S. W. Wilson

6. Conclusion

Much further research is needed on explore/exploit
strategies. The issue is crucial for true autonomy—con-
sider the Mars robot or any system in a substantially un-
known environment that cannot be teleoperated. This
paper suggests that strategies based on error or its rate
of change can permit systems to control the tradeoff au-
tonomously. Major desiderata now are further experi-
ments—to build up experience with these (and other)
strategies, and greater theoretical understanding of
how a system can tell—for instance via better estima-
tion techniques—how well it’s doing.

References

De Jong, K. A. (1975). An analysis of the behavior of a class
of genetic adaptive systems. Ph.D. Thesis, Department
of Computer and Communication Sciences, The Uni-
versity of Michigan, Ann Arbor. Available from Uni-
versity Microfilms International, Ann Arbor,
Michigan.

Goldberg, D. E. (1988). Probability matching, the mag-
nitude of reinforcement, and classifier system bid-
ding (Technical Report TCGA-88002). Tuscaloosa,
AL: University of Alabama, Department of Engineer-
ing Mechanics. (Also Machine Learning, 5, 407-425.)

Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization, and Machine Learning. Reading, MA: Add-
ison-Wesley.

Holland, J. H. (1975). Adaptation in Natural and Artificial

Systems. Ann Arbor: University of Michigan Press.
Second edition 1992, Cambridge MA: The MIT Press.

Kaelbling, L. P. (1990). Learning in Embedded Systems.
Ph.D. Dissertation, Stanford University. Teleos TR-
90-04. Also Cambridge, MA: The MIT Press/Brad-
ford Books, 1993.

Mitchell, M. (1996). An Introduction to Genetic Algo-
rithms. Cambridge, MA: The MIT Press/Bradford
Books.

Schmidhuber, J. (1995a). On learning how to learn
learning strategies. Technical Report FKI-198-94 (re-
vised), Fakultit fiir Informatik, Technische Univer-
sitdt Miinchen, Munich, Germany.

Schmidhuber, J. (1995b). Environment-independent re-
inforcement acceleration. Technical Note IDSIA-59-
95, IDSIA, Lugano, Switzerland.

Sutton, R. S. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning, (pp. 216-
224). San Mateo, CA: Morgan Kaufmann.

Sutton, R. S. (1991). Reinforcement learning architec-
tures for animats. In J.-A. Meyer & S. W. Wilson
(eds.), From Animals to Animats: Proceedings of the First

Explore/Exploit Strategies

International Conference on Simulation of Adaptive Be-
havior (pp. 288-296). Cambridge, MA: The MIT
Press/Bradford Books.

Sutton, R. S. (1996). Generalization in reinforcement
learning: successful examples using sparse coarse
coding. In Advances in Neural Information Processing
Systems 8. Cambridge, MA: The MIT Press/Bradford
Books.

Thrun, S. B. (1992). The role of exploration in learning
control. In D. A. White and D A. Sofge (eds.), Hand-
book of Intelligent Control: Neural, Fuzzy and Adaptive
Approaches. Florence, Kentucky: Van Nostrand Rein-
hold.

Whitehead, S. D. (1991). Complexity and cooperation
in Q-learning. In Proceedings of the Eighth International
Workshop on Machine Learning, (pp. 363-367). San Ma-
teo, CA: Morgan Kaufmann.

Wilson, S. W. (1995). Classifier fitness based on accura-
cy. Evolutionary Computation, 3(2): 149-175.

S. W. Wilson

which the system should learn to give the correct out-
put of the function (0 or 1) upon presentation of a ran-
dom 6-bit string. The other was “Woods2”, a grid-like
environment in which the system, started at a random
cell, should learn to reach “food” sites in the minimum
number of steps. As demonstrated in Wilson (1995),
XCS does indeed learn (non-autonomously) both of
these tasks when given sufficient explore trials. That is,
the experimenter permits XCS n explore trials, then
switches it to exploit trials and finds perfect perfor-
mance if n was sufficiently (and not outrageously!)
large. In addition, XCS evolves classifiers whose condi-
tions generalize over states of the environment that
have the same payoff prediction for a given action.

The current explore/exploit experiments have so far
investigated versions of global strategies 4 (p;=f(E)) and
6 (p;=f(E)), and local strategies 8 (p;=f(i{P;}{E;}) and 9
(p1=f(LE}))).

For strategy 4, p; was set equal to the lesser of 1.0 and
the product of a gain factor times E, a moving average
of the absolute value of the difference between predict-
ed and actual payoff. For strategy 6, p; was equal to the
lesser of 1.0 and the product of a gain factor times E, a
moving average of the absolute value of the rate of
change—with explore trials—of E. This rate of change
was calculated by a more elaborate routine which
found the difference between moving averages of E be-
fore and after a “bout” (series, usually 100, with no in-
tervening exploit trials) of explore trials. Then p; for
this strategy was the probability of initiating another
bout of explore trials, instead of continuing with exploit
trials.

Strategy 8 was an implementation of variance-sensi-
tive bidding (VSB). On each time-step, and for each ac-
tion a;, the system sampled a gaussian distribution with
mean equal to the predicted payoff, P; and variance
equal to the product of a gain factor and the error esti-
mate, E;, for that action. Then it executed the action for
which the sample value was largest. In Strategy 9, the
system on each time-step calculated a mean of the error
estimates for each action, then set p; equal to the lesser
of 1.0 and the product of a gain factor times the mean of
the error estimates.

We are not able to include statistically reliable results,
since the experiments are incomplete at the time of writ-
ing. But several qualitative observations can be made.

1. All four strategies “worked” in the sense that, start-
ing with no prior knowledge of the environments, on-
line performance improved from random to near opti-
mal levels and the incidence of explore trials fell in gen-
eral to low levels. However,

2. Progress was sensitive to the gain factor. Larger
values caused more exploration to occur early on, when
little was known, resulting in more rapid accumulation

Explore/Exploit Strategies

of competence but less rapid achievement of high on-
line performance as error (or error rate of change) fell.
In contrast, if the gain was lower, good on-line perfor-
mance came sooner but optimal levels took longer to
reach.

3. The gain setting had a further consequence. For
large values, the system could be very sensitive to tem-
porary increases in error (or error rate of change) once
good on-line performance was achieved. Greater sensi-
tivity meant that more explore trials would be under-
taken to correct a given degree of error, resulting in a
greater temporary fallback in on-line performance. In
contrast, lower gain settings were less sensitive to such
error “blips”.

4. Error (or error rate of change) “blips” occurred un-
der all four strategies. Though progress toward low er-
ror via exploration is definite, it is bumpy. Assuming
that the strategies are basically sound, one would like to
be sure that the system’s error measurements are as reli-
able as possible.

5. There is a tension between modeling and perfor-
mance reminiscent of that between exploration and ex-
ploitation. Larger gain factors—more exploration—
result in greater development of generalizations within
a given number of time-steps. The price for this is the
on-line performance cost noted in (2) and (3).

6. Strategy 8 (VSB) implements a biased sampling of
alternate actions. As suspected, this resulted in a biased
generalization model in which overgeneral classifiers
evolved that retained high fitness because the actions
that would contradict their payoff predictions were
rarely tried. There does not as yet appear to be any ob-
vious offsetting performance superiority for VSB com-
pared with the other strategies.

Among the strategies tested, it is perhaps most en-
couraging that strategy 6, which depends on the rate of
change of error, is no worse than the others. This is im-
portant, because strategy 6 is the only one that is in
principal unaffected by either a changing or a stochastic
environment.

Broadly speaking, the explore/exploit dilemma does
not go away via the strategies tested (or, surely, the oth-
ers), but they may succeed in managing it “up to a con-
stant”—the gain parameter mentioned. In a sense, the
gain parameter measures the amount of risk the system
is willing to take for potentially higher future perfor-
mance, and thus summarizes the trade-off in a single
number. Where does that number come from? If it is a
reality in animals, it comes from evolution, which
“knows about” their environments. In artificial systems
it now comes from the designer, but future research
may show how it can be brought within the system’s
own adaptive compass.

S. W. Wilson

tion “desires” (utility measures) compete to set the
system’s action. For example, action a; may have a high
predicted payoff (exploitation utility), but 2, may have
a high exploration utility because it has never been
tried. The balance between these “desires” is set by a
task-dependent parameter I'. Though focussed on effi-
ciency of exploration, Thrun’s framework can also be
considered a (local) explore/exploit strategy, or set of
strategies, providing a different approach to the objec-
tives of the strategies of Section 3.2.

However, Thrun’s article emphasizes exploration ef-
ficiency for learning a task—meaning acquiring the
competence to accomplish it—after which the system
will be switched to exploit mode. The present paper
places the emphasis on autonomy, and the continual
on-line issue of when and when not to learn in possibly
changing or stochastic environments. This has in par-
ticular motivated consideration of strategies based on
the rates of change of performance and error statistics.

4.2 Schmidhuber’s autonomy proposal

Recently, Schmidhuber (1995a,b) introduced an in-
triguing, if sweeping, model for environment- and
method-independent autonomous learning that pur-
ports to solve the explore/exploit problem more or less
en passant. Central to the model is the concept of rein-
forcement acceleration. The system continually applies
“policy modification processes” (PMPs) to its policy
(the mapping from inputs and internal states to outputs
and new internal states), and measures the resulting
change in the rate of reinforcement intake. The aim of
the PMPs is to achieve reinforcement acceleration,
meaning that the rate of reinforcement intake since ap-
plication of the PMP exceeds that since application of
any preceding PMP. Upon completion of a current
PMP, information sufficient to restore the previous pol-
icy, plus other information about the current PMP, is
pushed onto a stack. Subsequently, the system tests to
see if the current PMP satisfies the reinforcement acceler-
ation criterion (RAC). If so, it is retained until the next
PMP occurs. If RAC is not satisfied, the system pops the
stack, restoring previous policies, until an older PMP is
reached such that its rate of reward intake, measured
from its inception up to the current time, exceeds that for
the PMP below it on the stack. Thus the only PMP
(records) maintained on the stack are those for which
the reinforcement acceleration criterion is satisfied.
Schmidhuber offers a proof sketch that this will be the
case, independent of the “(possibly changing) environ-
ment”.

The PMPs can be any policy-modification processes
consistent with the system’s architecture. For instance,
for a Q-learning system based on a state-action table, a
PMP could simply randomly mutate the table contents.
All that is necessary is that the previous policy be re-

Explore/Exploit Strategies

storable. Still, one worries that such a general frame-
work, though capable of improvement and maybe
eventual optimal performance, would improve imprac-
tically slowly, or would require an unacceptably deep
stack. It sounds much like “random mutation with
preservation of the best”, a technique that experience
has found impractical for most problems of interest.
However, Schmidhuber presents experiments in which,
though times of order 10 time-steps are required, sub-
stantial learning occurs. In addition, for a specific im-
plementation of the concept, he introduces a low-level,
general programing language that contains “self-refer-
ential” instructions. Schmidhuber argues, and claims
his experiments show, that via these instructions, the
PMPs (also expressed in the language) not only im-
prove the system policy as predicted, but let the system
adaptively determine its own rate of applying PMPs
and for how long. Since to apply a PMP is in effect to
engage in exploration (versus further exploitation of the
policy that resulted from the previous PMP),
Schmidhuber argues that the system adaptively con-
trols the explore/exploit tradeoff.

It is possible that, besides its theoretical interest,
Schmidhuber’s all-encompassing approach will yield
practical autonomous systems in which, as a distinct is-
sue, the explore/exploit problem simply disappears!
This will depend at least on how rapidly the PMP/RAC
algorithm can bootstrap itself and also how accurately
the system can in practice measure its rate of improve-
ment in challenging environments. Meanwhile, there is
a resemblance between the improvement criteria of Sec-
tion 3 and Schmidhuber’s RAC that suggests his theory
can be an important guide to other approaches to the
explore/exploit problem.

5. Experimental observations

Experiments have been conducted on several of the
E/E strategies using XCS, a novel kind of classifier sys-
tem in which the fitness of individual classifiers is based
not on their payoff prediction as in traditional classifier
systems, but on the accuracy of that prediction (Wilson
1995). XCS is appropriate for E/E experiments on the
ten strategies because its classifiers keep both predic-
tion and error estimates (and error rate-of-change statis-
tics can easily be added). In addition, XCS inherently
evolves classifiers whose conditions are maximally gen-
eral subject to an accuracy criterion on the prediction es-
timate, thus making it possible to evolve a
generalization model over the payoff “landscape”. Fi-
nally, in contrast to earlier classifier systems that em-
ployed a roulette wheel action-selection strategy, XCS
can employ any strategy of the sort represented in Sec-
tion 3.

Two environments from Wilson (1995) were used.
One was the “6-multiplexer”, a Boolean function for

S. W. Wilson

is to explore to the extent that the current situation has
large error estimates, but the choice of explore action is
random, in order to avoid the potential sampling bias
noted above.

10. p;=fG{Pi{E}) orp; = f(E;)

These strategies are similar to 8 and 9, but replace the
dependence on E; with dependence on E: in order to
deal with stochastic environments. In a classifier sys-
tem, each classifier would keep an estimate not only of
its prediction and the error in that predjction, but of the
rate of change of the error, E;. That is, E;is a moving or
recency-weighted average of the difference between the
current error and the error estimate. Purely stochastic
effects would not show up in E; (if the averaging peri-
od was sufficient). A large value of E; would mean that
trials of a; in that context (x) yielded substantial change
in the prediction error—thus more trials should be
made there. A small value of E]- would suggest that the
current value of P; was as accurate as can be deter-
mined.

This completes the list of strategies. We turn now to
three authors who have made important contributions
to the explore/exploit discussion.

4. Related Work

4.1 Holland’s bandit model

The operation of a genetic algorithm (GA) incorpo-
rates an explore/exploit tradeoff, since the probability
that an individual will be selected for reproduction is an
increasing function of its fitness relative to the mean fit-
ness of the population. The GA searches regions of the
problem search space near (with respect to genetic op-
erators) the locations of the selected individuals. Thus
selection of higher fitness individuals means searching
their parts of the space more heavily, a kind of exploita-
tion of the best. Conversely, to the extent lower fitness
individuals are also selected, the GA is exploring other
regions “just in case” they contain unexpectedly higher
fitness individuals than currently estimated.

Holland (1975, Ch. 5) seeks to determine the degree
of optimality of the GA’s selection mechanism. To do
this he investigates the “two-armed bandit” (two slot-
machine) problem of statistical decision theory, and
shows that the optimal (loss-minimizing) allocation of
trials to the observed better (higher-paying) arm is very
nearly an exponentially increasing function of the num-
ber allocated to the observed worse arm. Taking this so-
lution as the optimal way to allocate trials between
competing uncertain alternatives, Holland shows that,
in a GA, selection proportional to relative fitness is like
the derivative of an exponential and thus implies that
the GA is searching near-optimally. (See De Jong (1975)
for a good discussion of Holland’s assumptions and
derivation; also, Mitchell (1996) for a review of subse-

Explore/Exploit Strategies

quent critiques).

How are Holland’s results useful for autonomous
learning? Only indirectly. For one thing, the optimal al-
location for the bandit is based on knowledge of the
“observed best” alternative, which can’t be known for
sure until after all trials are over, when it’s too late to
perform the allocation. How to allocate trials as one
goes along is less understood, though De Jong (p. 33)
does simulations suggesting that allocation with proba-
bility proportional to the product of relative payoff and
the previous time-step’s allocation probability (which
parallels the way the GA works) can approach the ban-
dit optimum for large numbers of trials. In the present
context, this idea might be applied by modifying strat-
egy 7 to make each selection probability proportional to
the current prediction times the probability of that se-
lection the last time around (implying storage of the lat-
ter).

The major problem, however, is that Holland’s allo-
cation formula contains parameters dependent on the
statistics of the bandit process, including the means for
the two arms, the variances, and (in an improvement of
the formula (Holland, 1992)), higher moments, appar-
ently. Although the parameters are not required in or-
der to know that the form is exponential, they are
required to actually carry out the allocation—even ex
post facto—of the trials! In contrast, the adaptive strat-
egies discussed in Section 3 make no assumptions about
payoff statistics, but instead attempt to estimate both
the means and in some cases the variances (errors).
Though the strategies have as yet only scant connection
to theory, they are practical for autonomous learning in
a way that the bandit results are not.

4.2 Thrun on exploration efficiency

The present article overlaps in several respects with
Thrun (1992), in which the emphasis is on exploration
techniques that are efficient in the sense of minimizing
the costs (time-steps, negative payoffs, etc.) of learning
an environment to a given performance criterion.
Thrun distinguishes undirected exploration—in which
actions are selected either uniform randomly as in strat-
egy 1, or with probabilities related to action utilities as
in strategy 7—from directed exploration, which aims to
choose actions that will maximize information gained,
as in Kaelbling’s (1990) interval estimation or Sutton’s
(1990) recency-based exploration. The discussion of
these exploration techniques is very comprehensive.

Thrun’s thesis, demonstrated in two (simulated) ro-
botics experiments, is that efficient exploration benefits
greatly not only from the use of directed techniques, but
also from the right amount of exploitation—not so
much as to waste time exploring, but not so little as to
take too long to learn the task. His demonstrations in-
volve a framework in which exploration and exploita-

S. W. Wilson

Inf(E), the system’s decision is based on its estimate
of E, which should be subject to fluctuations similar to
E, but less subject than estimates of reward and reward
change averages. Parametrization of f(E) should be
similar to f(E).

3.2 Local strategies

The next four strategies are termed local. In them, the
degree of exploration is based on a function of quanti-
ties associated with the system’s response to the current
input. The global adaptive strategies sense a condition
that is a property of the whole system-environment in-
teraction, then set the system’s general explore proba-
bility accordingly. In the local (adaptive) strategies, the
system senses a condition that is a property of a niche in
its interaction with the environment, and chooses its ac-
tion accordingly. The idea is that learning may be need-
ed in certain input situations but not in others, or, more
generally, that statistics associated with a given niche
should determine the degree of exploration that takes
place there.

7. pi=faiP)

In our assumed reinforcement learning model, each
time the system receives an input x it responds with a
set{P;} of predictions of the payoff available for each ac-
tion that it might take, then selects one of the actions,
which we denote a;. The set {P;} might be the output of
a neural network (or set of networks), a classifier sys-
tem, or a table, etc. Each prediction is a statistic, based
on prior experience in situations (apparently) like the
current one. The general idea of the p; = f(i,{P;}) strategy
is that actions with higher associated predictions
should be selected with higher probability.

A well-known example is the so-called “roulette-
wheel” selection employed in some classifier systems
(Goldberg 1989). For each classifier that matches the
current input, the probability that its action will be se-
lected as the system’s action is just the classifier’s pre-
diction of payoff divided by the sum of the predictions
of payoff of all the matching classifiers. That is, the pre-
dictions are normalized and treated as selection proba-
bilities. Roulette-wheel selection achieves a mix
between exploration and exploitation. Higher predict-
ing actions tend to be selected over lower predicting
ones, but the latter still continue to be tried.

The f(i,{P;}) strategy is a compromise, a bit like the
constant strategy (strategy 1). It can achieve fairly good
performance and, if the environment changes, it will
adjust its predictions and reach fair performance anew.
The drawback is that even though the system can ac-
quire full competence, it can never realize that compe-
tence in performance, since suboptimal actions
continue to have a finite probability of selection.

Explore/Exploit Strategies

8. p=fGiP;{E;})

In this strategy the probability of selecting action a;
on a given time-step depends on both the prediction for
that action and the estimated error in the prediction.
The idea is to select the action for which the sum (or oth-
er increasing function) of the prediction and error is
high. Then, as further exploration refines the predic-
tions and reduces their error, the system will likely end
up always selecting the action for which the prediction
is in fact highest. Thus, as exploration occurs and estab-
lishes true values for the predictions, the system will in
effect gradually switch over to full exploitation.

An f(i{P;}{E;}) stategy was first implemented for
learning based on tables by Kaelbling (1990), who
termed it the “interval estimation” strategy for its rela-
tionship to a method in statistics. Goldberg (1988) pro-
posed a similar strategy for classifier systems called
“variance-sensitive bidding”, in which the system sam-
ples, for each action, a gaussian probability distribution
with mean P; and variance ¢Ej, and chooses the action
with the largest sample value. The “gain” g determines
the amount of bias toward exploration.

These strategies have the ability to sense the degree
of convergence to reliable predictions and to increase
exploitation. Due to their sensitivity to error, they will
track a changing environment. For the same reason,
they will waste trials if the environment is stochastic.
As a practical matter, it should be noted that the strate-
gies are most readily implemented in classifier systems
or tables, since both error and prediction statistics are
required. Because a classifier is a “record” structure like
a table entry, it can easily accomodate an additional
“slot” for the error. Neural networks, on the other hand,
have no obvious way to estimate errors apart from dou-
bling the size of the network or adding a second one de-
voted to that purpose.

Besides wasting trials in a stochastic environment, a
further potential drawback of the f(i,{P;}(E;}) strategy
arises because it inherently samples actions with a bias
toward higher predicting ones. If the system (as in neu-
ral networks and recent classifier systems) tends to
form generalizations over the input space, biased sam-
pling can result in persistent overgeneralizations, sim-
ply because potential counterexamples are not tried, or
tried too little. In principle, the next strategy avoids this
problem.

9. p1=fIE;}

In this strategy, as above, the E; are the error estimates
associated with the actions available for the current in-
put x. The explore probability, however, as in the global
strategies, is simply the probability of selecting one of
the actions at random (versus choosing the action with
highest P;). The strategy would be implemented by
basing p; on the sum of the E;, or their average. The idea

S. W. Wilson

such as a negative exponential; it can also be a step,
where p; has a high value such as 1.0 for a finite period
1, with value 0.0 afterward. For the strategy to be effi-
cient, parameters must be chosen so that enough explo-
ration occurs to achieve competence, but not so much as
to continue exploration long after it ceases to be needed.
If sufficient exploration occurs, the system can reach op-
timal performance; otherwise, it can’t. A further weak-
ness of the f(t) strategy is that if the environment
changes, the system cannot re-learn.

As with the constant strategy, the system’s learning
decision is simple, given by f(t). Similarly, success de-
pends on considerable external knowledge.

3. p1=fR).

This is the first of the adaptive strategies. The explore
probability depends on a moving or recency weighted
average, R, of the system’s reward on each time-step, .
The idea is simply that if you know how well you can
possibly do in an environment, then as you reach that
level, you should stop exploring. If the strategy can be
correctly parametrized (based on the maximum possi-
ble R) then, as long as the environment doesn’t change,
the strategy should be successful. If the environment
does change, then the parametrization may be wrong,
and the system will perform suboptimally.

In the f(R) strategy, the system makes its own deci-
sion based on its estimate of R. The estimate may be
subject to considerable fluctuation, since reward may be
sparse and the reward stream is dependent on the sys-
tem’s “location” in the environment. On the other
hand, long estimation times for R may make the strate-
gy insensitive. Further, parametrizing the strategy de-
pends on knowledge of the maximum R for the given
environment. For reasonably complex environments,
this information may be unavailable.

4. p;=f(E).

In this strategy, the explore probability depends on
the system’s average prediction error, E. For reinforce-
ment learning systems, the prediction error is the differ-
ence between the system’s prediction of payoff P, and
that actually received (recall that P combines current ex-
ternal reward and an estimate of future reward). The
value of f(E) should decline with E, so that the system
reduces its exploration rate as the error goes down.
This strategy in principle improves on the f(R) strategy
since it is not dependent on knowing the maximum R.
Furthermore, if the environment changes, E will pre-
sumably go up, resulting in desirable renewed explora-
tion. The basic idea of the strategy is that if the system’s
predictions are good, exploration is not needed; if they
are not good, there is something further to learn.

Strategy f(E) is the first to be significantly affected if
the environment is stochastic (or non-deterministic),
meaning that the next values of x and r are not a deter-

Explore/Exploit Strategies

ministic function of the current x and a. As noted earli-
er, the condition can arise simply because of noise, for
instance in the sensors. It can also arise if the environ-
ment is noiseless but non-Markov. In any event, strate-
gy f(E) is “fooled” into over-exploring if the
environment is stochastic, since the stochastic fluctua-
tions—which cannot be reduced—will cause explora-
tion even after the system has reached maximum
competence. Note that making f(E) =0 for E less then a
threshold 6 is not a general solution, since if 8 is too
large, the system may stop exploring before maximum
competence is reached.

In the f(E) strategy, the system’s explore decision de-
pends on its estimate of E, which should be subject to
less fluctuation than R. Furthermore, apart from the
stochastic problem just mentioned, parametrizing the
strategy is simpler than for f{R) since the optimum val-
ue of E is known: it is zero.

5. p1=f(R).

This strategy bases the explore probability on the rate
of change of average reward with explore trials, R. Sup-
pose the system measures its average reward on exploit
trials, then does some explore trials, then measures av-
erage reward again. If there is little difference in aver-
age reward, then there’s not much point in doing more
explore trials. If there is a big difference in average re-
ward, then further exploration is in order, because there
is probably more to learn (note that the difference can be
either positive or negative). The f(R) strategy improves
on f(R) in that it will “track” a changing environment.
Compared with f(E), it should be unaffected by a sto-
chastic environment, since reward variation due to sto-
chastic effects alone will average zero.

The system’s explore decision in the f(R) strategy de-
pends on its estimate of R, which may be subject to
fluctuations similar to R. Parametrizing the strategy is
simpler than for f(R), since the “target” value of R, zero,
is known. However, coefficients in f{ R) would still be
expected to depend on the maximum R, which, as noted
earlier, may be unknown.

6. p1=fE).

Here, the explore probability depends on the rate of
change of the system’s average prediction error with ex-
plore trials, E. The strategy attempts to overcome the
drawbacks of the three previous adaptive strategies. It
will track a changing environment, and it will not be af-
fected by a stochastic environment if averaging periods
are adequate. The basic idea is that if further explore
trials do not change the average prediction error, then
there is no reason to do more explore trials. If average
prediction error does change, it must be because there
was more to learn, either because the present environ-
ment is insufficiently known, or has changed.

S. W. Wilson

To learn the value of actions, we shall assume the sys-
tem learns a mapping X X A — P, where the P, which are
payoff predictions, generally combine the reward r ex-
pected on the current time-step with an estimate of fu-
ture reward to be received if the associated action is
taken. For non-Markov (not predictable based on im-
mediate sensory information) environments, the sys-
tem may incorporate some degree of internal state
(temporary memory) which when its value is combined
with the external stimulus, effectively makes the deci-
sion problem Markov. For convenience we shall as-
sume the environment is Markov unless otherwise
noted.

Part of the system’s job is to learn the XX A -~ P map-
ping. The other part is to use the mapping to choose ac-
tions that maximize the reward measure. Given an
input x, the system may sometimes choose the action a
that maps to the highest prediction; this will be termed
exploitation (of current information). At other times it
may choose some other action—termed exploration—in
an effort to gain new information.

Uncertainty in the current prediction for an action
can arise from several sources: (1) the estimation pro-
cess involves gradual (conservative) adjustments, and
the prediction has simply not been sufficiently sampled;
(2) there may be no prediction yet, i.e., the action has
never been tried; (3) if, as with neural networks or clas-
sifier systems, the system can generalize, fluctuations in
the prediction may occur as the system settles on its
“model” of the environment; (4) inputs, actions, or re-
wards may be affected by noise; (5) the environment
may be non-Markov, so it appears to be non-determin-
istic. (If the environment has either of the last two
sources of uncertainty, it will be termed “stochastic”.)
When uncertainty is high and the payoff mapping is
poorly known, the system should evidently explore
more than it exploits. Later, it should exploit more than
explore. Choosing just when to do each is the essence
of the explore/exploit dilemma as it occurs in the
framework of reinforcement learning.

3. Explore/Exploit Strategies

If a system has a well-defined way of making the ex-
plore/exploit decision at each time-step, we shall say it
has an E/E strategy. This section lists ten distinct strat-
egies; some are often seen in the literature, others not so
often or not at all. For consistency of viewpoint, the six
“global” strategies discussed first are characterized in
terms of a function f([] which gives the probability p;
that the system will execute a random explore trial on
the current time-step, that is, the probability that it will
make a uniform random selection from its set of avail-
able actions. In contrast, p, = 1-f([Jis the probability that
the system will execute an exploit trial, i.e., will execute
the action with the highest predicted payoff. The ex-

Explore/Exploit Strategies

plore decision is made uniformly randomly for simplic-
ity. Biasing the choice is of interest (and essential in
non-toy problems (Whitehead 1991, Thrun 1992)), but
this variation will be discussed later in connection with
the “local” strategies where it makes most sense.

For any specific system and environment, the selec-
tion of an E/E strategy and its parametrization are nat-
urally dependent on constraints that might include (1)
maintaining system “energy” (cumulative reward less
cost of operation) above a threshold; (2) maximizing
some measure of reward received; and (3) operating for
a finite period, or “lifetime”, T. The interaction of strat-
egies and constraints is complex and beyond the
present scope, but some attempt will be made here to
indicate their relationship. Note also that strategies be-
low can always be combined to form various hybrids.

3.1 Global strategies

By “global” is meant a strategy where the argument
of f(lis a quantity independent of the system, such as
time, or a statistic of the system’s overall behavior, such
as a moving average of its rate of reward intake. In the
former case, the strategies do not change with the sys-
tem’s experience and are in that sense non-adaptive or
fixed; in the latter, they are adaptive.

1. p; = constant.

In this strategy, the explore probability is chosen
small enough to permit adequate on-line performance,
yet large enough to allow fairly rapid initial learning; a
value of 0.1 is typical (see, e.g., Sutton 1996). Because
the system never stops exploring, it will automatically
re-learn if the environment changes (e.g., if the environ-
ment’s reward structure changes, or the system wan-
ders off into substantially new territory). The main
drawback of the constant strategy is that while the sys-
tem can acquire complete knowledge of the environ-
ment and thus the competence to perform optimally, it
can never actually do so, since it is required to execute
explore trials at a non-zero rate. Thus, a fixed fraction
of the time, the system sacrifices the difference in return
between acting optimally and acting randomly; for
large lifetime T, the total loss can be great.

In the constant strategy, the system’s decision of
“when to learn” is simple: it does explore trials with a
fixed probability. However, the specific choice of that
probability is made externally, and depends on knowl-
edge of the environment, task, and T.

2. P1 =f(t).

In this strategy, f(t) is typically a descending function
of time, either going to zero assymptotically or after a fi-
nite period. The idea is to have a large fraction of ex-
plore trials early, when there is much to learn and little
competence, followed by a shift to exploit trials later.
Usually, f(t) is a relaxation or annealing-like function

To be published ifrrom Animals to Animats 4: Proceedings of the Fourth International Conference on Smulation of Adaptive Behavior,
P. Maes, M. Mataric, J. Pollack, J.-A. Meyer, and S. Wilson (eds.), Cambridge, MA: The MIT Press/Bradford Books (1996).

Explore/Exploit Strategies in Autonomy

Stewart W. Wilson
The Rowland Institute for Science
100 Edwin H. Land Blvd.
Cambridge, MA 02142 USA
(wilson@smith.rowland.org)

Abstract

Within a reinforcement learning framework, ten
strategies for autonomous control of the explore/
exploit decision are reviewed, with observations
from initial experiments on four of them. Control
based on prediction error or its rate of change ap-
pears promising. Connections are made with ex-
plore/exploit work by Holland (1975), Thrun
(1992), and Schmidhuber (1995a,b).

1. Introduction

Research on animats or “autonomous adaptive
agents”, whether simulated or realized as robots, has
made progress on several fronts. A variety of core
learning techniques exist for associating input stimuli
with output actions to produce reasonable perfor-
mance; underlying architectures include networks,
CMAC:s, classifier systems, and tabular methods. There
is also progress in incorporating generalization, inter-
nal state, and predictive modeling, among other aspects
of intelligence. However, autonomy per se has not re-
ceived great attention. Broadly, for an adaptive system
to be autonomous implies it can cope or survive in an
incompletely known and uncertain environment, per-
haps accomplishing a task, independently of external
control. To do well, the system must continually decide
when and when not to learn. True autonomy implies that
the system makes this decision on its own, according to
its experiences.

The decision to learn is fundamentally a choice be-
tween acting based on the best information currently
possessed versus acting other than according to what is
apparently best—i.e., most remunerative—in order per-
haps to gain new information that may permit higher
levels of performance later. Learning risks a short-term
cost—the “opportunity cost” of not doing the apparent
best—in order to achieve higher returns in the longer
run. Not learning risks those potentially higher returns
in order to get known benefits now. The tension be-
tween learning and performance is often described as
the “explore/exploit dilemma”. Holland (1975) was
one of the first to discuss the dilemma in connection
with adaptive systems. He summarizes: “[obtaining]

more information means a performance loss, while ex-
ploitation of the observed best runs the risk of error per-
petuated”. The dilemma crops up as soon as a learning
system is supposed to have some degree of autonomy.
However, because workers needed to focus on more ba-
sic questions, the explore/exploit issue was generally
deferred. Now, due to the progress noted above, auton-
omy can move up the agenda, and with it systematic in-
vestigation of explore/exploit.

This paper will not provide any “magic bullets” for
what is probably a fact of autonomous adaptive life. In-
stead it will discuss the advantages and limitations of a
number of approaches to explore/exploit (“E/E”) in an
effort to identify those that most reduce the need for pri-
or information and external decisions—and so increase
autonomy. The next section states the incremental, re-
inforcement learning framework of the discussion. Sec-
tion 3 describes ten progressively more sophisticated
E/E “strategies”. Section 4 relates the present work to
Holland’s (1975) “bandit” discussion, to Thrun’s (1992)
research on exploration efficiency, and to Schmidhu-
ber’s (1995a,b) work on autonomy. Section 5 offers
some rough observations from the experimental pro-
gram that has been undertaken. Finally, Section 6 con-
cludes by suggesting that strategies based on error or its
rate of change have promise, but that the biggest need
is for further experiments and better methods of self-es-
timation of performance statistics.

2. Background Assumptions

The explore/exploit dilemma will be examined with-
in the basic framework of reinforcement learning (Sut-
ton 1991). On each discrete time-step, we assume that
the system receives a stimulus vector x (one of a large
set X of such vectors) from the environment, carries out
an action a (one of its own set A of available actions),
and receives from the environment a reward r (which
varies with x and a and may often be zero). The sys-
tem’s objective is two-fold. On one hand, it must learn
which actions maximize some measure of the reward
received over time, such as the sum or a discounted
sum of the rewards. On the other hand, it must act so
as to accomplish the maximization.

