
Coevolution of Pattern Generators and

Recognizers

Stewart W. Wilson

Prediction Dynamics, Concord MA 01742 USA
Department of Industrial and Enterprise Systems Engineering
The University of Illinois at Urbana-Champaign IL 61801 USA

wilson@prediction-dynamics.com

Abstract. Proposed is an automatic system for creating pattern gen-
erators and recognizers that may provide new and human-independent
insight into the pattern recognition problem. The system is based on a
three-cornered coevolution of image-transformation programs.

1 Introduction

Pattern recognition is a very difficult problem for computer science. A major
reason is that in many cases pattern classes are not well-specified, frustrating the
design of algorithms (including learning algorithms) to identify or discriminate
them. Intrinsic specification (via formal definition) is often impractical—consider
the class consisting of hand-written letters A. Extrinsic specification (via finite
sets of examples) has problems of generalization and over-fitting.

Many interesting pattern classes are hard to specify because they exist only
in relation to human or animal brains. Humans employ mental processes such as
scaling, point of view adjustment, contrast and texture interpretation, saccades,
etc., permitting classes to be characterized very subtly. It is likely that truly
powerful computer pattern recognition methods will need to employ all such
techniques, which is not generally the case today. In this paper we are concerned
mainly with human-related pattern classes.

A further challenge for pattern recognition research is to create problems
with large sets of examples that can be learned from. An automatic pattern
generator would be valuable, but it should be capable of producing examples of
each class that are diverse and subtle as well as numerous.

This paper proposes an automatic pattern generation and recognition pro-
cess, and speculates that it would shed light on both the formal characterization
problem and recognition techniques. The process would permit unlimited gener-
ation of examples and very great flexibility of methods, by relying on competitive
and cooperative coevolution of pattern generators and recognizers.

The paper is organized into a first part in which the pattern recognition
problem is discussed in greater detail; a second part in which the competitive
and cooperative method is explained in concept; and a third part containing
suggestions for a specific implementation.



2 Pattern Recognition Problem

The following is a viewpoint on the pattern recognition problem and what makes
it difficult. Let us first see some examples of what are generally regarded as
patterns.

Characters, such as letters and numerals. Members of a class can differ in
numerous ways, including placement in the field of view, size, orientation, shape,
thickness, contrast, constituent texture, distortion including angle of view, noise
of construction, and masking noise, among others.

Patterns in time series, such as musical phrases, price data configurations,
and event sequences. Members of a class can differ in time-scale, shape, intensity,
texture, etc.

Natural patterns, such as trees, landscapes, terrestrial features, and cloud
patterns. Members of a class can differ in size, shape, contrast, color, texture,
etc.

Circumstantial patterns such as situations, moods, plots. Members of a class
can differ along a host of dimensions themselves often hard to define.

This sampling illustrates the very high diversity within even ordinary pattern
classes and suggests that identifying a class member while differentiating it from
members of other classes should be very difficult indeed. Yet human beings learn
to do it, and apparently quite easily. While that of course has been pointed out
before, we note two processes which may play key roles, transformation and
context.

Transformative processes would include among others centering an object of
interest in the field of view via saccades, i.e., translation, and scaling it to a size
appropriate for further steps. Contextual processes would include adjusting the
effective brightness (of a visual object) relative to its background, and seeing a
textured object as in fact a single object on a differently textured background.
It is clear that contextual processes are also transformations and that viewpoint
will be taken here.

A transformational approach to pattern recognition would imply a sequence
in which the raw stimulus is successively transformed to a form that permits it
to be matched against standard or iconic exemplars, or produces a signal that
is associated with a class. Human pattern recognition is generally rapid and
its steps are not usually conscious, except in difficult cases or in initial learning.
However, people when asked for reasons for a particular recognition will often cite
transformational steps like those above that allow the object to be interpreted
to some standard form. For this admittedly informal reason, transformations are
emphasized in the algorithms proposed here.

It is possible to provide a more formal framework. Pattern recognition can be
viewed as a process in which examples are mapped to classes. But the mappings
are complicated. They are unlike typical functions that map vectors of elements
into, e.g., reals. In such a function, each element has a definite position in the



vector (its index). Each position can be thought of as a place, and there is a
value there. An ordinary function is thus a mapping of “values in places” into
an outcome. Call it a place/value (PV) mapping. If you slide the values along
the places—or expand them from a point—the outcome is generally completely
different. The function depends on just which values are in which places.

Patterns, on the other hand, are relative place/relative value (RPRV) map-
pings. Often, a given instance can be transformed into another instance, but
with the same outcome, by a transformation that maintains the relative places
or values of the elements—for example, such transformations as scaling, trans-
lation, rotation, contrast, even texture. The RPRV property, however, makes
pattern recognition very difficult for machine learning methods that attach ab-
solute significance to input element positions and values.

There is considerable work on relative-value, or relational, learning systems,
e.g., in classifier systems [5, 4], and in reinforcement learning generally [1]. But
for human-related pattern classes, what seems to be required is a method that
is intrinsically able to deal with both relative value and relative place. This
suggests that the method must be capable of transformations, both of its input
and in subsequent stages. The remainder of the paper lays out one proposal for
achieving this.

3 Let the Computer Do It

Traditionally, pattern recognition research involves choosing a domain, creating
a source of exemplars, and trying learning algorithms that seem likely to work
in that domain. Here, however, we are looking broadly at human-related pattern
recognition, or relative place/relative value mappings (Sec. 2). Such a large task
calls for an extensive source of pattern examples. It also calls for experimentation
with a very wide array of transformation operators. Normally, for practicality
one would narrow the domain and the choice of operators. Instead, we want to
leave both as wide as possible, in hopes of achieving significant generality. While
it changes the problem somewhat, there fortunately appears to be a way of doing
this by allowing the computer itself to pose and solve the problem.

Imagine a kind of communication game (Figure 1). A sender, or source, S,
wants to send messages to a friend F. The messages are in English, and the
letters are represented in binary by ASCII bytes. As long as F can decode bytes
to ASCII (and knows English), F will understand S ’s messages. But there is also
an enemy E that sees the messages and is not supposed to understand them.

S and F decide to encrypt the messages. But instead of encrypting prior to
conversion to bits, or encrypting the resulting bit pattern, they decide to encrypt
each bit. That is, E ’s problem is to tell which bits are 1s and which 0s. If E can
do that, the messages will be understandable. Note that F also must decrypt
the bits.

For this peculiar setup, S and F agree that when S intends to send a 0, S will
send a variant of the letter A; for a 1, S will send a variant of B. S will produce
these variants using a generation program. Each variant of A created will in



S F

E

Fig. 1. S sends messages to F that are sniffed by E.

general be different; similarly for B. F will know that 0 and 1 are represented
by variants of A and B, respectively, and will use a recognition program to
tell which is which. E, also using a recognition program, knows only that the
messages are in a binary code but does not know anything about how 0s and 1s
are represented.

In this setup, S ’s objective is to send variants of As and Bs that F will
recognize but E will not recognize. The objectives of both F and E are to
recognize the letters; for this F has some prior information that E does not
have. All the agents will require programs: S for generation and F and E for
recognition. The programs will be evolved using evolutionary computation. Each
agent will maintain its own population of candidate programs. The overall system
will carry out a coevolution [2] in which each agent attempts to evolve the best
program consistent with its objectives.

Evolution requires a fitness measure, which we need to specifiy for each of
the agents. For each bit transmitted by S, F either recognizes it or does not,
and E either recognizes it or does not. S ’s aim is for F to recognize correctly
but not E ; call this a success for S. A simple fitness measure for an S program
would be the number of its successes divided by a predetermined number of
transmissions, T, assuming that S sends 0s and 1s with equal probability. A
success for F as well as for E would be a correct recognition. A simple fitness
measure for their programs would be the number of correct recognitions, again
divided by T transmissions.

S ’s population would consist of individuals each of which consists of a gener-
ation program. To send a bit, S picks an individual, randomly1 decides whether
to send a 0 or a 1, then as noted above, generates a variant of A for 0, or of B
for 1, the variant differing each time the program is called.

1 For our purposes, the bits need not encode natural language.



The system determines whether the transmission was a success (for S ). After
a total of T transmissions using a given S individual, its fitness is updated. F
and E each have populations of individual recognition programs. Like S, after T
recognition attempts using a population individual, its fitness is updated based
on its number of successes.

The testing of individuals could be arranged so that for each transmission,
individuals from the S, F, and E populations would be selected at random.
Or an individual from S could be used for T successive transmissions with F
and E individuals still randomly picked on each transmission. Various testing
schemes are possible. Selection, reproduction, and genetic operations would occur
in a population at intervals long enough so that the average individual gets
adequately evaluated.

Will the coevolution work? It seems there should be pressure for improvement
in each of the populations. Some initial programs in S should be better than
others; similarly for F and E. The three participants should improve, but the
extent is unknown. It could be that all three success rates end up not much
above 50%. The best result would be 100% for S and F and 0% for E. But that
is unlikely since some degree of success by E would be necessary to push S and
F toward higher performance.

4 Some Implementation Suggestions

Having described a communications game in which patterns are generated and
recognized, and a scheme for coevolving the corresponding programs, it remains
to suggest the form of these programs. For concreteness we consider genera-
tion and recognition of two-dimensional, gray-scale visual patterns and take the
transformational viewpoint of Sec.2.

The programs would be compounds of operators that take an input image and
transform it into an output image. The input of one of S ’s generating programs
would be an image of an archetypical A or B and its output would be, via
transforms, a variant of the input. A recognition program would take such a
variant as input and, via transforms, output a further variant. F would match
its program’s output against the same archetypes of A and B, picking the better
match, and deciding 0 or 1 accordingly. E would simply compute the average
gray level of its program’s output image and compare that to a threshold to
decide between 0 and 1.

For a typical transformation we imagine in effect a function that takes an
image—an array of real numbers—as input and produces an image as output.
The value at a point x, y of the output may depend on the value at a point (not
necessarily the same point) of the input, or on the values of a collection of input
points. As a simple example, in a translation transformation, the value at each
output point would equal the value at an input point that is displaced linearly
from the output point. In general, we would like the value at an output point
potentially to be a rather complicated function of the points of the input image.



Sims [6], partly with an artistic or visual design purpose, evolved images
using fitnesses based on human judgements. In his system, a candidate image
was generated by a Lisp-like tree of elementary functions taking as inputs x, y,
and outputs of other elementary functions. The elementary functions included
standard Lisp functions as well as various image-processing operators such as
blurs, convolutions, or gradients that use neighboring pixel values to calculate
their outputs. Noise generating functions were also included.

The inputs to the function tree were simply the coordinates x and y, so
that the tree in effect performed a transformation of the “blank” x-y plane to
yield the output image. The results of evolving such trees of functions could be
surprising and beautiful. Sim’s article gives a number of examples of the images,
including one (Figure 2) having the following symbolic expression,

(round (log (+ y (color-grad (round (+ (abs (round
(log (+ y (color-grad (round (+ y (log (invert y) 15.5))
x) 3.1 1.86 #(0.95 0.7 0.59) 1.35)) 0.19) x)) (log (invert
y) 15.5)) x) 3.1 1.9 #(0.95 0.7 0.35) 1.35)) 0.19) x).

Fig. 2. Evolved image from Sims [6]. Gray-scale rendering of color original. c© 1991
Association for Computing Machinery, Inc. Reprinted with permission.

Such an image-generating program is a good starting point for us, except for
two missing properties. First, the program does not transform an input image;
its only inputs are x and y. Second, the program is deterministic: it is not able
to produce different outputs for the same image input, a property required in
order to produce image variants.

To transform an image, the program needs to take as input not only x and
y, but also the input image values. A convenient way to do this appears to be
to add the image to the function set. That is, add Im(x, y) to the function set,



where Im is a function that maps image points to image values of the current
input. For example, consider the expression

(* k (Im (- x x0) (- y y0)).

The effect is to produce an output that translates the input by x0 and y0 in the
x and y directions and alters its contrast by the factor k. It seems fairly clear
that adding the current input image, as a kind of function, to the function set
(it could apply at any stage), is quite general and would permit a great variety
of image transformations.

To allow different transformations from the same program is not difficult. One
approach is to include a “switch” function, Sw , in the function set. Sw would have
two inputs and would pass one or the other of them to its output depending on
the setting of a random variable at evaluation time (i.e., set when a new image is
to be processed and not reset until the next image). The random variable would
be a component of a vector of random binary variables, one variable for each
specific instance of Sw in the program. Then at evaluation time, the random
vector would be re-sampled and the resulting component values would define a
specific path through the program tree. The number of distinct paths is 2 raised
to the number of instances of Sw , and equals the number of distinct input image
variants that the program can create. If that number turns out to be too small,
other techniques for creating variation will be required.

The transformation programs just described would be directly usable by S to
generate variants of A and B starting with archetypes of each. F and E would
also use such programs, but not alone. Recognition, in the present approach,
reverses generation: it takes a received image and attempts to transform it back
into an archetype. Since it does not know the identity of the received image, how
does the recognizer know which transformations to apply?

We suggest that a recognition program be a kind of “Pittsburgh” classifier
system [7] in which each classifier has a condition part intended to be matched
against the input, and an action part that is a transformation program of the kind
used by S (but without Sw). In the simplest case the classifier condition would
be an image-like array of reals to be matched against the input image; the best-
matching classifier’s transformation program would then be applied to the image.
The resulting output would then be matched (by F ) against archetypes A and B
and the better-matching character selected. E, as noted earlier, would compare
the average of the output image with a threshold. It might be desirable for
recognition to take more than one match-transform step; they could be chained
up to a certain number, or until a sufficiently sharp A/B decision (or difference
from threshold) occurred.2

2 Recognition will probably require a chain of steps, as the system changes its center
of attention or other viewpoint. State memory from previous steps will likely be
needed, which favors use of a Pittsburgh over a “Michigan” [3, 8], classifier system,
since the former is presently more adept at internal state.



5 Discussion and Conclusion

A coevolutionary framework has been proposed that, if it works, may create
interesting pattern generators and recognizers. We must ask, is it relevant to the
kinds of natural patterns noted in Section 2?

Natural patterns are not ones created by generators to communicate with
friends without informing enemies3. Instead, natural patterns seem to be clusters
of variants that become as large as possible without confusing their natural
recipients, and no intruder is involved. Perhaps that framework, which also may
suggest a coevolution, ought to be explored. But the present framework should
give insights, too.

A basic hypothesis here is that recognition is a process of transforming a pat-
tern into a standard or archetypical instance. Success by the present scheme—
since it uses transformations—would tend to support that hypothesis. More im-
portant, the kinds of operators that are useful will be revealed (though extracting
such information from symbolic expressions can be a chore). For instance, will
the system evolve operators similar to human saccades and will it size-normalize
centered objects? It would also be interesting to observe what kinds of matching
templates evolve in the condition parts of the recognizer classifiers. For instance,
are large-area, relatively crude templates relied upon to get a rough idea of which
transforms to apply? If so, it would be in contrast to recognition approaches that
proceed from bottom up—e.g. finding edges—instead of top down.

Such autonomously created processes would seem of great interest to more
standard studies of pattern recognition. The reason is that standard studies in-
volve choices of method that are largely arbitrary, and if they work there is still
a question of generality. In contrast, information gained from a relatively un-
constrained evolutionary approach might, by virtue of its human-independence,
have a greater credibility and extensibility.

It is unclear how well the present framework will work—for instance whether
F ’s excess of a priori information over E ’s will be enough to drive the coevo-
lution. It is also unclear, even if it works, whether the results will have wider
relevance. But the proposal is offered in the hope that its difference from tra-
ditional approaches will inspire new experiments and thinking about a central
problem in computer science.

References

1. Sašo Džeroski, Luc de Raedt, and Kurt Driessens. Relational reinforcement learning.
Machine Learning, 43:7–52, 2001.

2. W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure. Physica D, 42:228–234, 1990.

3. John H. Holland. Escaping Brittleness: The Possibilities of General-Purpose Learn-
ing Algorithms Applied to Parallel Rule-Based Systems. In Mitchell, Michalski, and
Carbonell, editors, Machine Learning, an Artificial Intelligence Approach. Volume
II, chapter 20, pages 593–623. Morgan Kaufmann, 1986.

3 There may be special cases!



4. Drew Mellor. A first order logic classifier system. In Hans-Georg Beyer, Una-May
O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W. Bonabeau,
Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D.
de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, Martin Pelikan, Guenther R.
Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Watson, and Eckart Zitzler, edi-
tors, GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary
computation, volume 2, pages 1819–1826, Washington DC, USA, 25-29 June 2005.
ACM Press.

5. Lingyan Shu and Jonathan Schaeffer. VCS: Variable Classifier System. In J. David
Schaffer, editor, Proceedings of the 3rd International Conference on Genetic Algo-
rithms (ICGA89), pages 334–339, George Mason University, June 1989. Morgan
Kaufmann. http://www.cs.ualberta.ca/˜jonathan/Papers/Papers/vcs.ps.

6. Karl Sims. Artificial evolution for computer graphics. Computer Graphics,
25(4):319–328, 1991; http://doi.acm.org/10.1145/122718.122752.
Also, http://www.karlsims.com/papers/siggraph91.html

7. Stephen F. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD
thesis, University of Pittsburgh, 1980.

8. Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion, 3(2):149–175, 1995.


