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47. Learning Classifier Systems

Martin V. Butz

Learning Classifier Systems (LCSs) essentially
combine fast approximation techniques with evo-
lutionary optimization techniques. Despite their
somewhat misleading name, LCSs are not only sys-
tems suitable for classification problems, but may
be rather viewed as a very general, distributed
optimization technique. Essentially, LCSs have very
high potential to be applied in any problem do-
main that is best solved or approximated bymeans
of a distributed set of local approximations, or
predictions. The evolutionary component is de-
signed to optimize a partitioning of the problem
domain for generating maximally useful predic-
tions within each subspace of the partitioning.
The predictions are generated and adapted by
the approximation technique. Generally any form
of spatial partitioning and prediction are pos-
sible – such as a Gaussian-based partitioning
combined with linear approximations, yielding
a Gaussian mixture of linear predictions. In fact,
such a solution is developed and optimized by
XCSF (XCS for function approximation). The LCSs XCS
(X classifier system) and the function approxima-
tion version XCSF, indeed, are probably the most
well-known LCS architectures to date. Their opti-
mization technique is very-well balanced with the
approximation technique: as long as the approxi-
mation technique yields reasonably good solutions
and evaluations of these solutions fast, the evolu-
tionary component will pick-up on the evaluation
signal and optimize the partitioning. This chapter
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provides historical background on LCSs. Then XCS
and XCSF are introduced in detail providing enough
information to be able to implement, understand,
and apply these systems. Further LCS architectures
are surveyed and their potential for future research
and for applications is discussed. The conclusions
provide an outlook on the many possible future
LCS applications and developments.

Learning classifier systems (LCSs) are machine learn-
ing algorithms that combine gradient-based approx-
imation with evolutionary optimization. Due to this
flexibility, LCSs have been successfully applied to
classification and data mining problems, reinforcement
learning (RL) problems, regression problems, cogni-
tive map learning, and even robot control problems.

The main feature of LCSs is their innovative combina-
tion of two learning principles; whereas gradient-based
approximation adapts local, predictive approximations
of target function values, evolutionary optimization
structures individual classifiers to enable the formation
of effectively distributed and accurate approximations.
The two learning methods interact bidirectionally in



Part
E
|47.1

962 Part E Evolutionary Computation

that the gradient-based approximations yield local fit-
ness quality estimates of the generated approximations,
which the evolutionary optimization technique uses
for optimizing classifier structures. Concurrently, the
evolutionary optimization technique is generating new
classifier structures, which again need to be evaluated
by the gradient-based approach in competition with the
other, locally overlapping, interacting classifiers.

Due to the innovative combination of two learning
and optimization techniques, LCSs are often perceived
as being hard to understand. Facet-wise analyses of
the individual LCS components and their interactions,
however, give both mathematical scalability bounds
for learning and an intuitive understanding of the sys-
tems in general. Moreover, the currently most common
LCS, which is the XCS classifier system (note that
the X in XCS does not really encode any particular
acronym according to the system creator Wilson), is
comparatively easy to understand, to tune, and to ap-
ply. Thus, the core of this chapter focuses on XCS,
gives a facet-wise overview of its functionality, de-
tails several enhancements, and highlights various suc-
cessful application domains. However, XCS is also
compared with other LCS architectures and LCSs in

general are compared with other machine learning tech-
niques.

This chapter starts with a historical perspective,
providing information on the beginnings of LCSs and
establishing some terminology background.We then in-
troduce the XCS classifier system providing a detailed
system overview as well as theoretical and facet-wise
conceptual insights on its performance. Also tricks
and tweaks are discussed to tune the system to the
problem at hand. Next, the XCS counterpart for regres-
sion problems, XCSF, is introduced. Focusing then on
the application-side, LCS applications to data mining
tasks and to behavioral learning and cognitive modeling
tasks are surveyed. We cover various LCS architectures
that have been successfully applied in the data mining
realm. With respect to behavioral learning, we point out
the relation of LCSs to reinforcement learning. More-
over, we cover anticipatory learning classifier systems
(ALCSs) – which learn predictive schema models of
the environment rather than reward prediction maps –
and we introduce the modified XCSF version that can
effectively learn a redundant forward-inverse kinemat-
ics model of a robot arm. A summary and conclusions
wrap up the chapter.

47.1 Background

Learning classifier systems (LCS) were proposed over
30 years ago by Holland [47.1–3]. Originally, Hol-
land and Reitman actually called LCSs cognitive sys-
tems [47.4], focusing on problems related to reinforce-
ment learning (RL) [47.5, 6]. His cognitive system
developed a memory of classifiers, where each classi-
fier consisted of a condition part (taxon), an action part
(originally consisting of a message, and an effector bit),
a payoff prediction part, and several other parameters
that stored the age, the application frequency, and the
attenuation of the classifier.

Concurrently with the development of temporal dif-
ference learning techniques in RL – such as the now
well-known state-action-reward-state-action (SARSA)
algorithm [47.6] – Holland and Reitman introduced
the bucket brigade algorithm [47.4, 7], which also dis-
tributes reward backwards in time with a discounting
mechanism. In addition, the attenuation parameter in
a classifier realized something similar to an eligibility
trace in RL – distributing a currently encountered re-
ward also to classifiers that were active several time
steps ago and that thus indirectly led to gaining the cur-

rently experienced reward. Meanwhile, Holland’s cog-
nitive system applied a genetic algorithm (GA) [47.1,
8] as its second learning mechanism. The GA modified
the taxa in Holland and Reitman’s cognitive system.

In sum, the first actual LCS implementation, i. e.,
the cognitive system by Holland and Reitman [47.4],
was ahead of its time. It implemented various reward-
related ideas that were later established in the reinforce-
ment learning community – and can now partially be
regarded as standard RL techniques. However, the com-
bination with GAs yielded a highly interactive and very
complex system that was and still is hard to analyze.
Thus, while proposing a highly innovative cognitive
learning approach, the applicability of the system re-
mained limited at the time.

47.1.1 Early Applications

Nonetheless, early applications of LCSs were pub-
lished in the 1980s. Smith developed a poker deci-
sion making system [47.9] based on De Jong’s ap-
proach to LCSs [47.10]. Booker worked on animal-like
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automation based on the cognitive systems architec-
ture [47.11].Wilson proposed and worked on the animat
problem with LCS architectures derived from Hol-
land and Reitman’s cognitive systems approach [47.12,
13]. Goldberg solved a gas pipeline control task with
a simplified version of the cognitive system archi-
tecture [47.8, 14]. Despite these successful early ap-
plications, a decade passed until a growing research
community developed that worked on learning classi-
fier systems.

47.1.2 The Pitt and Michigan Approach

Two fundamentally different LCS approaches were pur-
sued from early on. The Pitt approach was fostered by
the work of De Jong et al. [47.10, 15, 16]. On the other
hand, the Michigan approach developed in the further
years at Michigan under the supervision of John H.
Holland [47.11, 14, 17, 18]. Diverse perspectives on the
Michigan approach can be found in [47.19].

The essential difference between the two ap-
proaches is that in the Pitt approach rule sets are evolved
where each particular rule set constitutes an individual
for the GA. In contrast, in the Michigan approach one
set of rules is evolved and each rule is an individual for
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Fig. 47.1a,b While the Pitt approach to LCSs evolves
a population of sets of rules, in the Michigan approach
there is only one set of rules (i. e., the population) that is
evolved

the GA. As a consequence, the Pitt-style LCSs are much
closer to general GAs because each individual consti-
tutes an overall problem solution. In the Michigan-style
LCSs, on the other hand, each individual only applies
in a subspace of the overall problem and only the whole
set of rules that evolves constitutes the overall problem
solution. Figure 47.1 illustrates this fundamental con-
trast between the two approaches.

As a consequence of this contrast, Pitt-style LCSs
usually apply rather standard GA approaches. The
whole population of rule sets is evolved. For fitness
evaluation purposes, each set of rules needs to be
evaluated in the problem environment addressed. On
the other hand, Michigan-style LCSs need to con-
tinuously interact with an environment to sufficiently
evaluate all the rules in the rule set – essentially ex-
ploring all the environmental subspaces to make sure all
rules can develop a sufficiently useful fitness estimate.
This continuous interaction and the typical interacting
components of Michigan-style LCSs are illustrated in
further detail in Fig. 47.2. Due to the continuously de-
veloping fitness estimates, often a more steady-state,
niched GA is applied online in Michigan-style LCSs.
The undertaken updates then depend directly on the cur-
rent interaction and thus on the current subset of rules
relevant in the experienced interaction. The steady-
state, niched GA optimizes the internal knowledge
base iteratively depending on the incoming learning
samples.
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Fig. 47.2 LCSs consist of a knowledge base (population of
classifiers), a genetic algorithm for rule structure evolution,
and a reinforcement learning component for rule evalua-
tion, reward propagation, and decision making. The system
interacts with its environment or problem iteratively learn-
ing online
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In summary, Pitt-style LCSs evaluate and opti-
mize their rule sets globally based on sets of problem
instances. They usually learn offline. Michigan-style
LCSs evaluate and optimize their set of rules online
while interacting with the problem, iteratively perceiv-
ing problem instances. The major qualities of Pitt-style
LCSs are that they evolve competing global problem
solutions in the form of sets of rules. Evolutionary
rule structure optimization is used – typically evolving
small sets of rules (10 s). Michigan-style LCSs, on the
other hand, are designed to develop one distributed, lo-
cally optimized problem solution by combining local
gradient-based approximation techniques with steady-
state, niched GAs. In consequence, typically larger,
more distributed sets of rules develop yielding problem
solutions with potentially 1000 s of rules.

47.1.3 Basic Knowledge Representation

Because an exemplary knowledge representation was
already discussed for the early cognitive system imple-
mentation of [47.4], we now provide a general sketch
of the knowledge representation typically found in
Michigan-style LCSs.

The knowledge representation of an LCS consists
of a finite population of classifiers (that is, a finite set
of rules). This population of classifiers essentially rep-
resents the current knowledge of the LCS about the
problem the system is applied to. Each rule – or clas-
sifier – usually consists of a condition and an action
part, as well as a prediction and a fitness estimate. The
condition part specifies the problem subspace in which
the classifier is applicable. When the condition part is
satisfied given a particular problem instance, a classi-
fier is said to match that problem instance. The action
part specifies an action that may be executed, or a clas-
sification that may be tested. The prediction specifies
the expected reward, or feedback value, given the spec-
ified action was executed under the specified contextual
conditions. The fitness estimates the value of this classi-
fier relative to other, competing classifiers. In the early
approaches, fitness was often simply equal to the pre-
diction value. In the currently established LCSs, fitness
typically estimates the accuracy of the prediction.

Michigan-style LCSs usually learn online about
a problem, iteratively perceiving or actively generating
problem instances. Given a particular problem instance,
first, the system forms a match set of those classifiers
in the population whose conditions match. Next, the
system decides on an action or classification and ex-

ecutes it. Classifiers in the match set that specify the
executed action constitute the current action set. After
feedback is received, the predictions of the classifiers
in the action set are adjusted. From the classifier pre-
diction estimates, a fitness estimate is derived for each
classifier. Finally, the steady-state GA is applied to the
match set or the population as a whole. The GA mod-
ifies classifier structures by reproducing, mutating, and
recombining well-performing classifiers and by delet-
ing ill-performing ones. In contrast to the Michigan
approach, Pitt-style LCSs evaluate their sets of rules
typically independently of each other in the provided
problem. The GA exchanges rules and rule-structures
within and across the sets of rules.

A Michigan-style LCS consequently is an interac-
tive, online learning system. It maintains a population
of classifiers as its knowledge base. It applies a niched,
steady-state genetic algorithm for gradual rule structure
evolution; it applies a gradient-based learning com-
ponent for rule evaluation – yielding prediction and
fitness estimates. Michigan-style LCSs are often ap-
plied in RL scenarios in which reward estimates need
to be propagated and action decisions are made based
on the learned reward prediction estimates. In this
case, typically techniques similar to SARSA learning
or Q-learning are applied. Figure 47.2 shows the basic
components of a Michigan-style LCS as well as their
interactions.

The earliest Michigan-style LCS implementation
is the introduced cognitive system CS1 [47.4]. After
various early applications of LCSs, Wilson set a mile-
stone in LCS research by introducing the zeroth level
classifier system ZCS [47.20] and the now most promi-
nent and well-known LCS: the XCS classifier sys-
tem [47.21]. Both systems were explicitly compared
to the very well-known Q-learning [47.22] technique
from the RL community, offering with ZCS and XCS
two learning classifier systems that can learn Q-value
functions with a compact highly generalized rule-based
representation.

In the following, we now first give a precise in-
troduction to the XCS classifier system. We then also
introduce the real-valued version for solving regression
problems, with a Gaussian mixture of linear approxi-
mations, i. e., XCSF. After that, we provide spot-lights
on various current application domains where vari-
ous types of LCSs, including XCS(F), have produced
highly competitive problem solutions, when compared
to other machine learning techniques and regression
algorithms.
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47.2 XCS

Wilson introduced the XCS classifier system in
1995 [47.21]. The two main novel features of XCS
in comparison to earlier Michigan-style LCSs are its
accuracy-based fitness estimation and its niche-based
application of the evolutionary component. The intro-
duction of accuracy-based fitness essentially decoupled
the classifier fitness estimate from the reward pre-
diction, enforcing that XCS learned complete payoff
landscapes rather than only estimates for those sub-
spaces where high reward is encountered. In addition,
Wilson related XCS directly to Q-Learning [47.21,
22]. Much later, even a relation to Kalman filtering
and general regression tasks was made mathemati-
cally explicit [47.23, 24]. The niche-based GA repro-
duction combined with population-wide deletion en-
abled a much more focused GA-based optimization
of classifier structures as well as the generalization
of classifier structures based on the sampling distri-
bution [47.25]. In consequence, XCS is an LCS that
is designed to evolve not only the best solution to
a problem, but it evolves all alternative solutions with
associated Q-value estimations and variance estima-
tions of the respective Q-value estimates. Due to its
GA design and fitness definition, XCS strives to ap-
proximate the full Q-table of a problem with a maxi-
mally accurate and maximally compact classifier-based
representation.

Despite its original strong relation to Q-learning and
RL in general, XCS has also been applied successfully
to classification problems and regression problems. In
the former case, XCS identifies locally relevant features
for the generation of maximally accurate classification
estimates. In the latter case, XCS optimizes the distri-
bution and structure of local, typically linear estimators
for a maximally accurate approximation of the func-
tion surface. Thus, despite its original strong relation
to RL, XCS is a much more generally applicable learn-
ing system that can solve single-step classification or
regression problems as well as multi-step RL prob-
lems, which are typically defined as Markov decision
processes.

47.2.1 System Overview

XCS evolves one population of classifiers. Classifier
structures are optimized by means of a steady-state GA.
A classifier consists of a condition part C, an action
part A, reward prediction r, reward prediction error ",
and fitness f estimates. While the condition and action

structures are iteratively optimized by the steady-state
GA, the estimates are adjusted using the Widrow–Hoff
delta rule [47.26] based on an approximation of the Q-
value signal.

While condition and action parts can be generally
represented in any way desired [47.25], in this overview
we focus on binary problems and a ternary representa-
tion of the condition part. Conventionally, the condition
part C is coded by C 2 f0; 1; #gL, where the # symbol
matches zero and one. Condition C essentially speci-
fies a hypercubewithin which the classifiermatches and
can be said to cover a certain volume of the complete
problem space. Action part A 2A defines an action or
classification from a provided finite set of possible ac-
tionsA. Reward prediction r 2 R estimates the moving
average of the received reward in the recent activations
of the classifier. Reward prediction error " estimates
the moving average of the absolute error of the reward
prediction. Finally, fitness f 2 Œ0; 1� estimates the mov-
ing average of the relative accuracy of the classifier
compared to the competing classifiers in the activated
match sets (or action sets). The larger the fitness esti-
mate, the on average larger the accuracy of a classifier
in comparison to all classifiers that encode the same
action and whose condition parts define overlapping
subspaces.

Each classifier also maintains several additional pa-
rameters. The action set size estimate as estimates the
moving average of the action sets the classifier was
part of. It is updated similarly to the reward predic-
tion r. A time stamp ts specifies the last time the
classifier was part of a GA competition. An expe-
rience counter exp specifies the number of applied
parameter updates. The numerosity num specifies the
number of (micro-) classifiers, this macro-classifier
actually represents – mainly for saving computation
time.

Learning usually starts with an empty population.
The problem faced is sampled iteratively, encounter-
ing particular problem instances s 2 S. The set of all
matching classifiers in the classifier population ŒP� is
termed the match set ŒM�. If some action in A is not
represented in ŒM�, a covering mechanism is applied.
Covering creates classifiers that match s (inserting #-
symbols in the new C with a probability P# at each
position) and that specify the unrepresented actions. ŒM�
essentially contains all the knowledge of XCS about the
current problem instance. Given ŒM�, XCS estimates the
payoff for each possible action forming a prediction ar-
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ray P.A/,

P.A/D
P

cl:ADA^cl2ŒM� cl:r 	 cl:fP
cl:ADA^cl2ŒM� cl:f

; (47.1)

where classifier parameters are addressed using the dot
notation. P.A/ computes the fitness-averaged Q-value
estimates for each action in the current state s. Thus,
P.A/ can be used to decide on the currently most
promising action.

Any action selection policy may be applied, such
as choosing the action with the largest Q-value ex-
pectation. Because XCS relies on exploring the com-
plete problem spaces, however, it is important that
all actions are applied sufficiently frequently. Al-
ternatively, also the prediction error estimates may
be considered for action selection – choosing, for
example, that action with the highest fitness-aver-
aged " value with the aim of maximizing informa-
tion gain (see also more elaborate techniques sur-
veyed recently in the computational intelligence liter-
ature [47.27]).

After the choice of an action A, an action set
ŒA� is formed, which contains all classifiers in ŒM�
that specify the chosen action. Moreover, the cho-
sen action is executed, feedback is received in the
form of scalar reward R 2R, and the next prob-
lem instance may be perceived. In conjunction with
the maximum P.A/ derived from the resulting match
set, the ŒA� formed is updated according to the esti-
mated Q-value signal, which is RC � maxA2A P.A/.
Moreover, the steady-state GA may be applied, repro-
ducing two classifiers in ŒA�, but choosing classifiers
from ŒP� for deletion. In classification problems – of-
ten also termed single–step problems – the Q-learning
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Fig. 47.3 The XCS classifier system
learns iteratively online. With each
iteration it forms a match set given
the current problem instance. Next,
it chooses an action or classification
and applies it. After the perception of
feedback, the classifiers in the corre-
sponding action set ŒA� are updated
and the steady-state GA is applied.
After that, the next problem iteration
proceeds

update only considers the immediate reward R. Fig-
ure 47.3 illustrates the iterative learning process applied
in XCS.

Rule Evaluation
To evaluate the classifiers, it is crucial to update
their parameter estimates and derive a relative fit-
ness estimate. Parameter updates are applied itera-
tively in respective action sets. Usually, the predic-
tion error is updated before the prediction and the
fitness. Other parameters may be updated in any
order.

In particular, the reward prediction error " of each
classifier in ŒA� is updated by

" "Cˇ.j��Rj � "/ ; (47.2)

where �D R in classification problems and

�D RC � max
A2A

P.A/

in multi-step reinforcement learning problems. Parame-
ter ˇ 2 Œ0; 1� specifies a learning rate, which is typically
set to values between 0.05 and 0.2. The higher the value
of ˇ is, the more the " value depends on the most recent
problem interactions. Next, the reward prediction r of
each classifier in ŒA� is updated by

r rCˇ.�� r/ : (47.3)

Note that XCS essentially applies Q-learning updates,
where Q-values are not approximated by a tabular entry
but by a collection of rules expressed in the prediction
array P.A/ [47.21].
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To update the fitness estimate of each classifier
in ŒA�, a current scaled relative accuracy �0 is deter-
mined.

� D
(
1 if " < "0

˛
�
"0
"

��
otherwise

; (47.4)

�0 D � 	 numP
cl2ŒA�

cl:� 	 cl:num : (47.5)

� essentially measures the current inverse error of
a classifier. "0 specifies the targeted error below which
a classifier is considered maximally accurate. �0 then
determines the current relative accuracy with respect
to all other classifiers in the current action set ŒA�.
Thus, each classifier in ŒA� competes for a limited fit-
ness resource, which is distributed relative to the current
accuracy estimates �. Finally, the fitness estimate f is
updated given the current �0 by

f  f Cˇ.�0� f / : (47.6)

In effect, fitness reflects the moving average, set-
relative accuracy of a classifier. As before, ˇ controls
the sensitivity of the fitness estimates to changes in the
population.

The action set size estimate as is updated similarly
to the reward predictionR but with respect to the current
action set size jŒA�j

as asCˇ.jŒA�j � as/ ; (47.7)

resulting in an action set size adaptation to changes jŒA�j
in an order similar to the fitness changes. Parameters r,
", and as are updated using the moyenne adaptive mod-
ifiée technique [47.28]. This technique sets parameter
values directly to the average of the so far encountered
cases until the resulting update is smaller than ˇ (which
is the case after 1=ˇ updates). Finally, the experience
counter exp is increased by one. If the GA is applied,
the time stamps ts of all classifiers in ŒA� are set to the
current iteration time t.

Rule Evolution
XCS applies a steady-state genetic algorithm (GA) for
rule evolution. Given a current action set ŒA�, the GA
is invoked if the average time since the last GA ap-
plication (stored in parameter ts) in ŒA� is larger than
threshold �GA. This mechanism is applied to ensure suf-
ficient evaluation of classifiers, as well as to control

unbalanced sampling. The higher the threshold �GA is,
the slower evolution proceeds, but also the less prone
XCS is to unbalanced problem sampling [47.29].

The steady-state GA first selects two parental clas-
sifiers for reproduction in ŒA�. While this selection
process was done by proportionate selection based on
fitness in the original XCS, more recently it was shown
that tournament selection can improve the robustness of
the system highly significantly [47.30]. Tournament se-
lection in XCS chooses the classifier with the highest
fitness from a tournament of randomly chosen clas-
sifiers from ŒA�. The tournament size is usually set
relative to the current action set size jŒA�j to � 	 jŒA�j. Two
classifiers are selected in two independent tournaments.
The selected classifiers are reproduced generating the
offspring. Crossover and mutation are applied to the
offspring. The parents stay in the population. Muta-
tion usually changes each condition and action symbol
randomly with a certain probability �. Crossover ex-
changes condition and action symbols. Often, simple
uniform crossover is applied (exchanging each symbol
with a probability of 0:5). However, also more sophisti-
cated estimation of distribution (EDAs) algorithms have
been applied for more effective building block process-
ing [47.31].

The offspring parameters are initialized by setting
prediction R, ", f , and as to the parental values. Fitness
f is often decreased to 10% of the parental fitness. Ex-
perience counter exp and numerosity num are set to one.

The resulting offspring classifiers are finally added
to the population. In this case, GA subsumptionmay be
applied [47.32] to stress generalization. GA subsump-
tion searches for another classifier in ŒA� that may sub-
sume an offspring classifier. This classifier must have
a more general condition than the offspring classifier,
its error estimate must be below "0, and its experience
counter must be sufficiently high (exp> �sub). If such
a classifier is found, the offspring is subsumed, increas-
ing the numerosity of the more general classifier by one
and discarding the offspring.

The population of classifiers ŒP� is maximally of fi-
nite size N. When this size is exceeded after offspring
insertion, classifiers are deleted from ŒP�. Fitness pro-
portionate selection is applied depending on the action
set size estimates as. Note that tournament selection is
not suitable in this case because a balance in the action
set sizes is most desirable. The likelihood of deletion
of a classifier is further increased by a factor f=f if this
classifier is experienced exp> �del and additionally if
its fitness f is below a fraction ı of the average fitness f
in the population.
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47.2.2 When and How XCS Works

From the description above it may seem hard to un-
derstand why XCS learns successfully. This section
provides intuition about when and how XCS works and
points to relevant literature that quantifies the sketched-
out intuition.

The two interacting learning components, which are
gradient-based rule evaluation and evolutionary-based
rule evolution, are strongly interactive. From an evo-
lutionary point of view, several evolutionary pressures
yield particular learning biases. Since reproduction is
designed to maximize fitness, XCS strives to develop
maximally accurate classifiers applying a fitness pres-
sure [47.33]. Meanwhile, rules are selected in ŒA� for
reproduction but they are selected in ŒP� for deletion.
Since the classifier conditions in ŒA� will on average
cover a larger subspace, i. e., they have a larger vol-
ume than the average condition volumes of classifiers
in ŒP�, more general classifiers will be reproduced on
average (when ignoring the fitness pressure for the mo-
ment), yielding a sampling-dependent generalization
pressure [47.33]. In consequence, it has been put for-
ward that XCS strives to evolve a complete problem
solution that is represented by maximally general clas-
sifiers that are meanwhile maximally accurate (error
below the threshold "0). The resulting problem solution
representation was previously termed the optimal solu-
tion representation ŒO� [47.34].

While these evolutionary pressures generally de-
scribe how the GA in XCS works, successful rule
evolution still relies on sufficiently accurate fitness sig-
nals. Thus, rule evaluation needs to have enough time to
estimate rule fitness before expected rule deletion. This
leads to a covering bound, which quantifies the need
for a sufficiently large population size given a particu-
lar initial condition volume. Moreover, each particular
problem can be assumed to have a certain complexity
in terms of subspace sizes that need to be separated for
learning to take place, that is, for decreasing the error
below the average deviation of the payoff signal to per-
ceive an initial fitness signal towards higher accuracy. In
consequence, the subspace size requires the generation
of classifiers with condition volumes of maximally that
size, consequently yielding a schema bound on the pop-
ulation size to be able to cover the full problem space
with such condition volumes. Finally, better classifiers
with a certain condition volume need to be able to grow,
that is, have reproductive opportunities before deletion
can be expected, consequently yielding a reproductive
opportunity bound.

Together these bounds give estimates on the neces-
sary initial condition volumes and the resulting max-
imal population size necessary to cover a problem
space. For example, given the need for an initial
classifier volume of 0:01 of the encountered prob-
lem space, the population size N should be set to
about 10=0:01D 1000 to assure proper rule evolu-
tion. Given that these factors are satisfied, better
classifiers are assured to be identified and to grow
in the population with high probability. For binary
and for real-valued problem domains, these consid-
erations have been quantified, showing that XCS is
an approximate polynomial-time learning algorithm in
problem domains with bounded complexity [47.25,
35].

The considerations above ensure the theoretic
growth of better classifiers. However, the evolutionary
component may still destroy relevant classifier struc-
tures due to mutation and crossover. Thus, neither
mutation nor crossover may be overly disruptive. In ex-
treme cases, where highly unstructured subspaces may
need to be identified and recombined, estimation of
distribution algorithms can help to identify these sub-
spaces [47.31, 36]. In most cases, though, a sufficiently
low mutation rate and uniform crossover suffice to learn
successfully. However, clearly mutation is mandatory
to detect more accurate classifier structures over time.
Thus, a good compromise is necessary to ensure that
offspring is usually mutated but its structure is not
fully destructed. In the binary domain, for example,
the mutation probability is consequently often set to
1=l, where l is the number of bits of a problem in-
stance. This is a typical choice for the mutation strength
used in genetic algorithms – essentially setting the ex-
pected number of attributes that will be mutated to
one.

47.2.3 When and How to Apply XCS

From the reflections above it becomes clear that XCS
is designed to learn the target function of a problem by
a population of locally accurate predictors, that is, clas-
sifiers. This target function may be the Q-value function
in RL problems, a correctness function in classification
problems, or also any other type of function. XCS is
best suited to be applied in problem domains that can
be partitioned into subspaces within which simple pre-
dictions yield accurate values. Moreover, XCS is even
better suited to be applied to problems where regular-
ities in the target function can be well-represented in
classifier conditions, that is, subspaces in which the



Learning Classifier Systems 47.2 XCS 969
Part

E
|47.2

function values are approximately equal should be com-
pactly representable with few classifiers. Overall, XCS
thus strives to develop distributed problem solutions in
the form of a set of locally partially overlapping classi-
fier structures, which cover the whole sampled problem
space in a generalized way.

As long as a condition representation can be cho-
sen that identifies expectable regularities in a data set
or also in a reinforcement learning problem well, XCS
is a good candidate to optimize these local condition
structures iteratively online. However, also in offline,
data mining-based classification problems XCS was
applied successfully and it was shown that the gen-
eralization and accuracy performance XCS yield is
comparable to other state-of-the art machine learning
algorithms [47.25, 37], such as decision tree learners,
instance-based classifiers, or support vector machines.
Thus, XCS may be applied to multi-step Q-learning
problems but also to single-step classification problems
and general regression problems. Online generalization
and optimal condition structuring for accurate predic-
tions are the major features of XCS. From a regres-
sion perspective, XCS is a non-parametric regression
algorithm that strives to minimize the expected abso-
lute function approximation error, or also the expected
squared function approximation error as put forward
elsewhere [47.24].

The two components, (a) gradient-based rule pre-
diction approximation and evaluation and (b) evolution-
ary rule structure evolution, are the key to successful
XCS applications. With respect to rule structure evolu-
tion, also the XCS system strongly depends on distance
representations, which can be compared with general
kernel representations as used in support vector ma-
chines and elsewhere [47.38, 39]. As long as the repre-
sented kernel-based condition structures can be mean-
ingfully modified by genetic operators, evolution and
thus also XCS can be applied. Meanwhile, also sensible
value predictions need to be generated. Gradient-based
methods work best to approximate these predictions,
whether the prediction is a single value, is computed
linearly or polynomially from input, or its structured
otherwise depends on the problem at hand and the
gradient-based approximation approach available. The
more the prediction structure fits with the regularities in
the target function, the faster and more robust learning
can be expected. While such structural considerations
can improve system performance, the successful appli-
cations of XCS to various problem domains show that
successful learning is usually not precluded by subopti-
mal structural choices.

47.2.4 Parameter Tuning in XCS

While XCS does, indeed, specify many parameters,
only few parameters are really crucial. All other param-
eter values can typically be set to standard values. Here
we discuss some rules of thumb for tuning the critical
parameter settings and also provide standard settings.
While the following recommendations have not been
published elsewhere so far, they can be derived from
observations and other recommendations found in the
literature [47.25, 35, 40].

The twomost important parameters are the maximal
population size N and the strived-for error threshold "0.
The larger the population size N is, the more capacity
XCS has for learning and thus the more complex prob-
lems XCS can learn. On the other hand, the larger N
is, the slower XCS learns, because it reproduces and
deletes only two classifiers in a typical learning itera-
tion. Parameter "0 specifies the targeted approximation
error. In continuous function approximation problems,
smaller "0 values demand finer problem space partition-
ings and thus larger population sizes to cover the whole
problem space and to enable reproductive opportunities
(see above). Moreover, "0 can partially determine the
fitness signal available to XCS: if "0 is chosen very
small, (47.4) will yield values very close to zero for
all highly inaccurate classifiers. Thus, overly small "0
values should be avoided. In noisy problems, "0 should
thus also not be chosen much smaller than the standard
deviation of the noise expected in the function value
signal.

Without much knowledge of a problem, one may
start with a rather small population size N – say 1000 –
and evaluate learning progress in this setting with a de-
sired "0. If the generated approximation error over time
does not decrease, then "0 should be set to about 1=10
of the encountered error. Next, the population size N
should be progressively increased, for example, to N D
5000 or more. If still no error decrease is observed, fur-
ther analysis is necessary. If the population is filled with
classifiers but the match set sizes are very small (be-
low 5), better classifiers probably do not receive enough
reproductive opportunities. In this case, first the initial
condition volume should be increased – for example, in
the binary domain the probability P# would need to be
increased (up to close to 1). If the match set still de-
creases to sizes below 5, the problem is rather hard,
requiring a further population size increase. On the
other hand, if the match set sizes are very large (above
100), then over-generalization takes place and XCS ap-
parently does not pick up the fitness signal. In this case,
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the initial condition volume should be decreased. If this
does not help, then the GA application rate should be
decreased to enforce a more accurate classifier evalua-
tion before evolution applies. This can be accomplished
by increasing the threshold �GA to say 100, 500, or
even higher. An increase in �GA can also be crucial in
problems where the problem domain is sampled highly
unevenly, as is studied in detail elsewhere [47.29].

Several other parameter settings may be checked
as well; the mutation rate should not be set overly
high. As stated above, in the binary problem domain,

for example, a mutation rate of �D 1=l, where l de-
notes the condition size, is a good rule of thumb.
Crossover can mostly be applied without restrictions
(�D 1:0) – especially when tournament selection for
reproduction is chosen because in this case disruption
is often prevented by choosing two equal classifiers.
Other parameters can be safely set to somewhat stan-
dardized values. A typical initial parameter setting for
XCS is: N D 1000, "0 D 0:1, �D 1=l, �D 1, ˛ D 1,
ˇ D 0:2, � D 5, �GA D 25, � D 0:9, �del D 20, ı D 0:1,
�sub D 20, P# D 0:5, and � D 0:4.

47.3 XCSF

The XCS classifier system for real-valued inputs was
introduced by Wilson in 1999, introducing Michigan-
style LCSs to the real-valued problem domain [47.41,
42]. It was further enhanced to approximate continu-
ous real-valued function surfaces in 2001/2002 [47.43],
yielding an iterative online learning non-parametric
regression system. XCS for function approximation
(XCSF) essentially enhances and modifies XCS by
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Fig. 47.4 The XCSF classifier system learns linear value predic-
tions and usually does not specify actions. The feedback is the
actual function value, which is used to update the linear approxi-
mators of the matching classifiers. The consequent error and fitness
estimation updates are then considered in the evolutionary compo-
nent for further optimization of the condition structures

Fig. 47.5a,b Screenshots of the XCSF program learning to approximate the crossed ridge function. Current performance
values are plotted on the top left. The current approximation surface is approximated on the bottom left. On the right-
hand side the classifier condition structures are plotted. For visualization purposes, the receptive field sizes are plotted
smaller than their actual size. Darker classifier conditions have higher fitness values I

changing its classifier condition structure to accept real-
valued input. Moreover, the prediction part no longer
predicts single values, but it computes its prediction
from the input using linear approximation techniques,
such as recursive least squares (RLS) [47.44]. Finally,
the action part of the system is removed, applying the
parts of the algorithm that were previously applied to
ŒA� to the match set ŒM� in XCSF. Figure 47.4 illustrates
the iterative learning process in XCSF.

XCSF is thus a regression system that solves func-
tion approximation problems by developing partially
overlapping locally weighted projections in the form of
a population of classifiers. In this form, XCS develops
problem solutions that are similar to those developed
by the locally-weighted projection regression algorithm
(LWPR), which is rather well-known in the robotics
community [47.45]. A comparative study has shown
that XCSF can outperform LWPR in various problem
domains [47.46], often yielding better problem space
partitionings, as well as more accurate function value
approximations with a comparable number of individ-
ual locally linear approximators (i. e., classifiers). In
XCSF, each classifier specifies in its condition the sub-
space within which it is applicable. Thus, the condition
may be compared with a receptive field determining the
neural activity of the classifier. Moreover, each classi-
fier specifies a linear approximator weighted within its
subspace. In effect, the function approximation prob-
lem is approximated by locally-weighted, overlapping
linear approximations. While typically the weighting is
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fitness-dependent, also a weighting based on the dis-
tance to the center of the classifier condition can be
applied.

With this structure it has been shown that XCSF is
very well suited for developing any type of kernel struc-
ture [47.47]. In effect, various condition structures have
been applied, including rectangular structures with and
without rotation and with various forms of represen-
tation [47.35, 48, 49]. Moreover, the linear approxima-
tions may be enhanced to polynomial approximations
and others [47.50]. Finally, it is also possible to cluster
a contextual space with conditions, while approximat-
ing linear (or other) predictions given totally different
inputs. For example, the velocity kinematics of an arm
can be predicted locally dependent on the angular arm
constellation for redundancy resolution [47.51] (see fur-
ther details below). Thus, XCSF is a highly flexible
system with which other modifications in the condi-
tion and prediction parts of the classifiers may still yield
highly vital system applications.

As an example, we applied XCSF to the crossed
ridge function – a function that has been used as
a benchmark in the neural computation and machine

learning community for many years [47.45, 52]. The
function contains a mix of linear and non-linear sub-
spaces. It is specified in two dimensions as follows

f1.x1; x2/Dmax
˚
exp.�10x21/ ; exp.�50x22/ ;
1:25 exp.�5.x21C x22//



: (47.8)

We ran XCSF with a maximum population size N D
4000 and a target error 0 D 0:005 on this function,
applying a condensation mechanism late in the run.
Figure 47.5 shows that XCSF is able to yield a good
function approximation very early in the run. The
evolving classifier structures learn to suitably partition
the problem space into local subspaces. In consequence,
a smooth overall approximation surface is generated.
Note how the inverse exponential hill in the center is ap-
proximated with nearly circular receptive fields, while
the fields are selectively elongated in the x1 or x2 di-
mension due to the non-linearities caused by the ridges
extending to the four sides. Towards the corners of the
input space, the function flattens out so that the recep-
tive fields become increasingly wider.

47.4 Data Mining

Data mining is a rather large field of research that gen-
erally addresses the challenge of extracting knowledge
from data. In the LCS realm, the addressed data usually
consists of a set of data instances, where each instance
specifies a set of features and a corresponding class the
data instance belongs to. LCSs then typically learn to
mine the data by predicting the class likelihoods of un-
seen data instances, as well as by identifying the most
relevant features and feature interactions for classifi-
cation. Particularly Pitt-style LCSs have proven to be
highly valuable in data mining applications. However,
also the XCS classifier system was successfully applied
in this domain.

The XCS system was also converted to an of-
fline learning system; the sUpervised classifier system
(UCS) algorithm [47.53] determines classifier predic-
tions and resulting fitness values in a supervised man-
ner. Meanwhile, the other learning aspects of UCS were
derived from XCS. Both, XCS and UCS have shown
effective if not even superior prediction accuracies in
various data mining tasks – most of them taken from
the UCI machine learning database repository [47.54].
When applying always the same standard setting and
comparing with various other decision making algo-

rithms, such as support-vector machines, decision tree
learning, naive Bayes classifiers, and others imple-
mented in the WEKA machine learning tool [47.55],
XCSF outperformed these competing techniques in
many cases – often depending on the problem at
hand [47.25]. A similar performance was achieved with
UCS, outperforming XCS in some cases due to its more
accurate classifier prediction estimates. XCS was also
further enhanced to be able to deal with highly unbal-
anced datasets in data mining domains by automatically
adjusting the threshold that controls the frequency of
GA applications �GA [47.29].

Pitt-style LCSs have been evaluated and applied
to data mining problems even more extensively. The
typical offline-learning scenario faced in data min-
ing particularly suits the Pitt approach. However,
also the fact that often very compact rule sets are
strived for is advantageous for the Pitt approach. More
than 10 years ago, the GALE architecture [47.56,
57] yielded very good performance results on a col-
lection of datasets from the UCI repository. GALE
distributes its evolutionary process adding additional
niching biases due to a grid-based spatial distribution
of individuals. A comparative study of GALE, XCS,
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and other machine learning algorithms can be found
in [47.58].

The GAassist architecture [47.59, 60] develops
a priority list of classification rules. The advantage of
GAassist is its developing compactness. A compara-
tive analysis with XCS is provided in [47.61]. Later,
the architecture was enhanced with ensemble learn-
ing techniques [47.62] and memetic algorithms [47.63],
proving high scalability and fast learning of very com-
pact rule sets.

Recently, many efficiency enhancement techniques
from the GA literature (cf. [47.64]) and from other
fields, including bioinformatics and systems biol-
ogy [47.65] were applied to various LCSs. These tech-
niques can help tremendously to improve the learning
speed of LCSs, particularly in data mining realms. For

example, windowing techniques select subsets of data
instances to speed up the classifier evaluation process.
Fitness surrogates were used to make the fitness es-
timation even cheaper [47.66]. Hybrid methods were
already mentioned above; they combine traditional GA
operators with informed ones, as is done when ap-
plying memetic algorithms, which locally improve the
developing classifier structures when applied to LCSs.
In combination, such techniques can yield LCSs that
not only produce highly accurate classification perfor-
mance and good generalizations, but they also offer
solution interpretability allowing mining of the knowl-
edge developed in the LCS rules, and they generate
these results without requiring much computational
time – which is often comparable to the time needed
by much simpler machine learning techniques.

47.5 Behavioral Learning

While the application of LCSs to data mining problems
will certainly still produce many further impressive re-
sults and promises to yield novel, deep insights into data
structures, LCSs were originally designed as cognitive
systems. Thus, in the following we will focus on LCSs
as cognitive systems, their structures, and their poten-
tial as neural cognitive models. As had been sketched
out above, the XCS classifier system in particular was
compared with Q-learning in RL. We start from this
perspective and detail various successful applications of
XCS in reinforcement learning problems. Next, ALCSs
are surveyed. ALCSs learn generalized cognitive maps
that are suitable to apply Sutton’s Dyna algorithm and
value iteration techniques in general. A strong relation
to factored RL techniques was pointed out recently in
this respect [47.67]. Finally, robotics applications of
LCSs are discussed and their potential is revealed.

47.5.1 Reward-Based Learning with LCSs

From the beginning [47.2] a big appeal to LCSs lay in
the fact that they are designed for reward-based learn-
ing. Once the original bucket-brigade algorithm was
replaced by Q-learning techniques, a theory developed
in the RL community also applied to LCSs to a certain
extent.

In XCS, in particular, it was shown that the sys-
tem approximates the Q-value function by a collection
of classifiers. The prediction array (47.1) calculation
essentially approximates the current Q-value estimates
for the current state in the environment. The fitness

weighting based on the relative accuracies, which are
normalized to one, assures that these Q-value esti-
mates on average do not over or underestimate the
expected Q-value. Moreover, since Q-learning is an
off-policy learning technique, XCS is well-suited to
be combined with it because also XCS benefits from
exploring all possible state–action combinations in
the long run – striving to develop an approxima-
tion of the complete Q-value function in the problem
space.

As a result, XCS has been successfully applied to
learning optimal paths in various maze environments.
Starting from the Woods1 and Woods2 environments
proposed by Wilson [47.20, 21], XCS’s performance
and generalization capabilities have been investigated
in various mazes [47.68]. For illustrative purposes such
mazes are shown in Fig. 47.6. These maze environ-
ments provide information about the surrounding grid
cells, indicating whether they are either free or occu-
pied by an obstacle or by food. Reaching the latter cell
usually results in a reward trigger. Movements are typ-
ically possible to the eight surrounding cells, yielding
a rather large action space. The point of providing sen-
sory state information rather that cell IDs or coordinates
is that XCS is then able to exhibit its generalization
capabilities. It essentially manages to generalize over
the sensory state space ignoring irrelevant bits and gen-
eralizing over the states with respect to state–action
combinations that yield the same reward.

Performance in many of these environments has
yielded extreme generalization capabilities. For exam-
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a)  Woods1 b)  Maze6

Fig. 47.6a,b Two highly typical maze environments used
as benchmarks in the LCS literature for generalized rein-
forcement learning. Woods1 is a toroidal maze. In Maze6
the food location is much harder to find. In both cases,
the LCS-controlled agent perceives information about the
eight neighboring cells encoding free, blocked, and food
cells by means of two bits. The agent can execute move-
ments to each of these cells. Movements to blocked cells
yield no reward. A movement to the food cell triggers re-
ward and a reset of the agent

ple, in the Maze6 environment (Fig. 47.6) up to 90
irrelevant bits were introduced, which changed ran-
domly while interacting with the environment. While
learning was slightly delayed and a larger population
size was needed for successful learning, the optimal
Q-value function was still extracted from iterative in-
teractions [47.25]. Thus, XCS learned the optimal
Q-value function in a problem space that contained
more than 1030 potential sensory state encodings. Also
rather noisy action outcomes did not preclude learn-
ing success. Later, it was shown that highly effective
generalizations are even possible when each bit in the
sensory encoding is relevant. In [47.36] the encoding
for each bit was changed to a nested Boolean function,
such as the parity function. XCS was still able to learn
the optimal Q-value function, while Q-learning with-
out generalization failed miserably due to the large state
space. Thus, XCS is able to identify those aspects of the
available sensory information that are relevant for accu-
rate reward predictions.

To successfully apply XCS in these scenarios, one
crucial modification was necessary to stabilize the Q-
values and thus the derived fitness values: the update of
the classifier predictions had to be further modified by
the error gradient factor, converting (47.3) to

r rCˇ.�� r/
fP

cl2ŒA
�1�

cl:f
: (47.9)

The exact derivation of this equation can be found in
the literature [47.69]. The gradient term essentially re-

sults in much more stable performance and successful
learning and generalization in problems that require
the establishment of long reward chains. It stabilizes
the reward learning by down-scaling updates of inaccu-
rate and unreliable classifiers. Consequently, these rules
do not tend to over-estimate reward, and thus learning
progress is stabilized. As a further consequence, XCS
with gradient-based reward predictions updates was
also successfully applied to blocks world problems, in
which even more generalizations are possible [47.25].

The generalization capabilities of LCSs reached
even as far as being successfully applied to control
simple light following behavior on a real robot plat-
form [47.70, 71]. In this case, however, reward learn-
ing was maximized and no complete Q-value function
approximation developed. Nonetheless, this work con-
stituted one of the first successful application in the
robotics domain.

Besides condition–action Michigan-style LCSs,
such as the XCS, other Michigan-style LCS techniques
have been applied for behavioral learning and also
for learning cognitive maps. Such anticipatory learning
classifier systems are surveyed in the following.

47.5.2 Anticipatory Learning
Classifier Systems

Anticipatory learning classifier systems (ALCSs) are
learning systems that learn a generalized predictive
model or cognitive map [47.72] of the encountered en-
vironment online. ALCSs are typical Michigan-style
LCSs. However, in contrast to the usual classifier struc-
ture, classifiers in ALCSs have a state prediction or an-
ticipatory part that predicts the environmental changes
in the environment caused when executing the speci-
fied action in the specified context. As in XCS, ALCSs
derive classifier fitness estimates from the accuracy of
their predictions. However, the accuracy of the antici-
patory state predictions are considered, rather than the
accuracy of the reward prediction. Figure 47.7 illus-
trates the typical structures and learning processes that
apply in an ALCS architecture.

Rick Riolo originally proposed an ALCS that gen-
erated its cognitive map mediated by a message list
storage system, which was also used in Holland’s orig-
inal classifier system architecture [47.73]. However,
this approach appeared to not be sufficiently elegant
to enable any serious learning. Starting with Stolz-
mann’s anticipatory classifier system [47.74], various
ALCS architectures were developed. Particularly in
maze problems, optimal behavior was achieved with
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Fig. 47.7 Instead of the condition–
action–reward prediction rules in
typical LCSs, ALCSs encode and de-
velop condition–action–effect rules.
Typically, the structural optimization
of these rules is done by a combi-
nation of evolutionary and heuristic
techniques

various ALCSs [47.75–79]. To prevent the development
of overgeneral models for concurrent reward learning,
the reward learning process was often decoupled, yield-
ing a system that learns a cognitive map based on
LCS principles, and, additionally, a state value esti-
mation system. In combination, DYNA-based learning
techniques [47.80] were applied to improve the state
value estimations also offline. These techniques al-
lowed the simulation of animal-like behavioral patterns,
such as reward adaptations based on knowledge about
the behavioral consequences in rats in a T-maze envi-
ronment [47.81], as well as in controlled devaluation
or satiation experiments [47.82]. In these studies it
was also pointed out that ALCSs do not only allow
DYNA-based reward learning updates, but also en-
able the application of search and planning techniques
for improving behavioral performance of the system.
Even curiosity mechanisms have been added [47.83] to
speed up the learning progress. Most approaches, how-
ever, never generalized the list of states with associated
rewards.

The combination of the ACS2 system with the XCS
system for state-value estimations, terming the resulting
system XACS (x-anticipatory classifier system), may
be the one with the most current potential for future
research [47.84]. XACS essentially applies two LCS
learning mechanisms: one being an ALCS architecture
in the form of ACS2, which learns a cognitive model of
the encountered environment, and the other one being
the XCS system, which learns state-value estimations
in this case. Figure 47.8 illustrates the components in
the XACS architecture and their interactions.

XACS has been shown to develop optimal behav-
ior in blocks world problems in which other approaches
failed to yield proper generalizations and resultingly

optimal behavior control. Moreover, the reward-based
generalization mechanism in XACS is directly based
on the XCS classifier system, thus enabling the in-
corporation of any tools and representations developed
for XCS so far. The generalizations that were de-
veloped confirmed the identification of task-relevant
perceptual attributes. In the XCS components, reward-
distinguishing attributes were identified. In the ACS2
component, on the other hand, state prediction-relevant
components were detected. In consequence, general-
ized detectors for prediction with respect to reward
and state could be distinguished. The implementa-
tion of other anticipatory mechanisms in XACS, such
as task-dependent attentional mechanisms, further in-
teractions of the learning components, and multiple
behavioral modules for the representation of multiple
motivations (or needs) [47.84] are still open issues in
the LCS realm. Further research with ALCSs is ex-
pected to yield highly promising, cognitive learning
architectures.

47.5.3 Controlling a Robot Arm with an LCS

We end this section of behavioral learning with the
XCSF system. Over the last decade or so it has be-
come increasingly clear that XCS is extremely well
suited to partition a contextual space for the generation
of accurate predictions. Predictions, however, do not
necessarily need to be reward predictions. Behavioral
consequences serve just as well as a target for predic-
tions. The forward kinematics mapping in the robotics
domain [47.85] offers even another potential target for
learning.

Consequently, XCSF was modified to learn the
forward velocity kinematics of a robotic arm in simu-
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Fig. 47.8 The XACS system com-
bines the model learning capabilities
of ALCSs with the generalizing re-
inforcement learning capabilities of
XCS. Consequently, generalizations
in the two system components are
targeted towards a compact represen-
tation for accurate predictions and
for reward predictions, respectively.
The combined system enables the
application of lookahead planning
and search techniques for behavioral
control as well as of reinforcement
learning techniques and combinations
thereof

lation [47.86]. To do so, XCSF projects its condition
parts into the joint angle space of the robotic arm.
However, its locally linear predictions receive as input
small joint movements, that is, changes in joint space
and predict the consequent change in task space, that
is, changes of the end-effector location. This mapping
has the great advantage that it is locally linear so that
given a current joint angle constellation of the arm not
only location changes of joint angle movements can
be predicted but also directional motion of the end-
effector can be invoked by inverting the locally linear
forward velocity mappings. Seeing that those are lin-
ear, the inversion can be rather easily done using linear
algebra techniques. Given a redundant arm system –
one that has more degrees of freedom (i. e., joint an-
gles to manipulate) than actual locations to move to –
it is possible to add additional constraints to the arm
motion. For example, the arm can be driven to main-
tain a relaxed arm posture while pursuing a certain goal
or it may be forced to prevent moving a certain joint

angle at all [47.87]. Recent advancements in the explo-
ration strategy, which can be self-induced by the XCSF
controller during learning, have shown that XCSF is
able to learn to control all seven degrees of freedom
of a humanoid arm highly effectively – flexibly ad-
hering to different constraints while pursuing motions
to certain goal locations. Moreover, mappings could
be learned in different reference frame representations.
For example, end-effector locations were either repre-
sented in a Cartesian coordinate system or in a distance
plus angles encoding. XCSF learned different classi-
fier structures due to the differences in the linearities
encountered. Nonetheless, XCSF yielded equally good
arm control in both cases [47.51]. Figure 47.9 illustrates
the XCSF setup for arm control.

These results confirmed that XCSF may very well
be further developed into a cognitive system architec-
ture for behavioral control. While this type of architec-
ture was probably not the one envisioned by Holland
originally, it may still prove highly valuable. Various
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Fig. 47.9 In the published robot arm
control applications, XCSF clusters
the contextual configuration state of
the arm and learns linear approxi-
mations of the average Jacobian in
the respective subspaces. In con-
sequence, the system can generate
both forward predictions of move-
ment consequences as well as inverse
control commands when directional
movements of the arm are desired

neuroscientific evidence points out that similar forward-
inverse predictive-control structures may be found in
the cerebellum [47.88, 89]. Only more detailed knowl-
edge on cortical and cerebellar structures may allow the
direct comparison of the shapes and orientations of the
receptive fields developed by the XCSF system and po-
tential cortical and neural structures found in the brain.

While the brain may not implement actual evolutionary
techniques literally, as XCSF does, it appears plausible
that local competitions take place [47.90]. Moreover,
it is known that neurons populate novel information
sources once available – as XCSF does. Further re-
search in neural computation with LCSs may prove
highly valuable.

47.6 Conclusions

While LCSs have been applied to a wide variety of
problems, still there are many potential developments
that have not been further evaluated. In the following,
potential future research directions are summarized.

At the moment nearly all LCSs are flat in that
they develop one population of classifiers (or compet-
ing sets of classifiers in the Pitt-style system). All of the
classifiers, however, apply to the same problem granu-
larity. Ever since the introduction of LCSs by Holland,
the development of default hierarchies was envisioned.
However, so far it was never convincingly or rigor-
ously accomplished [47.19]. Default hierarchies refer
to classifier systems in which general rules predict one
thing but more specialized rules predict exceptions of
the general rule. The emergent development of default
hierarchies in LCSs remains an open challenge.

With the most recent understanding of LCSs and
the XCS system in particular, it seems that at least

the development of a hierarchically-structured LCS
architecture is within our grasp. We expect such a hi-
erarchical LCS to progressively refine its predictions
in a hierarchical way. Default rules may gain a cer-
tain level of accuracy, but more specialized rules may
identify exceptions of the default prediction. Alterna-
tively, the more specialized rules may also simply add
further accuracy to the default predictions where and
when necessary. In the latter case, a hierarchical pre-
dictive system may develop that allows the progressive
refinement of activated predictions until the finest pre-
diction granularity in the hierarchical representation is
reached.

When developing hierarchical LCSs, also network
LCSs seem to be of vital importance. For example,
when developing classifier structures in spatial do-
mains that are intricately structured, a network structure
may provide additional hints on the connectivity of
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the space. Especially the case where XCSF learns ve-
locity kinematics, or generally, contextually-dependent
sensory-motor contingencies – as sketched out in the
section on controlling a robot arm with XCSF above –
a network structure can give additional hints on how the
sensorimotor space is structured and may be traversed.
Networks of LCS classifiers may allow the application
of lookahead planning and goal-oriented control – as
was pursued in early work in [47.91].

A network structure may also enable the speed-
up of the XCS matching process. For example, when
a problem space is sampled by means of a random
walk process, overlapping classifiers may be directly
identified within a classifier structure instead of apply-
ing a global matching process in each iteration. Also,
when XCSF is used for goal-directed control – as men-
tioned above with respect to velocity kinematics – this
may improve the efficiency of the system tremendously.
Furthermore, given a hierarchically network structured
LCS system matching may proceed from coarse-to-
fine-grained levels. All these processes may speed up
the matching, which is often considered a bottleneck in
LCS research and has been improved by means of nu-
merous approaches over the recent years [47.92, 93].

Besides these additions, also ALCSs may be pur-
sued further, as sketched out above. From a cognitive
modeling perspective, ALCSs essentially learn gener-
alized schemata or production rules [47.94–96], which
specify the expected state changes perceived after the
execution of the specified action. Such rules may be ap-
plied by the cognitive science community for learning,
for example, ACT-R structures [47.97]. The lookahead
planning capabilities, the sensorimotor generalization
capabilities, as well as the abstraction capabilities of
these systems still ask for further development. The re-
cent point that ALCSs can be very effectively applied

to factored RL problems [47.98] should be further pur-
sued. Also, the combination of ALCS-based cognitive
map or concept learning and XCS-based reward learn-
ing promises further research advancements.

Even without the addition of hierarchies, network
structures, or anticipations, however, LCSs can be suc-
cessfully applied to various domains including rein-
forcement learning problems, classification and data
mining problems, and regression problems. XCS, in
particular, learns iteratively online, striving for the
development of a compact, maximally general, and
maximally accurate problem solution. Pitt-style sys-
tems typically learn offline and are thus most promising
in large-scale data mining tasks in which rather small
compact sets of rules are searched for. Seeing that the
learning mechanisms of LCSs are highly flexible, it
is possible to substitute the condition of a classifier
with any other form or condition structure, as long
as this structure can be mutated and recombined in
a way that small structural changes also yield small
changes in the defined subspace within which the con-
dition matches. Similarly, the prediction structure can
be replaced with any other prediction structure that can
be quickly and accurately adapted by suitable learning
techniques. Thus, the available LCS techniques – such
as GALE andGAassist on the Pitt side and XCS, XCSF,
or XACS on the Michigan side – can be further ex-
ploited and combined with novel structures and forms
of representations. Learning promises to be robust due
the combination of a flexible evolutionary component,
which searches for optimal rule structures, and the
gradient-based fitness estimation, which quickly yields
useful prediction and fitness estimations. It seems only
a matter of time until LCSs gain even more recognition
and be successfully applied to even more diverse prob-
lem domains and challenging research tasks.

47.7 Books and Source Code
Further information about learning classifier systems
can be found in the biannually published IWLCS
(International Workshop on Learning Classifier Sys-
tems) workshop proceedings and yearly workshops
on the topic. A book on LCSs and the XCS clas-
sifier system in particular covers XCS from a the-
oretical and application-oriented point of view and
also provides a detailed algorithmic description of

the system [47.25]. A more theoretical coverage of
the approximation approach in XCS can be found
in [47.23]. Several books also give further details on
theoretical considerations [47.23, 99] as well as on
successful applications of LCSs [47.100, 101]. The
source code can be found online, for example, for
XCS in CCC [47.102] as well as for XCSF in
Java [47.103].
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