptive

algorithms. PhD Thesis, University of Pittsburgh

86. Smith R, Cribbs H (1994) Is a learning classifier system a type

of neural network? Evol Comput 2(1):19–36

87. Smith R, Jiang M, Bacardit J, Stout M, Krasnogor N, Hirst J

(2010) A learning classifier system with mutual-information-

based fitness. Evol Intel 3(1):31–50

88. Stalph P, Llorà X, Goldberg D, Butz MV (2012) Resource

management and scalability of the XCSF learning classifier

system. Theoret Comput Sci 425:126–141

89. Stalph P, Rubinsztajin J, Sigaud O, Butz MV (2012) Function

approximation with LWPR and XCSF: a comparative study.

Evol Intel 5(2):103–116

90. Stolzmann W (1998) Anticipatory classifier systems. In: Koza

et al (eds) Genetic programming 1998: proceedings of the third

annual conference. Morgan Kaufmann, Burlington, pp 658–654

91. Stone C, Bull L (2003) For Real! XCS with continuous-valued

inputs. Evol Comput 11(3):299–336

92. Stone C, Bull L (2005) Comparing XCS and ZCS on noisy

continuous-valued environments. Technical report:

UWELCSG05-002. http://www.cems.uwe.ac.uk/lcsg

93. Studley M, Bull L (2005) X-TCS: accuracy-based learning

classifier system robotics. In: Proceedings of the IEEE congress

on evolutionary computation. IEEE, pp 2099–2106

94. Studley M, Bull L (2006) Using the XCS classifier system for

multi-objective reinforcement learning problems. Artif Life

13(1):69–86

95. Sutton R, Barto A (1981) Toward a modern theory of adaptive

networks: expectation and prediction. Psychol Rev 88:135–170

96. Sutton R, Barto A (1998) Reinforcement learning. MIT Press,

Cambridge

97. Tammee K, Bull L, Ouen P (2006) A learning classifier system

approach to clustering. In: Proceedings of the 6th international

conference on intelligent systems design and applications. IEEE,

pp 621–626

98. Tammee K, Bull L, Ouen P (2007) Towards clustering with

XCS. In: Thierens D et al (eds) GECOO-2007: proceedings of

the genetic and evolutionary computation conference. ACM

Press, New York, pp 1854–1860

99. Thorndike E (1911) Animal intelligence. Macmillan Company,

New York

100. Tibshirani R, Walther G, Hastie T (2000) Estimating the number

of clusters in a dataset via the gap statistic. J R Stat Soc B

63:411–423

101. Timmis J, Andrews P, Owens N, Clark E (2008) An interdis-

ciplinary perspective on artificial immune systems. Evol Intel

1(1):5–26

102. Tomlinson A, Bull L (2002) An accuracy-based corporate

classifier system. Soft Comput 6(3–4):200–215

103. Tran T, Sanza C, Duthen Y, Nguyen D (2007) XCSF with

computed continuous action. In: Thierens D et al (eds) GECCO-

07: proceedings of the genetic and evolutionary computation

conference. ACM Press, New York, pp 1861–1868

104. Turing A (1948) Intelligent machinery. Reprinted in: Copeland

J. (2004) The essential turing. Oxford University Press, Oxford,

pp 395–432

105. Urbanowicz R, Moore J (2009) Learning classifier systems: a

complete introduction, review and roadmap. J Artif Evol Appl

1:1–25

106. Valenzuela-Rendón M (1991) The fuzzy classifier system: a

classifier system for continuously varying variables. In: Belew

R, Booker L (eds) Proceedings of the 4th international confer-

ence on genetic algorithms. Morgan Kaufmann, Burlington,

pp 346–353

107. Venturini G (1994) Apprentissage Adaptatif et Apprentissage

Supervisé par Algorithme Génétique. Thèse de Docteur en

Science (Informatique), Université de Paris-Sud

108. Vijayakumar S, D’Souza A, Schall S (2005) Incremental on-line

learning in high dimensions. Neural Comput 17(12):2602–2634

109. Watkins CJ (1989) Learning from delayed rewards. Ph.D.

Thesis, Cambridge University

110. Wilson SW (1985) Knowledge growth in an artificial animal. In:

Grefenstette JJ (ed) Proceedings of the first international con-

ference on genetic algorithms and their applications. Lawrence

Erlbaum Associates, New York, pp 16–23

111. Wilson SW (1987) Classifier systems and the animat problem.

Mach Learn 2:219–228

112. Wilson SW (1994) ZCS: a zeroth-level classifier system. Evol

Comput 2(1):1–18

113. Wilson SW (1995) Classifier fitness based on accuracy. Evol

Comput 3(2):149–176

114. Wilson SW (1998) Generalization in the XCS classifier system. In:

Koza et al (eds) Genetic programming 1998: proceedings of the 3rd

annual conference. Morgan Kaufmann, Burlington, pp 322–334

115. Wilson SW (2001) Function approximation with a classifier

system. In: Spector L et al (eds) GECCO-01: proceedings of the

genetic and evolutionary computation conference. Morgan Ka-

ufmann, Burlington, pp 974–981

116. Wilson SW (2002) Classifiers that approximate functions. Nat

Comput 1(1):211–233

117. Wilson SW (2007) Three architectures for continuous action. In:

Bacardit J et al (eds) Learning classifier systems: revised

selected papers. Springer, New York, pp 239–257

118. Wilson SW (2008) Classifier conditions using gene expression

programming. In Bacardit J et al (eds) Learning classifier sys-

tems: revised selected papers. Springer, New York, pp 206–217

119. Wilson SW, Goldberg DE (1989) A critical review of classifier

systems. In: Schaffer J (ed) Proceedings of the 3rd international

conference on genetic algorithms. Morgan Kauffman, San

Francisco, pp 244–255

120. Wyatt D, Bull L (2004) A memetic learning classifier system for

describing continuous-valued problem spaces. In: Krasnagor N,

Hart W, Smith J (eds) Recent advances in memetic algorithms.

Springer, New York, pp 355–396

121. Xu R, Wunsch D (2009) Clustering. IEEE Press, Piscataway

Evol. Intel.

123

http://www.cems.uwe.ac.uk/lcsg

	A brief history of learning classifier systems: from CS-1 to XCS and its variants
	Abstract
	Introduction
	The evolution of LCS
	Cognitive system Level 1
	Holland’s standard architecture
	GOFER
	ANIMAT and ZCS
	BOOLE, NEWBOOLE and AU-BOOLE
	CFSC2 and ACS

	Wilson’s XCS
	The evolution of XCS
	UCS: Supervised Learning
	XCSC: unsupervised learning
	XCSF: function learning
	XACS: model learning

	Conclusion
	References


