Classifier Systems for
Continuous Payoff Environments

Stewart W. Wilson

Prediction Dynamics, Concord MA 01742 USA
Department of General Engineering
The University of Illinois at Urbana-Champaign IL 61801 USA

wilson@prediction-dynamics.com

Abstract. Recognizing that many payoff functions are continuous and
depend on the input state z, the classifier system architecture XCS is
extended so that a classifier’s prediction is a linear function of . On a
continuous nonlinear problem, the extended system, XCS-LP, exhibits
high performance and low error, as well as dramatically smaller evolved
populations compared with XCS. Linear predictions are seen as a new
direction in the quest for powerful generalization in classifier systems.

1 Introduction

This paper extends learning classifier system (LCS) architecture (using XCS
[8,3] as a basis) to environments in which the payoff is a continuous function
of the input, or state, z. In most previous LCS work, the environmental payoff
function P(z,a) (with a the system’s action) has been discontinuous. Continuous
payoff functions bring new challenges but also new opportunities for classifier
generalization and LCS application and permit seeing classifier systems from a
broadened perspective.

The next section gives an explanation of continuous payoff environments and
distinguishes them from discontinuous ones. Section 3 follows with a concrete
example that will be used in experiments. Modifications of XCS for continuous
payoff are given in Section 4 (see [12] for a review of XCS and [3] for an algo-
rithmic description). Section 5 describes the experiments, followed by Section 6
with discussion.

2 Environments with Continuous Payoff Functions

2.1 Discontinuous environments

Payoff functions for environments typically used in LCS experiments are nearly
always discontinuous. Consider learning a Boolean function in which a correct
action (i.e., the correct value of the function) is rewarded with 1000 and an incor-
rect action with 0. Very often in such functions changing a single bit of z changes
the function value from, say, 1 to 0. Suppose the action a does not change. Then

the reward received will change from 1000 to 0 (or vice-versa), implying that
the payoff function P(z,a) is locally discontinuous with respect to z. In fact,
payoff functions for Boolean environments are full of such discontinuities. (They
are also widely discontinuous with respect to a, but attention in this paper will
focus on z.)

The discontinuity is not restricted to environments where the input is binary.
Consider a data-inference problem in which exemplar attributes are real-valued
and, as is typical, the correct discrete-valued decision (e.g., “malignant”, “be-
nign”, “indeterminate”) may change if the value of a single attribute crosses a
threshold. If P(z,a) assigns discrete reward values to the decisions, then P(z,a)
will again be discontinuous with respect to z.

These kinds of discontinuous payoff functions are well handled by the classifier
syntax in a conventional LCS such as XCS. A classifier of XCS consists of a
condition ¢(z) (a truth function of z), an action a, and a scalar prediction p of the
payoff to be expected if the system takes action a when the condition is satisfied
by the current x. Collectively, the system’s classifiers can evolve successfully to
represent the environmental payoff function because discontinuities in P(z,a)
are simply handled by two classifiers, one for each side of the payoff “step”.
Conversely, where P(x,a) is not discontinuous—i.e., the payoff is the same for
several states (and a given action a)—XCS may evolve single classifiers in which
t(r) generalizes over those states (provided the syntax of ¢(z) can express the
generalization).

2.2 Continuous environments

Robotic, control, and other “real world” environments such as financial time-
series prediction are often characterized by payoff functions that are continuous
with respect to the input z and sometimes also with respect to the action a.
Simplifying somewhat, a function P(z,a) is continuous at (x,a) = (xg,aq) if
limy s z0,0—500 P (%, a) exists and lim, 40 o—ao P(®,a) = P(x0,a0) [1]. If P(z,a)
is continuous at all (z,a) of interest, then we will call it a continuous function.
The intuition is that in a continuous function, small changes in the input result
in small changes in the value of the function.

Sometimes P(x,a) will only be continuous with respect to z, for example if
a system is capable of just a finite set of discrete actions. Or, in principle, the
function might only be continuous with respect to a. In the following, we shall
consider the case where P(z,a) has the form P(z,a;), where a; is one of a finite
set of discrete actions, and P(z,a;) is continuous with respect to z at every z
of interest.

As a general framework, consider a robot system for which the environmental
state is represented by a vector = of real-valued sensor readings and the robot
can take any of a finite set of discrete motor actions such as “turn left”, ”take one
step forward”, etc. Given an input state x and an action a;, the resulting state y
may depend in a continuous way on . That is, a slightly different z would, given
a;, result in a slightly different y. If in turn the payoff p to the system depends
continuously on y, then in effect the robot would be acting in an environment

where P(z,a;) is continuous with respect to xz. A classifier system designed
to optimize the robot’s movements in this environment would need to learn
to predict P(z,a;). As will be seen in the following example environment and
experiments with it, the traditional LCS architecture with its scalar predictions
is inefficient and lacks transparency in learning continuous payoff functions, but
these problems are greatly alleviated with a modified architecture. (For neural
LCS approach to continuous payoff, see [2].)

3 Example: A ‘Frog’ Problem

Consider a frog-like system that learns the best-sized jump to catch a fly. The
“frog” receives sensory input that is related to the fly’s distance, jumps a certain
distance in the fly’s direction, and gets payoff that is based on the remaining
distance. We shall assume that the frog has a finite set of discrete actions—in
this case, jumps of certain lengths. For any fly distance (in the range allowed)
the frog should learn to choose the action that lands it closest to the fly.

Let d be the frog’s distance from the fly, with 0.0 < d < 1.0. What should
we take for z, the sensory input? Any quantity that monotonically decreases
with d would be reasonable. For the moment we will take the simplest, a linear
decrease: z(d) = 1—d. For actions a;, we will assume k > 2 equally-spaced jump
lengths: 0.0,1/(k—1),2/(k—1),...,(k—2)/(k —1),1.0.

The payoff should be any function of x and a that is bigger the smaller the
distance d’ that remains after jumping. That is, P(z,a) should monotonically
increase with smaller d’. One quite natural choice is to let the payoff equal the
sensory input following the jump, as though the frog is rewarding itself based
on what it “sees”. Then, with the sensory function above, P =1 —d'.

To write the payoff in terms of x and a, we need to make one assumption.
Suppose the frog’s jump overshoots, i.e., the frog lands beyond the target fly.
In this case we shall assume that d’' equals the amount of the overshoot (taken
as a positive number). Thus ' = d —a for a < dand d' = a —d for a > d.
Substituting for d’ in P =1 — d’, then using d = 1 — z and rearranging, we get

. z4+a : z+a<l
P(m’a)_{Z—(x—ka) D sta>1 e

Payoff functions for each of the a; discrete actions may be found by substitut-
ing a; for a in (1). For k = 5 actions, the resulting functions—all continuous—are
shown in Figure 1. The functions for actions 0.0 (no jump) and 1.0 are simple
straight lines, but the functions for the three intermediate actions are nonlin-
ear, forming “tents” that peak at a; = 1 — 2 (i.e. where the action equals the
distance to the fly). For any z, the optimal action is the one corresponding to
the function that is largest at that z. A classifier system would solve the frog
problem by learning the functions and then, given an x, pick the action whose
function is greatest there.

Because they make scalar predictions, traditional classifier systems are in-
efficient learners of continuous payoff functions. The reason is that the scalar

predictions amount to a piecewise-constant approximation. This is generally the
least efficient approximation technique for continuous functions, in the sense that
large numbers of classifiers are required in order to meet a given error criterion.
[10,12] demonstrated a classifier-system-like technique that learned continuous
functions using piecewise-linear approximations, thereby exploiting the latter’s
far greater efficiency. In this paper we employ that technique in a standard
multiple-action LCS architecture, where it is used to learn the P(z,a;).

1 : . | |
os b NN N
a 06 4 |
=
o
T
" 04 I /’/// \\\\ .
, POO(x) i .
/ P25(x) ,
. P50(x)]
P75(x) : .
P100(x)
0 . . . |

0 0.2 0.4 0.6 0.8 1
Sensory input x

Fig. 1. Frog problem payoff functions P(z,a;) for a; € {0.00,0.25,0.50,0.75,1.00}.
(Functions denoted by “P00” for P(z,0.00), etc.)

4 XCS-LP: XCS Modified for Linear Predictions

To address the frog problem and, generally, to make an LCS capable of predicting
efficiently in continuous payoff environments, XCS was modified in two respects.
The first was to adapt the program for real instead of binary input vectors.
The second was to change XCS’s classifier architecture so that the fixed scalar
prediction was replaced by a linear polynomial that would calculate the predic-
tion from z. The resulting program was called XCS-LP (“linear prediction”).
XCS-LP differs from XCS only as described in the next two subsections.

4.1 Real inputs

The changes to XCS for real inputs were as follows [9,11]. The classifier con-
dition was changed from a string from {0,1,#} to a concatenation of “interval
predicates”, int; = (I;,u;), where l; (“lower”) and u; (“upper”) are reals. A clas-
sifier matches an input = with attributes z; if and only if [; < z; < u; for all z;.
In the experiments reported here, the input value range was [0.0,1.0].

Crossover (two-point) in XCS-LP operates in direct analogy to crossover
in XCS. A crossover point can occur between any two alleles, i.e., within an
interval predicate or between predicates, and also at the ends of the condition
(the action is not involved in crossover). Mutation, however, is different. An allele
is mutated by adding an amount +rand(mg), where my is a fixed real, rand picks
a real number uniform randomly from (0.0, mg], and the sign is chosen uniform
randomly. If a new value of [; is less than the minimum possible input value, in
the present case 0.0, the new value is set to 0.0. If the new value is greater than
u;, it is set equal to w;. A corresponding rule holds for mutations of w;.

The condition of a “covering” classifier (a classifier formed when no existing
classifier matches an input) has components lg,ug, ..., In, un, where each I; =
z; — randi(rg), but limited by the minimum possible input value, and each
uw; = z; + randy (rg), limited by the maximum possible input value; rand; picks
a random real number from [0.0, o], with 7o a fixed real.

For the subsumption deletion operations, we defined subsumption of one
classifier by another to occur if every interval predicate in the first classifier’s
condition subsumes the corresponding predicate in the second classifier’s condi-
tion. An interval predicate subsumes another one if its /; is less than or equal
to that of the other and its w; is greater than or equal to that of the other. For
purposes of action-set subsumption, a classifier is more general than another if
its generality is greater. Generality is defined as the sum of the widths u; —1; +1
of the interval predicates, all divided by the maximum possible value of this sum.

4.2 Linear predictions

As mentioned, a classifier in XCS-LP calculates its prediction using a linear
polynomial in z (i.e., in the components of z). [10] introduced a system, XCSF,
in which the classifiers similarly used linear polynomials in z to learn, collectively,
a piecewise-linear approximation to a given continuous function f(z). However,
XCSF had no actions (or just the “null” action) because its purpose was to
use its predictions to approximate just one function. In XCS-LP, exactly the
same piecewise-linear prediction technique is used, except that now there are
k functions to be approximated, the P(xz,a;) for each of the k actions. The
following, reproduced substantially from [12], explains the prediction mechanism.

Besides its condition and action a;, each classifier in XCS-LP has an associ-
ated weight vector w = (wg, w1, ..., w,), where n equals the number of compo-
nents in z. To calculate its prediction, the classifier forms p(xz) = w - z’, where
z' is augmented by a constant xo, i.e., ' = (20,21, ..., Zn). Just as in XCS,

the prediction is only produced when the classifier matches the input. As a re-
sult, p(z) in effect computes a hyperplane approzimation to the payoff function
P(z,a;) over the subspace defined by the classifier’s condition. Classifiers will
have different weight vectors w since in general the subspaces of their conditions
differ.

Of course, the classifiers’ weight vectors must be adapted. If classifiers are
to predict with a given accuracy, the coefficients w; of their weight vectors must
be appropriate. Following [10] we used a modification of the delta rule [5]. The
delta rule is given by

Aw; = n(t — o) (2)

where w; and z; are the ith components of w and z', respectively. In the quantity
(t — 0), o is the output, in the present case the classifier prediction, and ¢ is the
target, in this case the current payoff P(z, a;). Thus (¢—o) is the amount by which
the prediction should be corrected (the negative of the classifier’s instantaneous
error). Finally, 7 is the correction rate. The delta rule says to change the weight
proportionally to the product of the input value and the correction.

Notice that correcting the w; in effect changes the output by

Ao = Aw -z’ =n(t —o)|z'|>. (3)
Because |#'|? is factored in, it is difficult to choose 7 so as to get a well-controlled
overall rate of correction: 1 too large results in the weights fluctuating and not
converging; if 1 is too small the convergence is unnecessarily slow. We noticed
that in its original use [7], the correction rate was selected so that the entire
error was corrected in one step; this was possible, however, because the input
vector was binary, so its absolute value was a constant. In our problem, reliable
one-step correction would be possible if a modified delta rule were employed:

Aw; = (n/]e' ") (t = o). (4)

Now the total correction would be strictly proportional to (t — o) and could be
reliably controlled by 5. For instance, n = 1.0 would give the one-step correction
of [7]. In the experiments that follow, we used the modified delta rule with
n=0.2.

Use of a delta rule requires selection of an appropriate value for zg, the
constant that augments the input vector. We found that if zy was too small,
weight vectors would not learn the right slope, and would tend to point toward
the origin—i.e. wy ~ 0. Note that x; is a factor in the above equation for Aw;.
If z¢ is small compared with the other z;, then adjustments of wy will tend to
be swamped by adjustments of the other w;, keeping wo small. Choosing xg to
be about the same order of magnitude as the other z; solved the problem in [10]
and is adopted here.

To change XCS from the traditional fixed predictions to linear predictions
only required appending the weight vectors to the classifiers, plus providing for
calculation of the predictions and application of the modified delta rule to the
weight vectors of the action set classifiers (instead of employing and updating

scalar predictions as in XCS). In a classifier created by covering, the weight vector
was randomly initialized with weights from [—1.0,1.0]; GA offspring classifiers
inherited the parents’ weight vectors. In [10] both policies yielded performance
improvements over other initializations and are followed here.

5 Experiments

In this section we report three experiments on the frog problem. The first applies
XCS-LP as described above. The second applies (standard) XCS. The third
changes the sensory and payoff functions of the problem and again applies XCS-
LP. The idea was first to test XCS-LP, then compare with the XCS solution, then
check XCS-LP’s performance when the functions were less simple than those so
far defined.

In each experiment, the system alternated between learning problems and
test problems. In a learning problem, d was chosen randomly from [0.0,1.0],
the corresponding = was input to the system, the system chose one of the k =
5 actions a; at random, and the corresponding payoff was received from the
environment and used for updating parameters (the GA was also enabled). In
a test problem, again beginning with a random d, the system chose the action
whose system prediction was highest and the corresponding payoff was received
(with no updating or GA). The probability that a problem would be a learning
problem was 0.5. Each experiment consisted of 5 runs each with a different
random seed. Each run began with an empty classifier population and was carried
out to 300,000 learning problems to be sure results had stabilized. The results
were recorded as moving averages over the previous 50 test problems of: payoff,
system error, population size (in macroclassifiers), and population generality.
The curves given in the figures are averages over the 5 runs.

Common parameter settings for the experiments were: population size N =
500, learning rate § = 0.2, error threshold ¢y = 0.01, fitness power v = 5,
GA threshold 54 = 48, crossover probability x = 0.8, mutation probability
p = 0.04, deletion threshold 84, = 50, fitness fraction for accelerated deletion
6 = 0.1. Also, mutation increment mg = 0.1 and covering interval ro = 0.1.
GA subsumption was enabled, with 045, = 100. For XCS-LP, = 0.2 and
o = 1.0.

5.1 XCS-LP on the frog problem

Results for XCS-LP are shown in Figure 2. From (1) and Figure 1 we can cal-
culate that if the system chooses the best action every time it should receive an
average payoff of 0.9375. The payoff curve appears to reach such a value, as was
confirmed directly by the data. Thus on the time scale of the experiment, the
system almost immediately learned to pick the best action. The system error
also quite quickly went to a low value, which from the data was approximately
0.004 by the end of the experiment, actually less than the experiment’s error
threshold, ¢g = 0.01. During the first 50,000 problems the population size and

generality moved to values that remained fairly steady subsequently. By the end
of the experiment, the average population size was 24.6 classifiers.

Figure 3 gives insight into the evolved population. Shown are the classifiers
of a typical population, at 300,000 learning problems. A special graphic notation
is used to represent the conditions. The range of z is divided up into subranges
of length 0.1. A “.” appearing in a subrange means that the condition’s interval
predicate will accept no x value in that subrange. “0” means that every x will be
accepted, while “0” means some will be accepted because one or both boundaries
of the predicate fall somewhere in that subrange. The condition of classifier 0
accepts every x—it is completely general. Classifier 1 is almost so—in fact the
value of u is 0.999. The actual ranges for classifiers 2 and 3 are (0.474, 1.0) and
(0.0,0.527), and so forth.

The first 13 classifiers have high numerosity and fitness compared with the
remainder. Because they dominate the calculation of the system prediction, they
can be regarded as the system’s solution to the task. Inspection shows that
the conditions of the classifiers quite accurately correspond to the z ranges of
the straight-line segments of P(xz,a;) for each action. Furthermore, the weight
vectors have slopes and intercepts that also reflect the P(z,a;). For instance,
classifiers 2 and 3 reflect P(z,0.5) in that they approximately equally divide the
z range and their weight-vector intercepts (first components) and slopes are close
to those of the ideal weight vectors which are (1.5, -1.0) and (0.5, 1.0). Similarly
for the classifiers corresponding to actions 0.0, 0.75, and 1.0. However the upper
straight-line segment for P(x,0.25) seems to be weakly defined (classifiers 4, 7,
and 10) in that the slope is around -0.68 whereas it should ideally be -1.0.

1 T T T T T
&
Payoff ——
0.8 | Generality -~ 1
Popsize/500 -
System Error
0.6 T ,a~\«‘».~mM’w‘mm«VM“'#MW/«.W‘*\-MM-‘/’wm'mmmvmw” Ayl Sl Ao e 7
a d
0.4 * ,wr“’ 7
0.2 A
O \\‘me:,.

0 50000 100000 150000 200000 250000 300000
Learning Problems

Fig. 2. Results for XCS-LP on frog problem (legend shows curve order at right).

CONDITION ACT WTVECTOR ERR FITN NUM EXPER

0. |0000000000| 1.00 1.00 -1.00 0.000 .997 76 28224
1. |0000000000] .00 0.00 1.00 0.000 .970 67 8274
2. |....o00000] .50 1.49 -0.98 0.003 .916 56 7463
3. |ooo00o....l .50 0.50 0.98 0.003 .769 48 3057
4. |l o0| 25 1.46 -0.69 0.010 .902 40 2584
5. |0000000Co.. | 25 0.26 0.99 0.007 .567 38 21004
6. [000....... | .75 0.76 0.95 0.003 .942 38 1450
(A ool .25 1.47 -0.68 0.013 .260 28 2999
8. |..o0000000| .75 1.23 -0.98 0.005 .555 26 5231
9. |00000000..| .25 0.25 0.99 0.007 .364 23 801
10. [....... oo.| .25 1.50 -0.68 0.007 .478 21 880
11. |..o0000000/ .75 1.23 -0.97 0.013 .044 20 1088
12. |..o0000000] .75 1.25 -1.00 0.000 .335 11 3776
13, |ooooeaet ol 1.00 -0.99 1.01 0.013 .000 1 6

14, |....... .. ol 25 1.36 -0.65 0.198 .000 1 12
15, |...ooaet. ol 50 1.23 -0.78 0.180 .000 1 10
16. |........ o0l 25 1.47 -0.69 0.014 .001 1 39
17. 1000000000. | 25 0.26 0.99 0.007 .017 1 133
18. | ol 75 -0.33 -0.34 1.658 .001 1 4
19. .ol o/ .00 -1.00 -1.00 0.005 .002 1 O
20. |000000....| .50 0.50 0.98 0.013 .008 1 22

Fig. 3. Entire population from one run of the experiment of Figure 2 ordered by de-
creasing numerosity. (ACTion, WeighTVECTOR, ERRor, FITNess, NUMerosity, EX-
PERience.)

5.2 XCS on the frog problem

Figure 4 shows frog problem results using standard XCS. Compared with XCS-
LP, the payoff curve is essentially the same, reaching its steady value slightly
quicker. The system error is significantly higher, approximately 0.03 vs. 0.004.
The population size is much higher, averaging 192 classifiers at the end vs. 24.6,
and does not decrease significantly over time. Generality is about 0.11 vs. 0.59
and also does not change over the experiment.

Figure 5 suggests the reason for these changed results. Shown are the 11
classifiers at the top of the numerosity ranking at the end of a typical run. They
are very specific (interval predicates are small) as were the other 170 classifiers in
this population. If all classifiers are quite specific, average population generality
will be low, and the population size must be high in order to cover all inputs.

Thus XCS was capable of learning the frog problem, but at the cost of a large
population of highly specific classifiers. In this problem the payoff function varied
significantly with small changes in z. The scalar prediction of an XCS classifier
can only stay accurate over a short interval, so that large numbers of them were
required. Moreover, in this experiment the system error substantially exceeded
€0, suggesting that the population was actually too small for good coverage. To
check this we re-ran the experiment with N = 2000. Then the average system
error fell to about 0.01, equaling ¢;. However, the classifiers were even more
specific than before and the population size was 478.

Payoff ——
08 Popsize/500 - 1

Generality -~

System Error
0.6 + |
0.4 X “’“M!’W‘W,MWWWMr“"\“/va\Ifgxaw«(e“"“v“-*”\""\\,&\‘ﬂmm,’““‘\v‘wﬂwm) gty M‘;’W"\,\ﬂ;ﬁ/m‘,"‘rph.“‘>v<t'u/“ Wb
0.2 J
O s PN e ‘1 . - A v T ¥ 4 ¥ 1 i f ‘ s |
0 50000 100000 150000 200000 250000 300000
Learning Problems
Fig. 4. Results for XCS on frog problem.

CONDITION ACT PRED ERR FITN NUM EXPER

0. loe.uun.... | 1.00 .948 .011 .601 11 167

1. loo........ | .50 608 .020 .2562 8 232

2. |l..o..... | .00 238 .008 .5651 7 46

3. e o0l .75 .332 .022 .148 7 83

4, |...... o...| .75 .687 .008 .461 7 23

5. oo| .25 .845 .026 .208 7 37

6. |l....00....] .50 982 .013 .286 7 39

A o0o.| .25 940 .023 .224 7 46

8. |o0000..... | .75 .911 .036 .424 7 82

9. |..00...... | .00 319 .018 .238 7 15

10. |..o000..... | .25 .6562 .035 .385 7 11

Fig.5. Top 11 of 181 classifiers from one run of experiment of Figure 4. (PRED =
scalar prediction)

5.3 XCS-LP on a modified frog problem

The third experiment returned to XCS-LP but changed the sensory function to
2(d) = e~%. This changed the payoff function to

_ ¢ 1 a<-In(z)
PEA={ 1mes | a5 o ©

Now the function—still continuous—is both nonlinear in having a tent-like
structure and nonlinear in half of the tent “sides”. However, the results shown
in Figure 6 are similar to those of Figure 2. The evolution is slower and the final
population somewhat larger (57.8). This is apparently due to the curvature of
the tent sides, which requires additional classifiers to approximate accurately, as
can be seen in listings of the population (omitted here for lack of space).

1 . T Y | |
0.8 (Payoff —— -
Generality ————
Popsize/500
0.6 System Error |
0.4 + A

L A AR AT
o A NN

bttt o
g o

e

o

O i bt ooy s et

0 50000 100000 150000 200000 250000 300000
Learning Problems

Fig. 6. Results for XCS-LP on modified frog problem.

6 Discussion

The experiments demonstrated a feasible classifier system technique for learning
in environments where the payoff for a given action is a continuous and nonlinear
function of the state . In addition, the first and second experiments showed that,
compared with traditional scalar predictions, calculating the predictions via a
linear approximation to the payoff function can yield a substantial reduction in
population size while increasing the transparency of the system’s knowledge.
Further work is needed, in a variety of environments, to increase understand-
ing of the technique. In particular, the evolution is quite slow, and there may be

other methods of updating the weight vectors that make it faster. The approxi-
mation technique needs also to be extended to cover the action variable(s), since
in many environments (including the frog problem) the payoff is a continuous
function of the action (Reynolds’s “Hoverbeam” task [6] is an interesting further
example). Moreover, besides linear functions, other approximation bases should
be looked at.

In dealing with continuous payoff, XCS-LP advances the ability of classifier
systems to generalize, that is, to evolve compact and at the same time readable
representations of complex payoff functions. Traditionally, effort has focused on
making classifier condition syntax more expressive. The present research points
out a separate path to compact representation via viewing the prediction as a
function of the input and then approximating it.

References

1. mathworld.wolfram.com/ContinuousFunction.html.

2. Larry Bull and Toby O’Hara. Accuracy-based neuro and neuro-fuzzy classifier
systems. In W, B. Langdon et al, editors, GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference, pages 905-911. Morgan Kaufmann,
2002.

3. Martin V. Butz and Stewart W. Wilson. An Algorithmic Description of XCS. In
Lanzi et al. [4], pages 253-272.

4. Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. Advances
in Learning Classifier Systems, volume 1996 of LNAIL Springer-Verlag, Berlin,
2001.

5. Tom M. Mitchell. Machine Learning. WCB/McGraw Hill, Boston, MA, 1997.

6. Stuart I. Reynolds. A description of state dynamics and experiment parameters
for the hoverbeam task. Technical report, University of Birmingham, School of
Computer Science, 2000.

7. Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In James A.
Anderson and Edward Rosenfeld, editors, Neurocomputing: Foundations of Re-
search, pages 126-134. The MIT Press, Cambridge, MA, 1988.

8. Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Compu-
tation, 3(2):149-175, 1995.

9. Stewart W. Wilson. Get Real! XCS with Continuous-Valued Inputs. In Pier Luca
Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors, Learning Classifier
Systems. From Foundations to Applications, volume 1813 of LNAI, pages 209-219,
Springer-Verlag, Berlin, 2000.

10. Stewart W. Wilson. Function approximation with a classifier system. In Lee Spec-
tor et al, editors, Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2001), pages 974-981. Morgan Kaufmann, 2001.

11. Stewart W. Wilson. Mining Oblique Data with XCS. In Lanzi et al. [4], pages
158-174.

12. Stewart W. Wilson. Classifiers that approximate functions. Natural Computing,
1(2-3):211-233, 2002.

