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Abstract

A representation for biological development is de-
scribed for simulating the evolution of simple multi-
cellular systems using the genetic algorithm. The
representation consists of a set of production-like
growth rules constituting the genotype, together with
the method of executing the rules to produce the
phenotype. Examples of development in 1-dimen-
stonal creatures are given.

1. Introduction

The genetic algorithm [1] incorporates mecha-
nisms which resemble the mechanisms of reproduc-
tion, variation, and selection found in natural evo-
lution, but, despite successes in several fields of ap-
plication, there has been little attempt to use the
algorithm as a tool to investigate, through simula-
tion, natural evolution itself. Considerable work ex-
ists on the ontogenetic evolution of behavior, 1.e.,
learning [2-4], but relatively little on the evolution
of organisms per se [5]. The main reason has been
the absence of representations for organisms which
would permit the genetic algorithm to be brought. to
bear. The genetic algorithm observes the genotype-
phenotype distinction of biology: the algorithm’s
variation operators act on the genotype and its se-
lection mechanisms apply to the phenotype. In biol-
ogy, the genotype-phenotype difference is vast: the
genotype 1s embodied in the chromosomes whereas
the phenotype is the whole organism that expresses
the chromosomal information. The complex decod-
ing process that leads from one to the other is called
biological development and is essential if the geno-
type is to be evaluated by the environment. Thus
to apply the genetic algorithm to natural evolution
calls for a representational scheme that both per-
mits application of the algorithm’s operators to the
genotype and also defines how, based on the geno-
type, organisms are to be “grown”, i.e., their devel-
opment.

The present paper outlines a few steps in the
direction of such a representation [6]. The problem
is addressed at the level of cells, which are treated
as as “black boxes” having well-defined properties.
Beginning with the fertilized egg, the cells are to
divide, move, and differentiate under the control of

rules so as eventually to form a mature organism.
An attempt is made to respect major facts known
about cells and these processes, but large compro-
mises must occur at this point in the effort to ap-
proach algorithmic workability. The principal objec-
tive is to describe a representational framework—
a sort of “developmental automaton”-—sufficiently
completely that randomly generated instances will
grow and can be evolved under the genetic algorithm
in computer experiments.

2. Evolution of Development

The problem of applying the genetic algorithm to
the development of multi-cellular organisms can be
divided into four parts: plan, expression, selection,
and variation.

2.1 Plan

In nature, the genotype contains (1) information
that is descriptive, through the action of develop-
ment and the environment, of a range of possible
phenotypes, and (2) information encoding the devel-
opmental process itself, 7.e., how to go about mak-
ing a phenotype from a genotype. Both kinds of
information are of course inherited and subject to
variation and natural selection. Here, for simplic-
ity, it will be assumed that only the first kind of
information, termed the organism’s plan, is herita-
ble and subject to the genetic algorithm. The other
kind, the rules for ezpressing the plan to form the
phenotype, will be regarded as fixed.

What should the plan look like? Several obser-
vations on natural systems are suggestive [7]. In the
first place, though individual cells can have differ-
ent sizes and can change in size, growth occurs pri-
marily through cell division: one cell becomes two
“daughter” cells. Second, depending on the situa-
tion, the daughters can be phenotypically the same
as the parent, they can differ from the parent but
not differ from each other, or they can differ from
the parent and from each other. Third, the pheno-
typical outcome of cell division can depend not only
on the nature of the parent cell, but also on factors
related to the cellular, chemical, or physical context
in which the parent cell is embedded. Finally—and
pivotal for this discussion—-all cells in an organism
are considered to contain the same genetic informa-
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tion, though some of it may become in some sense
“switched off” or inoperative during differentiation.

These observations have suggested the following
working proposal. The plan will take the form of
a so-called production system program (PSP) con-
sisting of a finite number of production (condition-
action) rules which will be termed growth rules. The
growth rules have the general form

X+K;, = KJ' K

The K’s stand for cell phenotypes and X represents
the local context; the symbol “+” means conjunc-
tion. In addition, each growth rule has associated
with it a weight w. Every cell in the organism con-
tains the same set of rules, or PSP.

Focussing attention on a particular rule in the
PSP of a particular cell, the condition side of the
rule is satisfied if that cell is (phenotypically) of type
K; and the context matches X. The action recom-
mended by the rule is to replace the cell by two new
cells, one phenotypically of type K,, the other of
type Ki. Whether or not this rule controls the par-
ent cell’s fate depends on whether the rule is selected
for expression, as discussed in the next section.

The general growth rule form is open to many
special cases. As in nature, the daughter cells may
or may not be the same as the parent or each other.
Furthermore, some rules may contain just one daugh-
ter cell, identical to the parent; such a rule, if ex-
pressed, means that cell division does not take place.
Also, some rules may have no cell in their action
parts, corresponding to dissolution of the parent cell.

Some rules may have no term corresponding to
X; their condition is satisfied independent of con-
text. In the other rules, X can take on several forms.
Most simply, X can stand for the presence of a cell
of a particular kind adjacent to K;. In this case
(“adjacency” type context), the spatial relation of
the X cell and K; may affect the spatial relation of
the daughter cells (if there are two). Another kind
of X (“signal” type) would stand for a detector for
signals emitted by other cells, not necessarily in the
immediate neighborhood. For present purposes, the
“signal” emitted by a cell is simply a list of its pheno-
typical properties. The predominant direction from
which matched signals are reccived could affect the
daughter cells’ spatial relation. Still another kind of
X would detect aspects of the physical environment
such as intercell pressure.

2.2 Ezpression

Since all cells contain the same “program?”, dif-
ferential development of the system depends on the

selection for expression of different rules in differ-
ent cells. This is not difficult in principle, since
once some differentiation occurs, the sensitivity of
the rules to cell type and context will lead to fur-
ther differentiation. The proposed expression mech-
anism consists of a match step and a decision step.
Again focussing attention on a particular cell, in the
match step the cell first identifies those program
rules which have satisfied conditions. Then, from
this match set, the cell chooses a single rule for ex-
pression. The chosen rule “carries out its right-hand
side” 1.e., daughter cells are produced as prescribed
and their signals are emitted.

The system’s growth process is envisioned as a se-
ries of discrete time-steps. On each step, the expres-
sion mechanism operates in every cell of the current
system. The operation is regarded as “parallel” in
the sense that offspring of all the cells are produced
simultaneously. The offspring cells then undergo,
in accordance with their phenotypical properties, a
process of interaction and spatial accomodation so
as to form the “new” system to be input to the ex-
pression mechanism in the next time-step.

2.2.1 The decision step

The decision step of the expression mechanism
makes use of the growth rule weights w and the effect
of signals from nearby cells. Each growth rule in the
match set has an associated weight w. If a rule’s
context (X) part is either absent or is of adjacency
type, its ezcitation is defined to be just w. However,
if a rule’s context part i1s of signal type, the rule’s
excitation is defined to be the product of the weight
w and the ntensity of the received context signal.
For example, suppose that a certain rule has an X
which matches signals S5 emitted by nearby cells
A. Suppose further that the total intensity of the
signals is simply their number n times a constant
f. Then the excitation of the rule in question would
equal fnw.

The cell decides which match set rule to express
using a probability distribution over the rules’ ex-
citations. That is, the probability that a particular
rule will be picked is equal to its excitation divided
by the sum of the excitations of the rules in the
match set. The following three rules offer an inter-
esting example.

A=AA Wy

(SAA)+A:>O wy

The first rule, termed “reproductive”, takes one cell
A and leaves two in its place. The second rule,
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termed “inhibitory”™, matches cell A, senses the pres-
ence of at least one A-type signal in the vicinity, and
seeks, il chosen, to maintain the status quo exactly.
The third rule, a deletion rule, has the same condi-
tion as the inhibitory rule, but seeks to delete the
matched A cell. Each rule has a weight, as shown.

Suppose now the system consists of an aggregate
of n cells of type A. In any cell, the excitations of
the three rules will be:

€y = Wy
€ = w; fny

€a = wafny

If w, is large and there are relatively few cells, the
reproductive rule will be chosen most of the time and
the aggregate will grow. As it does, however, the
excitations of the inhibitory and deletion rules will
increase relative to that of the reproductive rule, due
to n . The growth rate will slow down. Eventually,
an equilibrium will be reached where net growth is
zero. At that point, the probability of reproduction
equals the probability of deletion, or w, = wafny.
Solving for n yields the system’s equilibrium size:

ny = (1/1)(wr fwa)

The system’s net growth rate dn/dt prior to equilib-
rium can be calculated by taking the product of n
and the difference between the probabilities of repro-
duction and deletion. Dropping the “A” subscripts,
the result is

dn (1 —n/n")

dt T4 (wifwa 4 1)(n/n%)

showing that the system’s growth rate can be “cho-
sen” independently of its equilibrium size.

Though simple, the example is important be-
cause 1t illustrates one way in which the cellular
program can manage the fundamental problem of
bounded growth. Later examples of differentiation
into finite regions of homogeneous cell type will as-
sume the presence of growth rule sets of this or sim-
ilar sort for the regions.

2.2.2 Phenotype properties

Once the decision step has picked a rule for ex-
pression, the daughter cells in the action part must
be simulated, which means simulating their proper-
ties. In a real organism, each cell “type” has a myr-
iad of physical and biochemical properties. Some of
these may be more properly regarded as behavioral,

e.g., during development, cells can creep, amoeba-
like to new positions. Most of the properties affect in
one way or another a cell’s interactions with other
cells. Even if all the properties were understood,
a realistic simulation would still have an enormous
problem adequately representing and computing the
interactions within the cell aggregate. Such a com-
putation is necessary in order to determine the fit-
ness, with respect to an environment, of the organ-
ism as a whole. The practical course for the present
would seem to be to choose extremely simple en-
vironments, simple measures of fitness, and a very
restricted range of cell properties.

2.8 Selection and variation

Because the foregoing representational framework
for development takes the form of a production sys-
tem program, it is straightforward to apply the ge-
netic algorithm as the “engine” of phenotype selec-
tion and genotype variation. The application of the
algorithm would be along the lines of previous work
with production system programs [3,8]. One would
start with a population of “egg” cells, each contain-
ing a random genotype. Each egg would undergo
development and, after a standard number of time-
steps, each resulting cell aggregate would be rated
for fitness. The original eggs would then be copied
in numbers proportional to these fitnesses to form a
new population of the same size. Genetic operators
would be applied to the genotypes of the new pop-
ulation. The cycle would be iterated through some
number of generations, corresponding to evolution.

Many aspects of this scheme are quite well un-
derstood due to the research just cited and on ge-
netic algorithms in general. However, the form of
the growth rules in the genotype is somewhat un-
usual so some comments about coding are in order.
The basic encoding would resemble that of classifiers
|2]. The condition part of a rule would consist of a
context taxon (for X) and a cell taxon (for K;), each
being a string of length L from {1,0,#}. The ac-
tion part would consist of two cell descriptions (for
K; and Kg), both strings of length L from {1,0}.

An interpreter is required to relate cell descrip-
tion encodings to phenotypical properties. This sim-
ply means establishing a pre-defined mapping be-
tween substrings in the cell description and proper-
ties, e.g., “110” in the 14th through 16th positions
could mean the cell surface has “high stickiness”,
etc. To take care of rules in which one or both of
the daughter cells is absent, the interpreter would
simply check the setting a certain bit in each cell
description: “0”, say, would mean that description
cell was absent and the rest of the description should
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be ignored. A similar system would be used to indi-
cate the presence or absence of a context taxon and
its type (adjacency, signal, or other).

A growth rule’s condition would be satisfied if
both (1) the cell description of the cell in which the
rule finds itself matches the rule’s cell taxon, and
(2) at least one signal reaching the cell matches the
rule’s context taxon. The meaning of “match” is the
same as for classifiers: the two strings must be the
same at every non-# position of the taxon. The use
of the “don’t care” symbol # permits rule conditions
to restrict their sensitivity to particular subsets of
cell description and signal bits.

Calculation of the intensity of the signal match-
ing the context taxon can be quite complex, de-
pending on the simulation. Involved are the depen-
dence of individual signal intensities on the distance
from their sources, and also perhaps propagation de-
lays with respect to the time-step of creation of the
source cell. These factors must be predefined. In
any case the total received intensity would be a sum
over the individual intensities of all matched signals.
As noted earlier, the net direction of the received sig-
nal may in some rules determine the spatial orienta-
tion of the daughter cells. The dependence would be
encoded in a special bit string associated with the
daughter cell descriptions.

The weight associated with a growth rule must
also be encoded in order to make it, and conse-
quently the rule’s influence in the decision step, sub-
ject to the genetic algorithm. The weight would sim-
ply be concatenated, as a fixed-length binary num-
ber, with the rest of the rule string.

3. 1-D Development

As has been the case with research on cellular au-
tomata (9], the complexity of realistic three-dimen-
sional simulations recommends initial study of one-
dimensional examples. In two and three dimensions,
forces between cells must lead to complicated cell
movements and contortions of the “tissue”. A 1-
D “creature”, however, could be viewed as growing
inside a frictionless tube, with no forces except be-
tween adjacent cells. Cell division would lengthen
the creature; deletion would shorten it. Though sim-
ple, the 1-D case can exhibit cell type configuration
patterns such as symmetry, periodicity, and polar-
ity that are analogous to patterns emerging in the
development of real organisms. Some elementary
examples follow,

3.1 Symmetry and periodicity

Changes in a 1-D system through time can be
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represented by a pyramid like the following:

A
B B
bCCD

This shows three time-steps. At first, the system
consists just of cell A; then A divides to form cells
B and B; then the left-hand B divides to form the
(oriented) pair D C, and the right-hand B yields the
pair C D. Only two growth rules are required:

A=>BB
(B)+B=CD

In the second rule the context taxon is of adjacency
type (indicated by the absence of “S”). This type
of rule reads: “order the output cells so that the
direction from the first one to the second one is the
same as the direction from the context cell to the
replaced cell.”

Note that the pyramid diagram shows bilateral
symmetry about its center line. Using additional
rule sets of the self-limiting form discussed in Sec-
tion 2.2.1, the C’s and D’s could be multiplied to
yield eventually a stable symmetrical creature of fi-
nite size, D...D C...C D...D, with approximately
equal groups of D cells.

The following pyramid and its rules illustrates
rudimentary periodicity:
A A F

EF (F) + E
CDCD (E) + F

Yoy
Qo

C
D
Again, the addition of self-limiting rule sets would
result in the creature, C...CD...DC...CD...D,
in which like cell groups were approximately equal
in size. It is clear that quite complex structures can
be built by first establishing the pattern with non-
cyclic rules (in which the cell taxon will not match
the output cells), and then using self-limiting rule
sets which apply to the final cell types.

8.2 Polarity

An elementary polarity results from any rule in
which the output cell types differ. A polarity with
respect to some phenotypical property can be set up
with non-cyclic rules as follows:

A A= BC
B C (C)+ B=ED
DEFG (B)+ C=FG

If in the cell descriptions of D, E, F and G the prop-
erty is, say, monotonically increasing, the amount of



the property will be graded across the system. A
more sophisticated gradient system occurs under the
rules:
A=>BC
(SB) +C=DC
C=>CZC
(Sc) +C=C
(Sc) +C=0

If B’s signal loses intensity with distance, the prob-
ability that a C will change to D C will fall with
distance from the left end of the structure. The re-
sult will be a decreasing distribution of D’s from left
to right. The last three rules are intended to control
the system’s overall size.

When rule sets become even slightly complicated,
as in the last example, it evident that development
will be difficult to predict. It can be hoped, how-
ever, that with the help of the genetic algorithm,
the ability to design and analyse organisms in ad-
vance will not be necessary in order to build suc-
cessful and interesting ones—just as in natural evo-
lution it is not. What does seem essential is an ade-
quate space of possible growth rules. The rule forms
discussed include self-excitation, self-inhibition, and
cross-excitation and -inhibition between different cell
types. The repertoire seems fairly complete for a
start, but modifications in it and in many other as-
pects will surely occur as the proposal is studied
experimentally and analytically.

4. Conclusion

An extremely schematic representational frame-
work for biological development has been described
which may permit simulations of evolution using the
genetic algorithm. Major questions that need to be
addressed include the accuracy and adequacy of the
representation and the problem of computing the
phenotype. It is hoped that coupling “developmen-
tal automata” with genetic adaptive techniques will
vield insights into biological, social, and other sys-
tems which are capable of growth.
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