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Abstract
We describe a framework for exploring the evolution
of adaptive behaviors in response to different physical
environment structures. We focus here on the evolving
behavior-generating mechanisms of individual creatures,
and briefly mention some approaches to characterizing
different environments in which various behaviors may
prove adaptive. The environments are described ini-
tially as simple two-dimensional grids containing food
arranged in some layout. The creatures in these worlds
can have evolved sensors, internal states, and actions
and action-triggering conditions. By allowing all three
of these components to evolve, rather than prespecify-
ing any of them, we can explore a wide range of behav-
ior types, including “blind” and memoryless behaviors.
Our system is simple and well-defined enough to allow
complete specification of the range of possible action-
types (including moving, eating, and reproducing) and
their effects on the energy levels of the creature and
the environment (the bioenergetics of the world). Useful
and meaningful ways of characterizing the structures of
environments in which different behaviors will emerge
remain to be developed.

1 Introduction

We are interested in the effects that the environment can
have on an organism’s adaptive behavior. Since this ques-
tion encompasses essentially the whole of psychology and
biology, we must pare it down a bit before we can make
much headway. We focus here on how the physical, spa-
tial structure of the environment can foster the evolution of,
and be in turn exploited by, particular adaptive behavior-
generating mechanisms. We leave aside for now the fasci-
nating questions that arise when the environment is consid-
ered not only in terms of the physical selectors at work in
it, but also the biotic (e.g. parasites and hosts) and psycho-
logical (e.g. conspecifics and mimics) selectors (see Miller,
1992). Our work here may in fact be seen as complemen-
tary to explorations elsewhere attempting to characterize the
effects of the social environment on adaptive behavior and
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evolution (Todd & Miller, 1991; Todd & Miller, submitted).
As it turns out, even without this added complexity and real-
ism, the sorts of behaviors that can evolve to take advantage
of static spatial environments are still varied and interesting.
This work is also intended to provide theoretical support for
the behavior-based approach to AI described by Maes (these
proceedings). By categorizing environments and describing
the sorts of behaviors that are adaptive in them, we hope
to provide not only insights into natural evolved systems,
but also useful guidelines for the design of artificial agents
existing in various application domains.

Creating simple simulated worlds and seeing what sorts of
simulated behaving creatures will evolve in them is certainly
not a new approach. Ackley and Littman (1992) and Werner
and Dyer (these proceedings) have developed sophisticated
simulations that embody many of the ideas described here,
and serve as positive examples of what is possible with such
an approach. But our goals here are different from those
embodied in many similar research efforts. Rather than ma-
nipulating the environment with the specific aim of evolving
creatures that can navigate, or communicate, or learn, we
want to explore a more general question: what will crea-
tures evolve to do, given certain environmental regularities
or structures? What behaviors will prove adaptive in various
types of environments? These questions require us to do two
very intertwined things in our research program: both elu-
cidate the sorts of environment-exploiting behavioral mech-
anisms that creatures might employ, and describe and char-
acterize how environments can vary in ways that lead to the
evolution of different forms of adaptive behavior. Obviously
such goals are very ambitious, and perhaps still beyond our
reach, but at least by beginning to formalize our thinking
about these questions, we can hope to make some progress
in our understanding of the complexities involved in the be-
havioral interactions between environments and organisms.

In a simulated 2-dimensional world across which food is
distributed in some fashion, creatures attempting to find and
eat that food may get along fine with no sensory systems, or
without memories or internal states, or with very few motor
commands; or the creatures may find it virtually essential to
possess long-distance sensors, sophisticated internal world



models, and finely-tuned motor sequences before they can
achieve any adaptive advantage at all. What sensors, states,
and actions prove adaptive depends on the environment in
which the population of creatures evolves. But since it is
exactly those three components (at least) which define an
organism’s adaptive behavior, in order to study the effects
of the environment on adaptive behavior we must instantiate
our study in a framework which allows the evolution of all
three components, something not usually attempted in evo-
lutionary simulations. Cariani (1990) and Pattee (1989) in
particular have issued the call to consider the evolution of
sensors and effectors in addition to the behavioral links in
between, since it is only through the former two that crea-
tures can ground themselves in connection to the outside
world. We hope that the framework we present here will
allow the exploration of the evolution of exactly those sen-
sors and effectors, the process that Cariani calls semantic-
adaptation, along with the syntactic-adaptation of evolv-
ing information-processing mechanisms, thereby yielding a
more complete picture of the evolution of behavior in gen-
eral.

To try to achieve these grand ends, we focus primarily
in this paper on an open-ended scheme for the evolution of
simulated creatures in terms of their sensors, internal states,
and actions. Only after this framework has been laid down
can we turn to the question of the structure of environments,
and the effects they can have on these evolving creatures
and their behaviors. In this combined context, we discuss
briefly our planned explorations of the interactions of these
two parts of our system, and what we can hope to learn from
such an investigation.

2 The World and the Organism

The creature and its environment cannot be described sep-
arately; each is shaped by and shapes the other. Different
types of environments call for different behavioral mech-
anisms to respond to them adaptively; and different be-
havioral mechanisms, including internal representations and
sensory inputs, change the very structure of the world-lived-
in for the creature living in it, or, via emitted actions, the
structure of the world experienced by others. To understand
the interactions of the physical world and behavior, then, we
must consider the two in an intertwined fashion. In this sec-
tion we first describe possible worlds and adaptive behaviors
in them with an eye toward showing what components we’ll
need to create those behaviors, and then we discuss those
components themselves, and how they can work together to
create adaptive behavior in the world.

2.1 The Structure of the World
To begin with the simplest interesting (and easily visual-
izable) case, we use a 2-dimensional hexagonal-grid world
consisting of N by M positions. (A hexagonal rather than

a square grid is used to avoid the anisotropies in distances
between orthogonally and diagonally adjacent squares in the
latter.) Each position W (x; y) in the world can contain food,
one or more creatures, both, or nothing. Time in the world
passes by in discrete clock-ticks, t. The currency in this
world is simply energy; creatures live on it and use it up,
and food contains it — the greater the amount of food in a
particular location, the greater the amount of energy avail-
able to a grazing organism. (This is in contrast to Holland’s
ECHO system, which works on a flow of metabolic products
equivalent to organic chemical compounds — see Holland,
1992.)

The exact layout of food in the world over time consti-
tutes the spatio-temporal structure of the environment, in
response to which the creature should behave adaptively.
This layout is created primarily by the real-valued function,
�(x; y; t), which indicates the new food being added to each
position in the world at each time-step (so that it can be
thought of as specifying the “plant growth” in the world).
Since creatures may, through their actions, cause the amount
of food in the world to change, the contents of W at time t
can be computed as the contents of W after time t� 1 (in-
cluding the effects of creature actions) plus �(x; y; t), the
new food appearance/growth that occurs.

2.2 The Structure of the Organisms

The world can contain one or more simulated organisms run-
ning around in it at a time. Each organism in the world
has associated with it a 3-tuple (x; y; E) which codes its
current position and internal energy level, and a behavior-
generating component which defines its possible actions and
triggering conditions, internal state variables, and sensors.
The position-energy 3-tuple can change during a creature’s
lifetime; the beginning values for each creature are deter-
mined at the time of their creation, as will be described later.
The behavioral portion of each creature is created by an
evolutionary process, and is fixed throughout the creature’s
lifetime (thus we are for the moment ignoring learning pro-
cesses). To introduce the subcomponents of the creature’s
behavioral mechanisms, we will first look at a few example
environmental situations.

Consider four possible worlds, and the types of creatures
that might do well in them. First, there could be food ev-
erywhere in the world, evenly and equally distributed (see
Figure 1 — while the world is shown with squares in this
figure, it is represented as hexes in the simulation). In this
case a creature really does not need very sophisticated be-
havior to maximize its food input: it can basically just move
about the environment in a straight line, perhaps turning ev-
ery now and again, eating as it goes. Thus, if the creature
merely has a small set of motor commands, such as “eat,”
“go straight,” and “turn right,” which it selects from stochas-
tically in a fixed proportion, say 1:1:0.1, then this creature
will do about as well as possible (in terms of gaining food
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Figure 1. Environments with differing behavioral component requirements. a. An environment with food everywhere (dark grey), showing
a creature (black circle) and the mostly-straight path it might take. b. A zig-zag environment, showing a creature and the regular path
it might take. c. A clumpy environment, showing a creature heading toward one of the clumps. d. A zig-zag-with-gaps environment,
showing a creature adjusting its regular path to take the missing food-squares into account.

energy) in this world. It has no need for any sensory input,
nor for any memory of what it’s already done or seen, that
is, no internal state is necessary (or helpful). Thus in this
case, evolution need only supply the creature with the ap-
propriate motor commands, and appropriate rates of firing
them stochastically.

If the world is laid out slightly differently, for instance
with food in a regular “zig-zag” pattern stretching across
the whole 2-d plain (see Figure 1b), then a slightly more so-
phisticated set of behavioral mechanisms could prove useful.
A creature which performs the action sequence “eat, move
forward, move left, eat, move forward, move right, eat: : : ”
over and over again (provided it starts off at an appropriate
position!) will find as much food as possible. Here there is
still no need for any sensory input, since the world is very
regular and so evolved models of the world can mirror it
exactly; but internal state is very important in this case. Es-
sentially the creature must utilize an evolved “central pattern
generator” (CPG) that produces this string of motor com-
mands over and over. Since this CPG must keep track of
where it is in the action-cycle, it must use some state in-
formation. In this situation, then, both appropriate actions

triggered by certain internal states, and the means of prop-
erly generating those internal states, must evolve.

Next, consider a world in which food is distributed
sparsely and randomly, in small clumps, as shown in Fig-
ure 1c. In this case, a creature would do well to have some
sensory input. If it just moves in a fixed or random manner,
as in the first situation, or in a blind preprogrammed fash-
ion, as in the second, it is quite unlikely to run across much
of the widely separated food in its lifetime. But if it has a
sensory apparatus which indicates the direction of the near-
est source of food, the creature can base it movements on
this input and head in that direction, eating when it arrives
at the food. Here, evolved actions can be based solely on
the outputs of evolved sensors; there is no need for internal
state to guide the actions.

Finally, imagine a modification of the “zig-zag” world of
Figure 1b, in which there are occasional gaps in the zags,
as shown in Figure 1d. In this case, if we drop one of our
previously-evolved zig-zag creatures into this world, it will
do fine for a while, but when it comes to one of the gaps,
it will be thrown off by one position, and will miss all the
food until the next gap comes. Obviously, it should be able
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to do better than this. What it needs so it can do better
is again some sensory input, which this time modifies the
action of the central pattern generator by adding an extra
“move forward” whenever it detects a gap in the food pat-
tern. So in this scenario, all three behavioral components
will prove adaptive and could be expected to evolve: a set of
actions including “eat,” “move forward,” “move left,” and
“move right”; a set of internal state variables which suc-
cessively influence each other to trigger the proper actions
in sequence; and a set of sensors which can detect gaps in
the zig-zag sequence in the world, and modify the action of
the internal state CPG loop to keep the sequence of gener-
ated behaviors in sync with the structure of the world. (This
is similar to the sensor-modulated CPGs that Gallagher and
Beer, these proceedings, have evolved to control artificial
insect locomotion.)

We can see from these four examples that actions, inter-
nal states, and sensors can all combine independently in a
variety of ways to create adaptive behavior in different en-
vironments. Thus to explore the evolution of such adaptive
behaviors, we need a system which can evolve each of these
components independently. Moreover, to be able to analyze
the simulated creatures which result from our evolutionary
scenarios in terms of these behavioral components, it is im-
portant that they be kept modularly distinct; if we were just
to evolve big unstructured neural networks or Lisp code rep-
resentations of our creatures, for instance, it would be very
difficult to say when a network was using internal state, or
whether or not a Lisp routine instantiates a central pattern
generator. (It is typically easier to determine what actions
and sensory inputs such systems are employing than what
they’re doing internally, but even that may not be so clear
in more complex situations.) To help alleviate this difficulty
of both evolution and analysis, we have developed a mod-
ular system of evolving lists of actions and triggering con-
ditions, internal state variables, and sensory input systems.
These lists of variables are restricted in how they can inter-
act with each other, so that modularity and interpretability
can be maintained. Evolution creates and builds up the en-
tries in each of these lists within each individual creature.
For now, we will remain agnostic in our choice of repre-
sentation and implementation of the elements in these lists;
they should merely be thought of as some sort of simple
information-processing mechanisms. (We will return to the
issue of implementation in a later section.) We now consider
each of these three behavioral components in detail.

2.2.1 Sensors

The ultimate role of sensory systems is to tell creatures
about what’s out there in the world that might be impor-
tant. Sensors are not for informing about spectral inten-
sity, or airborne polypeptides, or modulated pitch formants;
rather, they are for indicating the presence of a colorful ripe
fruit, or a sexually-ready conspecific, or a snarling predator.
That is, sensors should be thought of as signalling fitness

affordances, things in the world which can have a positive
or negative effect on the individual’s ongoing fitness (see
Miller & Todd, in preparation, for a more detailed account
of this topic, patterned after Gibson’s 1966 notion of per-
ceptual affordances). As such, we will define the sensors
in the present system as providing information about just
those things that are out there in the world, that is, about
the contents of W (x; y).

Each individual has a list of sensors, S[i], where i can go
from 1 to some preset maximum number of sensors nS . If
nS is preset to 0, then none of the creatures in this world
can have any sensors — this is how we can restrict our ex-
periments to the first two types of environmental situations
presented earlier. Each S[i] is defined as a function fS[i]

of just the category-based contents of the world, Wc(x; y),
for a particular category c. That is, S[i] � fS[i](Wc(x; y)),
where c in the current simple worlds can be either food or
(other) creatures, so that two general classes of sensors are
possible. The categories c that sensors can respond to are
just those classes of objects or entities that the creatures can
act on — the granularity of actions and sensors is always
equal. (There is no proprioception possible through the sen-
sory inputs in S, but this can sneak in through the internal
state variables described next.)

Each S[i] can be as complicated or as simple as evolu-
tion deigns to make it. For instance, one creature might
have S[18] = log(W (1; 1)) + 8:73, a complex function of
an absolute position in the world, and another might have
S[7] = W (xp + 1; yp) +W (xp � 1; yp), where xp and yp
indicate the individual’s current position, in which case this
sensor looks at what’s above and below the creature in the
2-d world. Sensors can also be noisy or inaccurate, deliv-
ering an only more-or-less realistic view of the objects in
the world. If a particular ith sensor is not present (which
can be signified by an “inactive” flag for that sensor in the
evolving list of sensors), S[i] is defined to be 0.

Such “direct-perception” sensors may not seem to match
the sorts of indirect windows on the world our own sen-
sors sometimes feel like, and one might object that there’s
nothing here like propagating chemical gradients or reflect-
ing light or sound waves to carry information around in the
environment. But again, it is the ultimate sources of these
signals that we (and all living creatures) are really interested
in, rather than the particular form of their proximal cues, and
the sensory scheme presented here captures just this notion.
In addition, by focussing on the objects in the world and
their action consequences, we hope to make the behavioral
orientation of this work clearer, and at the same time avoid
the complicated (and important) problems of sensory trans-
duction.

2.2.2 Internal States

The internal state variables available to an individual crea-
ture are designated in a manner similar to the sensors. They
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are indexed in a list I [i], for i from 1 to nI , the pre-
set maximum number of internal state variables. Again, if
nI is preset to 0, all creatures will evolve without any in-
ternal state. Each I [i] is defined as a function of (some
of) the current sensory inputs, the previous internal states,
and the previous action-states (indicating whether or not a
particular action fired on the previous time-step); that is,
I [i] � fI[i](S

t; It�1; At�1). The inclusion of the previous
action as one of the possible inputs to the internal state vari-
ables allows for limited proprioception, as mentioned in the
previous section. Each I [i] is set to 0 if not defined (inac-
tive), just as for each S[i].

Internal state variables allow further processing on the
sensory inputs. For example, I [3] = logistic(S[7]) would
perform a gentle thresholding of the results of sensor 7
(looking up and down). They can also provide a memory for
past events or actions, as in the pair I [52] = At�1[3], which
remembers whether or not action 3 was just performed, and
I [17] = It�1[52], which returns the performance-status of
action 3 two time steps ago. More complicated systems, like
the central pattern generators mentioned earlier, can also be
evolved (though it may take quite a while for such things to
be hit upon in such an open-ended framework). The outputs
of the internal state variables, along with the current sensory
values, are then made available to the final component of the
behavioral triptych, the actions and their triggers.

2.2.3 Actions and their Triggers

Each action A[i] an individual can perform is defined as a
two-part structure consisting of an action-type and a trig-
gering function. (Here again i can vary from 1 to nA, the
maximum number of different actions an evolved behavioral
system can contain; in this case, nA will never be set to
0, or else we’d end up with an uninteresting, unbehaving
creature.) Action-types A[i]act can be primitive motor com-
mands such as “move forward,” “turn,” “eat,” etc.; we will
discuss these in more detail in the next section. These ac-
tions can be thought of as very simple “fixed action patterns”
which are fired off and run to completion without any envi-
ronmental influence either before or during their execution.
Thus they are not functions of either the sensory inputs or
the internal state variables, but rather are impenetrable units.

The way sensory inputs and internal states are able to af-
fect emitted behavior is by controlling which behaviors ac-
tually get emitted at all, through the triggering functions.
Triggering functions A[i]trig are real-valued functions of
the individual’s current sensory inputs and current internal
states (if there are any of each) which are used to deter-
mine when a particular action is invoked. That is, A[i]trig �

fA[i](S
t; It). To determine which action an individual will

perform at a given time-step, all of the creature’s (active)
trigger functions are evaluated, giving a real value repre-
senting the strength with which each possible (active) ac-
tion is being triggered. From here, there are several ways

that the final single action to be performed can be chosen,
including selecting the action A[i] with the highest trigger
value, choosing an action stochastically based on the nor-
malized trigger values interpreted as a discrete probability
distribution function, or picking an action at random from
among all those above some trigger threshold. Different se-
lection schemes will result in different observed patterns of
behavior, and therefore also in different evolved behavioral
systems to achieve the same behavioral ends.

2.3 A Catalogue of Action-types

The things that an organism can do in its world depend on
what there is in that world to act on and affect. In the system
we’ve described here there is not all that much in the world
for the creatures to alter: basically, there is only food/energy,
and the creatures themselves. As a result, the number of
action-type primitives that we can define for this world will
also be limited. We view this as a plus, though, since it will
keep our analysis and understanding of the evolutionary and
behavioral dynamics of this system that much simpler.

First of all, creatures can change the distribution of food
in the world, that is, change the food entries in W (x; y).
The most obvious action in this category is “eating” — low-
ering the food-value at a particular world location. (This
will in turn result in an increase the creature’s own energy
level, E, and a decrease in the energy of the food, but we
will consider these as energetic “side-effects” of the direct
action, described in the next section.) Though this behav-
ior seems simple, a variety of possible action-types are sub-
sumed under this category. For instance, what (x; y) lo-
cations do we allow a creature to eat from? Only their
own current location? Or neighboring locations? How big
a “reach” should we allow creatures in that case? And how
much of the food will the creatures eat? All of it at once?
Or can they opt to eat a lesser amount? If there’s a lot of
food to be eaten at a certain location, should it take longer
for the creature to do so? We plan to extend this system
so that the eating command (and others) will itself be a 3-
tuple, (x; y; E), specifying what location to eat from, and
how much to eat (i.e., the amount of energy to absorb). This
action will be generated as a function of the current internal
state and sensory inputs, just as the triggering values now
are. How difficult each such action is (i.e., how much ef-
fort, in terms of energy, it takes the creature to perform it),
and what the energetic benefits and side-effects are, would
again be specified in the bioenergetics of the world. But in
the meantime, we can restrict this class of actions simply to
“eat everything that’s in your current hex, in one time-step.”

Besides just eating the food in the world, though, there
are other ways creatures can alter its distribution. For ex-
ample, we might want to allow creatures to increase the
amount of food at a given location, by “fertilizing” that po-
sition (certainly at a cost in energy terms to the creature
itself, another side-effect). Or creatures could “farm” the
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food in the world, by “pushing” the food spread in some
large area into a smaller region for easier later harvest or
hoarding from other creatures. (This could also be achieved
through a combination of “eating,” “moving,” and “fertil-
izing” actions.) Both of these actions could again be de-
scribed via a 3-tuple (x; y; E) indicating the positions and
amounts of food/energy involved. For now we will leave
these possible actions out of the system, but for complete-
ness later we anticipate including them in the evolutionary
pot, to see whether or not any creatures find them adaptively
useful. (It is important to try to begin with as few possible
actions as we can, and let the selectable pool of them build
up slowly, preferably also through a non-arbitrary evolution-
ary process.)

Another thing in the world that a creature can change is
itself. At present, we do not allow a creature to alter its
own behavior-generating mechanisms, that is, its list of us-
able sensors, internal state variables, and actions and trig-
gers; in particular, as mentioned earlier, since the behavior-
generators are fixed, no learning is possible yet. (Note that
the values that the sensory, internal state, and trigger func-
tions return can all be affected by what the creature does,
since its actions can change its internal states and its view of
the world, but the functions themselves cannot be altered, ex-
cept by the action of evolution.) But a creature can change
its own (x; y) location, moving about in the world. Just as
for the eating action, questions arise as to how far and in
what directions a creature can travel in a single time-step.
Again for now, just to keep things simple, we will only al-
low single-hex movement to any of the positions currently
adjacent to the creature, making six movement action-types.

With more than one organism in the world at a time, there
comes the possibility for a wide range of other “social” (or
anti-social!) behaviors, as one creature affects another: for
instance, “move-other” or “eat-other.” Once again, to start
off simple, we are setting these types of creature interac-
tions aside for the moment. But there is one final aspect
of the world that the creatures should be able to influence:
the number of the creatures themselves. To this end, we
add a final action-type, “split.” When a creature performs
this action, it creates one or more copies of itself as new
individuals in the world. In this case, we need to deter-
mine how many new individuals are created, how much en-
ergy each one gets, what location each one ends up at, and
whether or not the new copies are exact or altered versions
of the original. In our simple first instantiation of this sys-
tem, we allow an individual creature to just split into two,
with each getting an equal amount of the “parent’s” energy,
and each occupying the same hex as the original. Finally,
one of the two new creatures that replace the original is kept
identical to the original, and the other is mutated slightly,
so that new behavioral mechanisms can enter the popula-
tion. Without such mutation, the system would be more or
less static, with no evolutionary change possible. In future
versions of the system, we can imagine sexual reproduc-

tion through a “combine-with-other” action-type, as well as
more morbid behaviors like “mutate-self,” “mutate-other,”
and “split-other”: : :

We have described all the possible action-types in our
simple world, in terms of all the things in the world that can
be changed. As more types of objects are introduced into
the world (more categories of entities, c, as described ear-
lier in section 2.2.1), and more inter-organism interactions
are allowed, correspondingly more action-types for chang-
ing each of those things will be created. By allowing any
possible change in the world and its contents to be a po-
tential action-type (subject to the bioenergetic constraints of
the world), we hope to enable every possible type of action
in these simple worlds to appear, whether or not they have
analogs in the “real” world. Such generality is essential for
the study of adaptive agency (Miller & Todd, 1990), con-
strued as the investigation of adaptive behavior by any sort
of behaving agent, whether real or hypothesized, terrestrial
or extraterrestrial, biological or artificial.

2.4 Bioenergetics of the World
As we indicated in the previous section, every action a crea-
ture can perform in its simulated world may have energetic
side-effects, in terms of changing the distribution of energy
in the world (that is, transferring it from one entity to an-
other). In particular in the current simple world, these ef-
fects will be manifested as raising or lowering the individ-
ual organism’s own personal energy level, E, and changing
the energy level in food-plants. How each action-type af-
fects the world’s energy-distribution is determined by the
bioenergetics of the world. For now, we will just assign the
energy side-effects of actions by fiat, but we will describe
briefly at the end of this section a way in which the bioen-
ergetics, like the behaviors themselves, can emerge during
the evolutionary process.

The main rule governing the bioenergetics of our system
is that nothing any creature does can raise the energy in
the world. The only way the total world-energy can ever
increase is via the food/growth function, �(x; y; t). Energy
can be transferred from one entity to another, and certainly
can be lowered or lost, but never increased through crea-
ture actions. If we did not impose such a restriction, then
obviously the best thing a creature could do in its lifetime
(in terms of survival or ongoing existence) would be to in-
crease its own energy level directly, resulting in essentially
a perpetual-motion organism. The only other global rule is
that once an individual’s energy level E drops to (or be-
low) zero, it dies and is removed from the world and the
simulation.

In the previous section, we ended up allowing our initial
creatures to perform only three main action-types: eat ev-
erything from the current hex, move to one of the adjacent
hexes, and split into two. Thus for the energetics of this
world, we need only specify the energy side-effects asso-
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ciated with each of these actions. (In general, the bioener-
getics of a given world consists of a table or list of all the
action-types possible in that world, along with their asso-
ciated energetic consequences.) For eating, the energy ef-
fects will simply be to lower the individual’s energy by an
eating-exertion cost (for example, 0.5), and then increase
the individual’s E by the amount of energy absorbed from
the food in its current hex. Furthermore, the food-energy
in that hex is set to zero (since it is all eaten). The eating-
exertion cost guarantees that creatures that always just try
to eat, even when there is no food around, will eventually
run out of energy and die. Thus the creatures must evolve
to only try to eat when it’s adaptive, that is, when there
is food present, rather than attempting to constantly shovel
everything around them down their gullets.

For movement, we will charge the creature (i.e., lower
its energy E) a movement-exertion cost (e.g. 1.0) for each
step in any direction. For splitting, we impose a splitting-
exertion cost (e.g. 1.0) on the parent creature, and divide
the remaining energy equally between the two resulting off-
spring. Finally, if the creature does nothing in a given time-
step, we still impose a small energy sloth-cost on it (e.g.
0.3), so that completely useless sedentary organisms will
eventually be weeded out, dying and being removed when
their energy slowly leaks away to nothing.

All of the other action-types that we chose not to include
in our initial system could in fact appear in the bioener-
getic specification of the world. But they would have a pro-
hibitively high energetic cost associated with them so that
no creature could ever perform these actions. In general,
this is how particular action-types are “disallowed” in our
system, through unpayable energy penalties for performing
them. Thus when we introduce the general location-energy
3-tuple (x; y; E) action-type form, we will be able to allow
or disallow “reaching” in the world by how we assign en-
ergy costs to actions with x 6= xp and y 6= yp; similarly
for movement beyond adjacent hexes or multiple-offspring
splitting, etc. (Note that there is no energy cost associated
with either sensing or performing cognitive computations,
e.g. in the internal state variables, but this could also be in-
troduced at some point, no doubt with profound effects on
the sensors and behaviors evolved.)

The energetic costs and benefits of the actions we have
described here have all been set by hand, in what we hope
are reasonable ways that will allow interesting organisms
and behaviors to evolve. But we would be happier if this
aspect of the world as well could emerge through evolu-
tion, rather than being predetermined in what might be an
ultimately uninteresting way. One idea we have for how to
allow such emergence of the basic bioenergetic laws of the
world is to let every organism “vote” or “bid” for the energy
costs and benefits that it would like to see associated with
various action-types. If we have only roving, eating crea-
tures evolving in the world as we have so far described here,
we can imagine that they will all vote or bid to lower the

movement cost to 0, so that they can roam about the world
eating over as long and far a range as they want without in-
curring any cost. This would not be particularly interesting.
However, if we also allowed the food itself to evolve, akin
to say plants or sedentary or immobile prey organisms, and
let these entities also vote on the bioenergetics of the world,
they would no doubt call for very high movement costs, to
cripple the roving eaters and keep them from getting close
enough to devour the food organisms.

With both organism types voting, each with different self-
interests, and with the bioenergetics coming out of this
conflict-based democratic process, we expect that much
more interesting dynamics would emerge. Perhaps some
sort of energetic cost/benefit compromise would be settled
upon, allowing an uneasy truce where individuals in both
species could survive; or maybe there would be a continuous
predator-prey cyclic pattern as first one faction and then an-
other gathered enough votes to sway the bioenergetics tem-
porarily in their own favor. In this way perhaps “evolution
at the edge of chaos” (Langton, 1992) could be achieved
and maintained, along with the ongoing interesting patterns
that this entails.

3 Evolutionary Dynamics and a Day
in the Life

Creatures in our simulations obviously have rather simple
lives. To begin each run, we just create a random initial or-
ganism via abiogenesis (generation of life from inanimate
substance), with random sensors, internal state variables,
and actions and triggers, as well as a specific amount of
energy to get it started. We then set it loose in the world
and see what happens. We introduce new such random crea-
tures by abiogenesis every so often (after a typically fixed
interval of many time-steps), to keep up a constant trickle of
potentially adaptive creatures into the world. Some of these
creatures will move about in the world, but do little else.
Others will sit and eat, but never move. Still others will
split repeatedly, until their energy is too low to allow any
further splitting. All of these will burn up or waste away
their energy until they reach zero and die, with their ineffec-
tual behavioral endowments being removed from the world.
Some lucky few in any given run though may combine these
actions in an appropriate fashion, moving, then eating, then
splitting and spreading their successful behavior-generating
mechanisms to new offspring. In turn, some of the new off-
spring, mutated slightly, will improve upon the behaviors
of their parents, and more and more adaptive behavior will
evolve over time. In any given time-frame, this emergence
of surviving creatures may not occur; but as we continue
to introduce new random creatures into the world, eventu-
ally an interesting (i.e. adaptive) one will show up, and the
system will take off, bubbling with life.

There are two important subtleties to this evolutionary
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scheme. First, reproduction is not imposed on any indi-
vidual. For evolution to work, some of the creatures must
hit upon “reproductive behavior” (i.e., splitting) themselves.
Otherwise, the best they can do is just be long-lived. An
immortal creature that works its way around the world
and eats enough to remain alive time-step after time-step
may be impressive, but without such creatures splitting and
having slightly mutated offspring, behavioral improvements
will not be introduced into the population. Furthermore,
our creature-controlled reproduction scheme allows a fitness
measure to emerge naturally from the simulation. Fitness
will be defined exactly in terms of those creatures who be-
have appropriately to produce the most offspring. (This is
in sharp contrast to the usual fitness measures imposed from
above by hand, e.g. by forcing any creature above a cer-
tain energy threshold to split, or by running the simulation
in generations and giving each individual a number of off-
spring in the next generation proportional to its amassed en-
ergy.) Note that with our current method, we will also have
(perhaps widely) fluctuating population sizes; however, this
should not be seen as a disadvantage, but rather as an added
measure of realism.

Second, one of the most important things that a creature
can know about its world, namely, its own energy level E,
is never directly available to it. An individual’s energy level
could be crucial for knowing when to split, when to head
toward food, when to sit and wait for it to grow back, etc.
However, we do not allow any creature direct access to this
important piece of information. Rather, if creatures are to
make use of this information, they must evolve an inter-
nal representation of it which is updated appropriately in re-
sponse to the actions the individual organism emits. Thus, if
an individual eats, it should increase its internal assessment
of its energy level by an appropriate amount; if it moves
or splits, it should likewise lower its energy-level internal
variable. We expect the most adaptively-behaving individ-
uals will make use of just such an internal constructed bit
of “self-knowledge,” so we are on the lookout for any such
feature in our evolving scenarios.

4 Actual Implementation Methods

The behavioral evolution system we have presented here is
intended to be implementable by a variety of methods; the
description has been purposefully placed at a high level to
be agnostic in terms of implementation details. We are fo-
cussing our own efforts though on two very different types
of implementations which we will describe briefly in this
section: evolving Lisp routines, and evolving neural net-
work architectures.

The lists-of-functions representation we used for the ac-
tions and triggers, internal state variables, and sensors ear-
lier is obviously readily translatable into Lisp code and s-
expressions. In such a form, we can use a “genetic pro-
gramming” method to try to evolve these functions, such

as that of Koza (1992) or Sims (1991). Since our creatures
currently just split and mutate, the latter method may be
more suited to our purposes at present, because it empha-
sizes mutational changes to the Lisp code, rather than the
recombination of s-expressions primarily used in the former.
In either case, while the translation of our system into Lisp
may be clear, the evolutionary process itself could still be
quite extended and tortuous.

When compared to the obvious Lisp representation, it
may seem very unclear how we could construct neural net-
work architectures that will precisely embody the modular-
ized lists of sensors, internal state variables, and actions and
triggers that we want our creatures to be able to use. But
there is also a natural interpretation in this case, in terms of
a structured network with each layer of nonlinear units inter-
preted as one of the three categories just mentioned. First of
all, we can have a set of possible output unit types, each of
which is associated with one of the possible action-types.
Every network will have an evolutionarily-determined se-
lection of these. Each output unit in every creature has an
evolved bias level associated with it, which forms part (or
all) of its triggering function. Actions are selected from
among the active output units based on one of the selec-
tion schemes listed in section 2.2.3. If the network has
only such output units, as shown in Figure 2a, and uses the
probability-based action selection scheme, we will end up
with a stochastically-behaving creature like that described
in the first scenario in section 2.2.

Now we can add the internal state variables as another
layer of (hidden) units in the network, as shown in Fig-
ure 2b. These units receive recurrent connections from the
output units, and from themselves, and pass their logistic-
function activations forward in turn to the output units. In
this case, the evolutionary mutation process would deter-
mine not only the number and type of output units, but also
the number of internal state units, and the weights on all the
connections between these two layers. With such a network,
we would get the memory-guided creature described in the
second scenario in section 2.2.

Finally, we can add sensors to this network as another
layer of (input) units, as shown in Figure 2c, and end up
with the full-blown sensory-guided behavior of the fourth
scenario. As can be seen in the figure, each sensor unit
(which is sensitive to one particular category) has direct con-
nections to positions in the world, that is, W (x; y). Sensors
are in turn connected both to the internal state units, and to
the output units, since both are functions of the current sen-
sory input (as described in sections 2.2.2 and 2.2.3). Evo-
lution will determine the number and types of sensory units
in each creature’s network, and the connectivity pattern and
weights between the world and the sensors, and between the
sensors and the internal state units and output units. (The
final recurrent structure of the full network here resembles
that of an Elman- or Jordan-style recurrent network — see
Elman, 1988, and Jordan, 1986. Here we have drawn the
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Contents of World W(x,y)

Units S[i]
Input

Hidden Units I[i]

Output Units A[i]

action
c.

b.
action

Output Units A[i]

Hidden Units I[i]

(each with some bias)
Output Units A[i]

action
a.

Figure 2. Network implementations of behavioral components. a. A simple network for producing actions stochastically. b. A network
for generating actions based on internal states. c. A network that uses both internal states and sensory inputs from the contents of the
world to produce its actions.

input units offset, to emphasize their secondary role in guid-
ing and adjusting internally-generated behavior.)

For the genetic and evolutionary representation and mod-
ification of these neural networks, we use a scheme like that
developed by Miller, Todd, and Hegde (1989). Units can use
various activation functions, allowing a wide range of non-
linear functions to be implemented between different vari-
ables in the three layers; but obviously this framework does
not allow the unlimited flexibility that evolving entire Lisp
routines does. Still, we believe it will be flexible (and ma-
nipulatable) enough to yield very interesting results in this
system (as it has in many earlier studies), and so we are
eager to compare the results of this representation scheme
to the Lisp-based one. (If further computational power is
needed in the network, we can add additional hidden layers
of computing units between the existing layers.)

5 Characterizing the Environment,
and Other Research Directions

At this point, we do not have space (nor results) enough
left to do much other than describe some of the types of
environments, and environmental classifications, that we are
beginning to explore with the framework we have just laid
out. We choose to consider two-dimensional grid world en-
vironments in general because they are easily visualizable

and concrete (rather than described by unintuitive parame-
ter settings). They should also be more readily translatable
into real-world settings so that we can tie in with empirical,
ecological data. However, classifying these environments
will probably require returning to abstract parameters and
categories; but we will maintain the link to the grid world
description and the valuable visualization it allows.

Traditional machine-learning conceptions of environ-
ments, as “noisy,” “regular,” “unknown,” etc., are crude
and unhelpful in our current endeavor. Slightly more so-
phisticated conceptions of environments as finite state au-
tomata (FSA’s), which return sensory inputs to the creature
in response to its motor outputs, can describe quite com-
plex environment/behavior interactions (see, e.g., Mozer &
Bachrach, 1991; Rivest & Schapire, 1987). We are inter-
ested in developing mappings between such models of en-
vironments, and our 2-d grid world representation. How-
ever, there are at least three drawbacks to the FSA approach
to environmental characterization: first, for environments of
reasonable size (like our grid worlds), the FSA will have to
be enormous to capture all the possible states and transitions
between them (e.g., for a small 10x10 grid which either con-
tains food or nothing at each location, there are 2100, or ap-
proximately 1030, possible states); second, the actions and
sensations are all assumed to be defined, rather than allowed
to emerge through the course of evolutionary adaptation; and
third, in focussing on the sensory consequences of actions,
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the FSA model overlooks the interesting possibilities where
no sensors are used.

Wilson (1991), Smith (1991), and Littman (these proceed-
ings) have proceeded from the FSA environment models to
more abstract categories based on the amount of memory or
state a creature needs to exploit an environment, and how
long the creature must wait for rewards following its behav-
ior. Littman carries this further, characterizing environments
in terms of the creatures that can behave optimally in them.
These approaches also seem promising, and certainly em-
phasize the interrelationship between environmental struc-
ture and the creatures that behave in those environments.
But it is not easy to see how to move back and forth be-
tween these conceptions of environments and more concrete
visualizable forms like the grid world representation. Also,
the notion of reward, while important for learning systems,
again obscures the important classes of non-learning, and
even non-sensing, creatures and behaviors, as well as their
evolution. And finally, we believe that it should be possible
to describe some aspects of the environment in terms that
are not entirely creature-centric, that is, in ways that do not
rely solely on the capabilities of creatures themselves; but
we may be forced to recant this position.

An example classification scheme closer to what we are
hoping for was indicated in the third scenario in section 2.2,
where we spoke of food being distributed in the world in
separate clumps or patches. We are working on a way of
parameterizing the clumpiness of food in a 2-d world (which
we have already done in one way for the 1-d case — see
Todd, 1992, chapter 5). With this characterization in hand,
we will be able to construct worlds of different clumpi-
nesses, and see what sorts of behaviors evolve to exploit
them, and whether there are interesting correlations between
the two. Patch finding and foraging is a well-studied area
in the animal behavior literature, so we will have much to
draw on and compare to there.

As we have mentioned earlier, we are also interested in
how well creatures without various of the behavioral compo-
nents might fare in different environments. Thus we might
compare creatures without internal state to those with, or
ones with limited sensory abilities to others with sophisti-
cated senses. Another interesting variation would be to ex-
plore the tradeoffs that evolution makes when it must choose
between, say, senses and internal states: by keeping the sum
nS + nI fixed during evolution, we could see how evolu-
tion balances the two when it has limited resources to work
with.

We are clearly embarked on an exploratory, open-ended
research program, but one which we believe will yield use-
ful insights into the nature of environments and the behav-
iors that are adaptive in them. By starting at the ground-
level, creating a system in which all aspects of a creature’s
behavior-generating mechanisms can evolve as needed, and
working our way up to consideration of different types of
environments where this evolution will take place, we hope

to have a framework rich enough to lead us to understanding
of phenomena beyond those we have already imagined.
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