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Abstract. The classifier system XCSF was modified to use gene ex-
pression programming for the evolution and functioning of the classifier
conditions. The aim was to fit environmental regularities better than
is typically possible with conventional rectilinear conditions. An initial
experiment approximating a nonlinear oblique environment showed ex-
cellent fit to the regularities.

1 Introduction

A learning classifier system (LCS) [14] is a learning system that seeks to gain
reinforcement from its environment via an evolving population of condition-
action rules called classifiers. Broadly, each classifier has a condition, an action,
and a prediction of the environmental payoff the system will receive if the system
takes that action in an environmental state that satisfies its condition. Through a
Darwinian process, classifiers that are useful in gaining reinforcement are selected
and propagated over those less useful, leading to increasing system performance.

A classifier’s condition is important to this improvement in two senses. First,
the condition should contribute to the classifiers’s accuracy: the condition should
be satisfied by, or match, only states such that the classifier’s action indeed re-
sults in the predicted payoff. Second, the condition should be general in the
sense that the classifier should match as many such states as possible, leading to
compactness of the population and, for many applications, transparency of the
system’s knowledge. In effect, the conditions should match the environment’s
regularities—state subsets with similar action payoffs. This depends in part on
the course of the evolutionary process. But it also depends on whether the con-
dition syntax actually permits the regularities to be represented.

Classifier system environments were initially [10] defined over binary do-
mains. The corresponding condition syntax consisted of strings from {1,0,#},
with # a “don’t care” symbol matching either 1 or 0. This syntax is effec-
tive for conjunctive regularities—ANDs of variables and their negations—but
cannot express, e.g., x1 OR x2. Later, for real-vector environments, conditions
were introduced [20] consisting of conjunctions of interval predicates, where each
predicate matches if the corresponding input variable is between a pair of values.



The same logical limitation also applies—only conjuncts of intervals can be rep-
resented. But going to real values exposes the deeper limitation that accurately
matchable state subsets must be hyperrectangular, whereas many environmen-
tal regularities do not have that shape and so will elude representation by single
classifiers.

Attempts to match regularities more adroitly include conditions based on hy-
perellipsoids [2] and on convex hulls [15]. Hyperellipsoids are higher-dimensional
ellipse-like structures that will evolve to align with regularity boundaries. Con-
vex hulls—depending on the number of points available to define them—can be
made to fit any convex regularity. Research on both techniques has shown pos-
itive results, but hyperellipsoids are limited by being a particular, if orientable,
shape, and the number of points needed by convex hulls is exponential with
dimensionality.

Further general approaches to condition syntax include neural networks (NNs)
[1] and compositions of basis functions—trees of functions and terminals—such
as LISP S-expressions [13]. In both cases, matching is defined by the output
exceeding a threshold (or equal to 1 (true) in the case of S-expressions of bi-
nary operators). NNs and S-expressions are in principle both able to represent
arbitrary regularities but NNs may not do so in a way that makes the regular-
ity clear, as is desirable in some applications. Moreover, unlike its weights, the
NN’s connectivity is in most cases fixed in advance, so that every classifier must
accept inputs from all variables, whereas this might not be necessary for some
regularities. In contrast to NNs, functional conditions such as S-expressions offer
greater transparency—provided their complication can be controlled—and have
the ability to ignore unneeded inputs or add ones that become relevant.

This paper seeks to advance understanding of functional conditions by ex-
ploring the use of gene expression programming [7, 8] to define LCS conditions.
Gene expression programming (GEP) is partially similar to genetic program-
ming (GP) [11] in that their phenotype structures are both trees of functions
and terminals. However, in GEP the phenotype results from translation of an
underlying genome, a linear chromosome, which is the object of selection and
genetic operators; in GP the phenotype itself acts as the genome and there is no
translation step. Previous classifier system work with functional conditions has
employed GP [13]. For reasons that will be explained in the following, GEP may
offer more powerful learning than GP in a classifier system setting, as well as
greater transparency. However, the primary aim of the paper is to test GEP in
LCS and assess how well it fits environmental regularities, while leaving direct
comparisons with GP for future work.

The next section examines the limits of rectilinear conditions in the context
of an example landscape that will be used later on. Section 3 presents basics of
GEP as they apply to defining LCS conditions and introduces our test system,
XCSF-GEP. Section 4 applies XCSF-GEP to the example landscape. The paper
concludes with a discussion of the promise of GEP in LCS and the challenges
that have been uncovered.



2 Limits of Traditional Conditions

Classifier systems using traditional hyperrectangular conditions have trouble
when the regularities of interest have boundaries that are oblique to the co-
ordinate axes. Because classifier fitness (in current LCSs like XCS [19] and its
variants) is based on accuracy, the usual consequence is evolution of a patchwork
of classifiers with large and small conditions that cover the regularity, including
its oblique boundary, without too much error. Although at the same time there
is a pressure toward generality, the system cannot successfully cover an oblique
regularity with a single large condition because due to overlap onto adjacent
regularities such a classifier will not be accurate. Covering with a patchwork of
classifiers is, however, undesirable because the resulting population is enlarged
and little insight into the regularity or even its existence is gained.
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Fig. 1. “Tent” payoff landscape P (x, y).

An example will make these ideas clear. Figure 1 shows a tent-like two-
dimensional payoff landscape where the projection of each side of the tent onto
the x-y plane is a triangle (the landscape is adapted from [25]). The two sides
represent different regularities: each is a linear function of x and y but the slopes
are different. The equation for the payoff function is

P (x, y) =

{

x + y : x + y ≤ 1
2 − (x + y) : x + y ≥ 1

(1)

The landscape of Figure 1 can be learned by XCSF [24] in its function ap-
proximation version [21, 22]. XCSF approximates non-linear functions by cover-
ing the landscape with classifiers that compute local linear approximations to



the function’s value. Each such classifier will match in a certain subdomain and
its prediction will be a linear function—via a weight vector—of the function’s
input. The classifier’s condition evolves and its weight vector is adjusted by feed-
back until the prediction is within an error criterion of the function’s value in
that subdomain. At the same time, the condition will evolve to be as large as
possible consistent with the error criterion. In this way XCSF forms a global
piecewise-linear approximation to the function (for details of XCSF please see
the references).

In the case of Figure 1, XCSF will evolve two sets of classifiers corresponding
to the two sides of the tent. All the classifiers on a side will end up with nearly
identical weight vectors. But their conditions will form the patchwork described
earlier—a few will be larger, located in the interior of the triangle, the rest will be
smaller, filling the spaces up to the triangle’s diagonal. The problem is: rectangles
don’t fit triangles, so the system is incapable of covering each side with a single
classifier. If the conditions could be triangles, the system would need only two
classifiers, and they would clearly represent the underlying regularities.

3 Gene Expression Programming in XCSF

3.1 Some basics of GEP

As noted earlier, in GEP there is both a genome, termed chromosome, and a
phenotype, termed expression tree (ET), with the expression tree derived from
the chromosome by a process called translation. The ET’s performance in the
environment determines its fitness and that of the corresponding chromosome,
but it is the chromosome which undergoes selection and the actions of genetic
operators.

An example chromosome might be -*ea+b/cdbbaddc. The arithmetic sym-
bols stand for the four arithmetic functions. The alphabetic symbols are called
terminals and take on numeric values when the expression tree is evaluated. The
first seven symbols of this chromosome form the head ; the rest, all terminals,
form the tail. Whatever the length of the chromosome, the head, consisting of
functions and terminals, and tail, consisting only of terminals, must satisfy

t = h(nmax − 1) + 1, (2)

where h is the length of the head, t the length of the tail, and nmax is the
maximum function arity (in this case 2). The reason for the constraint implied
by this equation will be explained shortly.

Many genetic operators can be employed in GEP. The simplest and, accord-
ing to Ferreira [8], the most powerful, is mutation. It simply changes a symbol
to one of the other symbols, with the proviso that, in the head, any symbol is
possible, but in the tail, symbols can only be changed to other terminal sym-
bols. Another operator is inversion: it picks start and termination symbols of
a subsequence within the head, and reverses that subsequence. Transposition is



a further operator which comes in three forms [7]. The simplest, IS transposi-
tion, copies a subsequence of length n from anywhere in the chromosome and
inserts it at a random point between two elements of the head; to maintain the
same chromosome length, the last n elements of the head are deleted. Several
recombination operators are used, including one- and two-point, which operate
like traditional crossover on a pair of chromosomes.

The translation from chromosome to expression tree is straightforward. Pro-
ceeding from left to right in the chromosome, elements are written in a breadth-
first manner to form the nodes of the tree. The basic rule is: (1) the first chromo-
some element forms a single node at the top level (root) of the tree; (2) further
elements are written left-to-right on each lower level until all the arities on the
level above are satisfied; (3) the process stops when a level consists entirely of
terminals. Due to Equation 2, the tail is always long enough for translation to
terminate before running out of symbols. Figure 2, left side, shows the ET for
the example chromosome. Evaluation of the tree occurs from bottom up, in this
case implementing the expression a(b + c/d) − e.

Fig. 2. Translation of chromosome -*ea+b/cdbbaddc into expression trees (ETs).
Left, standard Karva translation. Right, prefix translation (Sec. 4.1).

The most important property of GEP translation is that every chromosome
is valid ; that is, as long as it obeys Equation 2, every possible chromosome
will translate into a legal, i.e., syntactically correct, tree. The reason is that in
the translation process all function arities are correctly satisfied. The validity
of every chromosome has the significant consequence that the genetic operators
cannot produce an illegal result. In fact, as long as it does not leave function
symbols in the tail, any definable operator will be “safe”. This is in some contrast
to other functional techniques such as GP, where certain operators cannot be
used without producing illegal offspring, or if used, the offspring must be either
edited back to legality or discarded. Ferreira ([8], pp. 22-27, 33-34) regards this
property of GEP as permitting a more thorough and therefore productive search
of the problem space. However, the search issue calls for further investigation



since GEP does have the restriction that the tail must be free of function symbols
and few direct performance comparisons have been made.

Gene expression programming has further important features, but since they
were not used in the present work they will only be mentioned here. One is the
ability to combine several genes into a single chromosome. These are chromo-
some segments that translate into separate expression trees. They are individ-
ually evaluated but their results are linked either by a predetermined operator
such as addition or by a linkage structure that is itself evolved in another part of
the chromosome. A second feature is that GEP has several methods for the con-
current evolution of real-valued constants that may be needed as coefficients and
terms in expressions. Both features (plus others) of GEP are likely to contribute
to the representational power of classifier conditions.

Finally, as in other functional approaches, GEP needs a method of dealing
with undefined or otherwise undesirable results from arithmetic operators. In
contrast to GP, GEP does not replace such operators with protected versions
for which the result cannot occur. Instead, normal operators are retained. Then
when, say, an operator like “/” receives a zero denominator argument, its tree’s
evaluation is aborted and the chromosome’s fitness is set to zero. The philosophy
is to remove (via lack of selection) such flawed chromosomes instead of further
propagating their genetic material.

3.2 XCSF-GEP

The application of GEP in classifier conditions is not complicated. Basically, the
condition is represented by a chromosome whose expression tree is evaluated
by assigning the system’s input variables to the tree’s terminals, evaluating the
tree, and comparing the result with a predetermined threshold. If the result
exceeds the threshold, the condition matches and its classifier becomes part
of the match set. From that point on, XCSF-GEP differs from XCSF only in
that its genetic operators are GEP operators (as in Sec. 3.1). Covering—the
case where no classifier matches the input—is handled by repeatedly generating
a new classifier with a random condition (but obeying Equation 2) until one
matches.

Adding GEP to XCSF would appear to have three main advantages. The
first stems from use of functional (instead of rectilinear) conditions, with the
consequent ability to represent a much larger class of regularities. The next two
stem from GEP in particular: simplicity of genetic operations and conciseness of
classifier conditions. Genetic operations are simple in GEP because they operate
on the linear chromosome and not on the expression tree itself. They are also
simple because offspring never have to be checked for legality, a requirement
which in other functional systems can be complex and costly of computation
time. However, perhaps the most attractive potential advantage of GEP is that
expression tree size is limited by the fixed size of the chromosome.

As noted in the Introduction, a classifier system seeks not only to model
an environment accurately, but to do so with transparency, i.e., in a way that
offers insight into its characteristics and regularities. It does this by evolving



a collection of separate classifiers, each describing a part of the environment
that ideally corresponds to one of the regularities, with the classifier’s condition
describing the part. Thus, it is important that the conditions be concise and
quite easily interpretable. For this, GEP would seem to be better than other
functional systems such as GP because once a chromosome size is chosen, the
expression tree size is limited and very much less subject to “bloat” [17] than
GP tree structures are. In GP, crossover between trees can lead to unlimited
tree size unless constrained for example by deductions from fitness due to size.
In GEP, the size cannot exceed a linear function (hnmax + 1) of the head length
and no fitness penalty is needed.

4 An Experiment

4.1 Setup

The XCSF-GEP system was tested on the tent landscape of Figure 1. As with
XCSF in its function approximation version [21, 22], XCSF-GEP was given ran-
dom x, y pairs from the domain 0.0 ≤ x, y ≤ 1.0, together with payoff values
equal to P (x, y). XCSF-GEP formed a match set [M] of classifiers matching the
input, calculated its system prediction, P̂ , and the system error |P̂ − P (x, y)|
was recorded. Then, as in XCSF, the predictions of the classifiers in [M] were
adjusted using P (x, y), other classifier parameters were adjusted, and a genetic
algorithm was run in [M] if called for. In a typical run of the experiment this
cycle was repeated 10,000 times, for a total of 20 runs, after which the average
system error was plotted and the final populations examined. Runs were started
with empty populations.

For classifier conditions, XCSF-GEP used the function set {+ - * / >} and
the terminal set {a b}. If the divide function “/” encountered a zero denomina-
tor input the result was set to 1.0 and the fitness of the associated chromosome
was set to a very small value. The function “>” is the usual “greater than” ex-
cept the output values are respectively 1 and 0 instead of true and false. To
be added to [M], the evaluation of a classifier’s expression tree was required to
exceed a match threshold of 0.0. In covering and in mutation, the first (root)
element of the chromosome was not allowed to be a terminal.

Partially following [21] and using the notation of Butz and Wilson [5], pa-
rameter settings for the experiment were: population size N = 100, learning rate
β = 0.4, error threshold ǫ0 = 0.01, fitness power ν = 5, GA threshold θGA = 12,
crossover probability (one point) χ = 0.3, deletion threshold θdel = 50, fitness
fraction for accelerated deletion δ = 0.1, delta rule correction rate η = 1.0, con-
stant x0 augmenting the input vector = 0.5. Prior to the present experiment,
an attempt was made to find the best settings (in terms of speed of reduction
of error) for β, θGA, and χ. The settings used in the experiment were the best
combination found, with changes to θGA (basically, the GA frequency) having
the greatest effect.

Parameters specific to XCSF-GEP included a mutation rate µ = 2.0. Follow-
ing Ferreira ([8], p. 77), µ sets the average mutation rate (number of mutations)



per chromosome which, divided by the chromosome length, gives the rate per el-
ement or allele. A rate of µ = 2.0 has been found by Ferreira to be near-optimal.
The head length was set to 6, giving a chromosome length of 13. Inversion and
transposition were not used, nor was subsumption since there is no straightfor-
ward way to determine whether one chromosome subsumes another.

Besides testing XCSF-GEP as described in this paper, the experiment also
tested the same system, but with a different technique for translating the chro-
mosome. Ferreira calls the breadth-first technique “Karva” whereas it is also
possible to translate in a depth-first fashion called “prefix” (see, e.g., [16]). Like
Karva, prefix has the property that every chromosome translates to a valid ex-
pression tree. Figure 2, right side, shows the translation of the chromosome of
Sect. 3.1 using prefix. Looking at examples of chromosomes and their trees, it is
possible to see a tendency under prefix more than under Karva for subsequences
of the chromosome to translate into compact functional subtrees. This may mean
(as Li et al [16] argue) that prefix preserves and propagates functional building
blocks better than Karva. We therefore also implemented prefix translation.

4.2 Results

Figure 3 shows the results of an experiment using the parameter settings detailed
above, in which XCSF-GEP learned to approximate the tent landscape of Figure
1. For both translation techniques, the error fell to nearly zero, with prefix
falling roughly twice as fast as Karva. Still, initial learning was slower than with
ordinary XCSF (also shown; relevant parameters the same as for XCSF-GEP).
However, XCSF’s error performance was markedly worse.

Evolved populations contained about 70 macroclassifiers [5] so that they had
definitely not reduced to the ideal of just two, one for each of the tent sides.
However, roughly half of the classifiers in a population were accurate and the
conditions of roughly half of those precisely covered a tent-side domain. Figure
4 shows the conditions of eight high-numerosity classifiers from four runs of the
experiment. The first and second pairs are from two runs in which Karva trans-
lation was used; the runs for the third and fourth pairs used prefix translation.
With each chromosome is shown the algebraic equivalent of its expression tree,
together with the domain in which that tree matched. The relation between the
algebra and the domain is: if and only if the inputs satisfy the domain expres-
sion, the algebraic expression will compute to a value greater than zero (i.e., the
classifier matches).

Many of the expressions simplify easily. For instance if the first is prepended
to “> 0” (i.e., b − (b + a)b > 0), the result can be seen to be the same as the
domain expression. However, other algebraic expressions are harder to simplify,
and it seems clear that for interpretation of XCSF-GEP conditions in general,
automated editing is called for. Further, it was quite remarkable how many
different but correct algebraic expressions appeared in the total of forty runs
of the experiment. Even though many conditions evolved to precisely delineate
the two regularities of this environment, each of those regularities clearly has
a multitude of algebraic descriptions. XCSF-GEP was prolific in finding these,
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1. (- - * b > + b b b b a b b) b − (b + a)b a + b < 1
2. (* - * + / b b a b b b a b) ((a + b) − 1)b2 a + b > 1
3. (> - - / b + a a a a a b a) (1 − b) > a a + b < 1
4. (> b - > a / b b a b a b a) b > ((b/a > b) − a) a + b > 1

5. (> - * a / / b b a b a b a) (a(1/a) − b) > a a + b < 1
6. (- * * a / + b a b b a b a) a((b + a)/b)b − a a + b > 1
7. (- * a + * + b a b a a b a) ((b + a)b + a)a − a a + b > 1
8. (- - > / / + a b b b b b a) ((a + b)/b2 > b) − b − a a + b < 1

Fig. 4. Algebraic equivalents and domains of match for high-numerosity chromosomes
evolved in the experiment of Section 4. In 1-4, expression trees were formed by Karva
translation; in 5-8, by prefix translation.



but the evolutionary process, even in this simple problem, did not reduce them
to two, or even a small number.

5 Discussion and Conclusion

The experiment with the tent environment showed it was possible to use GEP
for the conditions of XCSF, but the learning was fairly slow and the evolved pop-
ulations were not compact. However, it was the case—fulfilling one of the main
objectives—that the high-numerosity classifiers, if somewhat obscurely, corre-
sponded precisely in their conditions to this environment’s oblique regularities.

Many questions ensue. On speed, it must be noted that the experimental sys-
tem did not use the full panoply of genetic operators, transposition in particular,
that are available in GEP, so that search was in some degree limited. Also, the
conditions did not have the multigenic structure that is believed important [8]
to efficiency. Nor was GEP’s facility for random numerical constants used; the
constants needed in the current problem were evolved algebraically, e.g., 1 = b/b.

The match threshold may matter for speed. If it is set too low, more classifiers
match, and in this sense the generality of all classifiers is increased. In effect,
the generality of an XCSF-GEP classifier is defined in relation to the match
threshold (which could conceivably be adaptive). Since over-generality leads to
error, too low a threshold will increase the time required to evolve accurate
classifiers. There is a substantial theory [3] of factors, including generality, that
affect the rate of evolution in XCS-like systems; it should be applicable here.

On compactness the situation is actually much improved by the fact that
regularity-fitting classifiers do evolve, in contrast to the poor fit of rectilinear
classifiers for all but rectilinear environments. Considerable work (e.g. [23, 6,
9, 18, 4]) exists on algorithms that reduce evolved populations down to minimal
classifier sets that completely and correctly cover the problem environment. If the
population consists of poorly fitting classifiers, the resulting minimal sets are not
very small. However, if, as with XCSF-GEP in this experiment, two classifiers
are evolved that together cover the environment, compaction methods should
produce sets consisting of just those two. Thus XCSF-GEP plus postprocessing
compaction (plus condition editing) should go quite far toward the goals of
conciseness and transparency. All this of course remains to be tested in practice.

In conclusion, defining classifier conditions using GEP appears from this
initial work to lead to a slower evolution than traditional rectilinear methods,
but captures and gives greater insight into the environment’s regularities. Future
research should include implementing more of the functionality of GEP, exploring
the effect of the match threshold, testing compaction algorithms, and extending
experiments to more difficult environments.
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