
S. W. Wilson 10 Generalization in the XCS Classifier System

evaluation involved testing the program on all 64 in-
puts from the 6-multiplexer domain, so that the total
number of inputs was 15,680,000. This differs by a factor
of 7,840 from the total number required by XCS. Thus,
conservatively, the amounts of “experience” required
by XCS and GP to learn the 6-multiplexer differ by three
orders of magnitude.

There is not space to explore the reasons behind the
difference. Instead, and in GP’s favor, we note that the
amount of computation per input is considerably larger
for XCS, perhaps by enough to make the two approach-
es approximately equal in computational effort. For
each input, GP has only to run the candidate program.
In the case of the evolved 100% correct solution shown
in Koza’s Figure 7.41, only 3 “points” (if functions)
were required. Many candidates were probably ten
times larger, but it is clear that evaluation of the average
candidate is quick.

In contrast, every input to XCS requires a “match
step” in which the input is compared against the condi-
tions of as many as several hundred classifiers. For the
6-multiplexer, at least, XCS clearly requires more pro-
cessing per input than GP. But this will begin to offset
XCS’s enormous advantage in learning rate per input
only if new inputs are available faster than XCS can pro-
cess them. In some domains this will be the case; in oth-
ers, such as robotic interactions with real environments,
it will generally not be the case.

6 Conclusion
Subsumption deletion and an action set GA bring

XCS close to the point of evolving populations consist-
ing of accurate, maximally general, near-minimal cov-
ers of task environments, along with a residue of other
classifiers of very low fitness. The ability to detect and
represent environmental equivalences—to generalize
accurately—is indispensable to creatures both natural
and artificial. XCS appears to do this with tractable
time and space complexity, and without needing, or be-
ing constrained by, pre-existing structure—classifiers
simply evolve to suit the problem and its regularities.
Many topics—for instance real-valued input vectors, in-
corporation of internal state, and application to robotics
and other real-world domains—remain for future re-
search.

Bibliography
Barto, A. G. (1985). Learning by statistical cooperation

of self-interested neuron-like computing elements.
Human Neurobiology, 4, 229-256.

Booker, L. B., (1982). Intelligent behavior as an adaptation
to the task environment, Ph.D. Dissertation (Computer
and Communication Sciences). The University of
Michigan.

Booker, L. B. (1989). Triggered rule discovery in classi-
fier systems. In J. D. Schaffer (ed.), Proceedings of the
Third International Conference on Genetic Algorithms
(pp. 265-274). San Mateo, CA: Morgan Kaufmann.

Cliff, D. and Bullock, S. (1993). Adding “foveal vision”
to Wilson’s animat. Adaptive Behavior, 2(1), 49-72.

Cliff, D. and Ross, S. (1994). Adding temporary memo-
ry to ZCS. Adaptive Behavior, 3(2), 101-150.

Dorigo, M. and Bersini, H. (1994). A comparison of Q-
learning and classifier systems. In D. Cliff, P. Hus-
bands, J.-A. Meyer, and S. Wilson (eds.), From Ani-
mals to Animats 3, Proceedings of the Third International
Conference on Simulation of Adaptive Behavior, Cam-
bridge, MA: The MIT Press/Bradford Books, 248-255.

Dorigo, M. and Colombetti, M. (1997). Robot Shaping: An
Experiment in Behavior Engineering. Cambridge, MA:
The MIT Press/Bradford Books, in press.

Fogarty, T. C. (1994). Co-evolving co-operative popula-
tions of rules in learning control systems. In Fogarty,
T. C. (Ed.) Evolutionary Computing, AISB Workshop Se-
lected Papers, Lecture Notes in Computer Science 865,
Springer-Verlag, 195-209.

Holland, J. H. (1986). Escaping brittleness: the possibil-
ities of general-purpose learning algorithms applied
to parallel rule-based systems. In R. S. Michalski, J.
G. Carbonell & T. M. Mitchell (Eds.), Machine learn-
ing, an artificial intelligence approach. Volume II. Los Al-
tos, California: Morgan Kaufmann.

Kovacs, T. (1996). Evolving Optimal Populations with
XCS Classifier Systems. MSc. Dissertation, Univ. of
Birmingham, UK.

Kovacs, T. (1997). XCS classifier system reliably evolves
accurate, complete and minimal representations for
Boolean functions. In Second On-line World Conference
on Soft Computing in Engineering Design and Manufac-
turing, http://www.cs.bham.ac.uk/~tyk/
online97/online97.html.

Koza, J. (1992). Genetic Programming. Cambridge, MA:
The MIT Press/Bradford Books.

Lanzi, P. L. (1997). An analysis of the memory mecha-
nism of XCSM. In J. R. Koza, W. Banzhaf, K. Chella-
pilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon,
D. E. Goldberg, H. Iba, and R. Riolo (Eds.), Genetic
Programming 1998: Proceedings of the Third Annual
Conference. San Francisco, CA: Morgan Kaufmann.

Tufts, P. (in preparation). Doctoral dissertation, Com-
puter Science Department, Brandeis University.

Wilson, S. W. (1994). ZCS: a zeroth level classifier sys-
tem. Evolutionary Computation, 2(1), 1-18.

Wilson, S.W. (1995). Classifier fitness based on accura-
cy. Evolutionary Computation, 3(2), 149-175.

S. W. Wilson 9 Generalization in the XCS Classifier System

the three tasks, i.e., jumping each time by a factor of
about five. The final average values of M are 55, 148,
and 345, respectively, but in the first two cases the val-
ues appear still to be falling. These numbers are good
indicators of difficulty for the three tasks, but deriving
from them a functional relationship is of course ex-
tremely uncertain. It seems quite clear, however, that
the time and space complexity for XCS do not rise expo-
nentially as does the size of the input space.

Each of the tasks admits a number of accurate maxi-
mal generalizations proportional to the number of
terms in its DNF formula. For the 6-multiplexer, there
are four terms. Each term leads to four generalizations,
for a total of 16. For example, the term x0’x1’x2 leads to
the four maximally general classifiers:

000### : 0 ⇒ 1000
000### : 1 ⇒ 0
001### : 0 ⇒ 0
001### : 1 ⇒ 1000.

Similarly, the 11- and 20-multiplexers have eight and
16 DNF terms, and 32 and 64 generalizations, respec-
tively. Thus the number of generalizations doubles in
going from one task to the next more difficult one. The
results of the previous paragraph suggest that difficulty
as measured by arrival at 100% performance or final
population size may also increase by a constant factor in
going from one task to the next, though the factor is not
equal to two. If true, this suggests that task difficulty is
equal to the number of generalizations raised to a pow-
er, or D = cgp, where D is a difficulty measure, g is the
number of generalizations in the multiplexer, and c is a
constant. Taking D equal to the number of problems for
arrival at 100% performance, the data suggest p = log 5
= 2.32 and c = 3.22.

The foregoing guess at a formula is highly specula-
tive, since it is based on just three points and assumes
that difficulty increases by a constant factor between
tasks. However, the guess suggests that the “learning
complexity” of the multiplexer functions for XCS is of
order equal to the number of generalizations raised to a
constant power, or polynomial in g. A low-power (~2)
polynomial dependence on generalizations implies
good prospects for scale-up to realistically large envi-
ronments. It is important to see if this relationship
holds for larger multiplexers (the next has 37-bit
strings).

The complexity can also be directly expressed in
terms of l, the string length. To do this, note that as mul-
tiplexers get bigger, l ≅ 2k. The number of generaliza-
tions g is proportional to 2k, so, as k increases, l becomes
proportional to g. Thus, under the assumptions made
earlier, since D is polynomial in g, it is also polynomi-
al—not exponential—in l.

The multiplexer—and woods—experiments indicate
that XCS has a strong tendency to detect the regularities

of an environment and to represent them efficiently.
These characteristics are essential for systems that must
learn in realistic environments. We predict that XCS—
with suitably modified classifier syntax (Wilson 1995)—
will show similar representational efficiency in environ-
ments with continuous sensory inputs.

5.2.3 Comparison with genetic programming
Koza (1992, pp. 191-198) uses genetic programming

(GP) to evolve programs that correctly compute the 6-
multiplexer function. GP exemplifies phylogenetic adap-
tation. A population of candidate “creatures”—in this
case Lisp programs—is evolved over generations, anal-
ogously to natural evolution of species. Each program
is supposed to compute the correct multiplexer value
for any input from the problem environment.

In contrast, a classifier system such as XCS exempli-
fies ontogenetic adaptation. The classifier system is anal-
ogous to a single creature adapting over its lifetime.
There is an evolving population inside the classifier sys-
tem, but its members (the classifiers) consist of partial,
not whole, solutions to the problem posed by the envi-
ronment. The object of the system is to evolve classifiers
such that, among them, all environmental inputs are
dealt with optimally according to some criterion. In the
case of XCS and the 6-multiplexer the criterion is that
the system predict correctly the payoff corresponding
to each possible input and each possible decision by the
system. In the case of payoff 1000 for the correct func-
tion value and payoff 0 for incorrect, correct prediction
is equivalent to producing the correct value of the Bool-
ean function.

Thus GP and XCS solve the 6-multiplexer, but in very
different manners. GP evolves individuals that are total
solutions to the problem. XCS evolves partial solutions
which, taken together, solve the problem. It is of consid-
erable interest to compare the efficiencies of the two ap-
proaches.

A full comparison is beyond the present scope, since
it would involve, among other things, comparison over
a range of problem types and detailed implementation
information. However, for the 6-multiplexer it is possi-
ble to compare results on the number of problem inputs
(6-bit strings) required for each system to “learn” the
function, and to comment on the amounts of computa-
tion effort.

Figure 6, which averages 10 runs, shows that XCS
reaches nearly 100% performance having seen approxi-
mately 2,000 randomly selected inputs. Summarizing
run statistics on the 6-multiplexer, Koza’s (1992) Figure
8.4 indicates that under appropriate parameters for
population size, generations per run, and number of
runs, GP was able with 99% probability to evolve at
least one 100% correct solution after evaluating as few
as 245,000 individual candidate programs. Each such

S. W. Wilson 8 Generalization in the XCS Classifier System

spond to the terms in the function’s formula, thus
permitting the formation of generalizations if XCS can
detect them. As with the Woods2 experiments, test
problems alternated with pure explore problems.

As seen in Figure 5, moving the GA to [A] from [M]
does not significantly affect the population size, but the
effect of the subsumption deletion technique is to halve
the size. This further supports the motivation for doing
the GA in [A]. It was noted in Section 4.1 that the argu-
ment for moving to [A] does not apply if X x A for the
task has certain symmetries. In fact, the multiplexers
have the symmetries, namely that if, e.g., the classifier
000###:0 is an accurate maximal generalization, then
the classifier 000###:1 is also an accurate maximal gen-
eralization, albeit predicting a different payoff than the
first. Thus the Woods2 and multiplexer results are con-
sistent with the theory presented in Section 4.1, and in-
dicate that, in general, it is better to do the GA in the
action sets.

5.2.2 Complexity indications
Incorporating the two improvements in XCS, we re-did
the multiplexers for the classic task in which payoff is
1000 for the correct answer and 0 for the wrong answer;
that is, a finite payoff for correct and nothing for incor-
rect. This is the payoff schedule usually associated with
the problem. Our objective was to produce a bench-
mark for future comparisons, and to estimate the rate of
growth of difficulty for XCS as problem size increased.
The experiments were carried out on the 6-, 11-, and 20-
multiplexers, with results as shown in Figures 6, 7, and
8. Parameter settings were similar to those used in Wil-
son (1995).

Please observe the scale differences for the three fig-
ures. They were plotted so as to situate the arrival at
100% performance near the middle of the graph. Frac-
tion correct is simply the fraction of the past 50 test
problems for which XCS gave the correct answer. Sys-
tem error/payoff range is the absolute error in the sys-
tem’s payoff prediction divided by 1000. Pop size is M,
the size of the population in macroclassifiers, starting
with an empty population.

Very roughly, XCS reaches 100% performance at
about 2,000, 10,000, and 50,000 problems respectively in

Figure 6. 6-multiplexer with 1000/0 payoff.

Figure 8. 20-multiplexer with 1000/0 payoff.

Figure 7. 11-multiplexer with 1000/0 payoff.

S. W. Wilson 7 Generalization in the XCS Classifier System

until it appeared that M would not decrease further,
then examining the population. M fell to between 50
and 60, after which it oscillated slowly. Examination of
the populations revealed that approximately 35 classifi-
ers had high fitness and numerosity, while the rest had
sharply lower fitness and numerosity, and were very
“young”—thus recently generated by the GA and “in
the pipeline” to deletion. Since performance was still at
optimum, a minimal cover for Woods2 cannot require
more than about 35 classifiers. The regions of X x A cov-
ered by the high fitness classifiers were examined in de-
tail, with the observation that there was relatively little
overlap between the regions. From this we concluded
tentatively that a minimal cover for Woods2 requires
about 35 classifiers. Interpretation of the conditions of
the high-fitness classifiers was generally straightfor-
ward: concepts like “anywhere along the left side of a
block (of objects)”, “blank below”, etc., are easily iden-
tified. Our tentative conclusion is that the two improve-
ments permitted XCS to converge on an essentially
minimal cover, plus a small number of additional clas-
sifiers whose low fitness identifies them as ignorable.

5.2 Multiplexers
Boolean multiplexer functions are defined for binary
strings of length l=k+2k. The function’s value may be
determined by treating the first k bits as an address that
indexes into the remaining 2k bits, and returning the in-
dexed bit. For example, in the 6-multiplexer (l=6), the
value for the input string 100010 is 1, because the “ad-
dress”, 10, indexes bit 2 of the remaining four bits. In
disjunctive normal form, the 6-multiplexer is fairly
complicated (the primes denote negation):

F6 = x0’x1’x2 + x0’x1 x3 + x0x1’x4 + x0x1x5.

F11 and F20 are the next more complicated multiplexers.
The corresponding expression for F11 has eight terms
each consisting of four factors; for F20 there are 16 terms
of five factors each. The multiplexers have been em-
ployed as test problems in many learning investigations
beginning with Barto (1985). Though they are “one-
step”—i.e., not sequential—artificial environments, we
employ them because they permit study of generaliza-
tion without the added complications that sequential
environments entail. The multiplexers are highly non-
linear—thus difficult—and the “family” of multiplexers
permits testing one’s system against a series of increas-
ingly difficult yet formally related tasks. In fact, be-
cause as l increases the task stays similar but the input
space grows exponentially, the multiplexers offer a way
of evaluating the necessary complexity of a learning
system as a function of l. A learning system that simply
memorized the answer for each input would of course
grow exponentially, too. On the other hand, a learning
system that like XCS is capable of generalization should
grow more slowly with l, and it is of interest to estimate
the rate.

5.2.1 6-Multiplexer population comparisons
We begin by comparing results on the 6-multiplexer us-
ing the same three regimes as in Section 5.1. Figure 5
compares the population sizes as a function of explore
problems for the three regimes. The particular task in
this case is the same as in Wilson (1995, Figure 3). In
each problem, a random string is presented to XCS and
it chooses an “answer” (1 or 0). A payoff is then given
the system that depends on the subspace of X x A to
which the input belongs, but is larger for the correct an-
swer than the wrong answer. The subspaces corre-

Figure 5. Population size comparison on 6-multi-
plexer.

Figure 4. Population size comparison on Woods2.

S. W. Wilson 6 Generalization in the XCS Classifier System

to real environments. The latter may have some special
issues involving Q-like learning in continuous spaces
(Cliff & Ross 1994) that will have to be confronted in
situ, so to speak. However, these issues do not include
adapting the classifier format for continuous variables,
which seems fairly clear and is sketched in Wilson
(1995)).

The action-selection regime for the experiments had
two modes, “pure exploit” and “pure explore”. In pure
exploit, XCS chooses on each time-step the action for
which the predicted payoff is highest. In pure explore,
XCS chooses an action randomly. Each run of an exper-
iment had 2,000 “explore problems”, in each of which
the animat was started in a random open position then
allowed to move under pure explore until food was en-
countered. After each explore problem, the animat was
again randomly started, but carried out a test problem
in which it ran in pure exploit until food was found.
Test and pure explore problems alternated. The sys-
tem’s performance was a moving average of the previ-
ous 50 test problems.

Figure 3 shows performance curves from experi-
ments carried out under three regimes. The first listed
is that of Wilson (1995). The second is the same, except
that the GA is conducted in the action sets instead of the
match sets. The third is like the second, with the addi-
tion of the “subsumption deletion” technique of Section
4.2. Note that the three curves are quite similar, except
for a slightly faster initial improvement under the first
regime. Also shown is the optimum performance for
Woods2: an average of 1.7 steps to food from a random
start. In contrast, the average number of steps if moves

are random is about 27 steps; all three curves start
around this level, falling rapidly in the first 100 prob-
lems to the levels plotted. The three regimes thus have
about equal performance in Woods2, reaching close to
the optimum by about 500 problems.

In contrast, population size results for the three re-
gimes are quite different (Figure 4). In the three cases
the population was initially empty (the first few classi-
fiers were created by a cover operation). In the original
experiment, M, as shown, increased rapidly to around
500, staying near there for the rest of the experiment.
Woods2 contains exactly 70 distinct input vectors, so
with eight possible actions, tabular Q-learning would
require a table of size 560 for Woods2. Classifier sys-
tems, XCS in particular, are capable of generalization, so
one would hope to learn the woods with less than one
classifier for each state-action pair. In fact, 500 is less
than 560, but not by much.

Changing the GA to the action sets reduced the max-
imum level of M, and brought the value to 310 by 2,000
problems, a respectable improvement that supports the
motivation of Section 4.1 for moving the GA from the
match sets to that action sets . However, the addition of
subsumption deletion brought M down farther, to 89 at
2,000 problems. It is of interest to know how few classi-
fiers are sufficient in Woods2 to cover X x A while pre-
serving optimal performance. Woods2 is quite
complicated, and just which classifiers would constitute
a minimal cover is not obvious. Presumably there are
several possible minimal or near-minimal covers. An
estimate of the size of a minimal cover was obtained by
continuing the third experiment beyond 2,000 problems

Figure 3. Performance comparison on Woods2.

..............................

.QQF..QQF..OQF..QQG..OQG..OQF.

.OOO..QOO..OQO..OOQ..QQO..QQQ.

.OOQ..OQQ..OQQ..QQO..OOO..QQO.

..............................

..............................

.QOF..QOG..QOF..OOF..OOG..QOG.

.QQO..QOO..OOO*.OQO..QQO..QOO.

.QQQ..OOO..OQO..QOQ..QOQ..OQO.

..............................

..............................

.QOG..QOF..OOG..OQF..OOG..OOF.

.OOQ..OQQ..QQO..OQQ..QQO..OQQ.

.QQO..OOO..OQO..OOQ..OQQ..QQQ.

..............................

Figure 2. Environment “Woods2” with animat.
Empty cells are indicated by “.”

S. W. Wilson 5 Generalization in the XCS Classifier System

ample (please see Wilson (1995) for the full context), the
classifier ######################## : 1
is accurate and maximally general in Woods2, but if the
same condition is attached to any of the other seven ac-
tions, the result is no longer accurate. (In this and sub-
sequent classifier examples, we will sometimes omit the
prediction part (“⇒ <prediction>”) for simplicity.)

The implication was that if a given match set is to
contain accurate, maximally general classifiers for each
of the possible actions, they would often have different
conditions. But if that is the case, crossover would not
be benign: it might easily generate inaccurate classifiers
by crossing parents with different actions. For this rea-
son we began to experiment with doing the GA in the
action set instead of the match set.

4.2 Subsumption deletion
The other problem noted above was the presence of ac-
curate, but unnecessarily specialized classifiers. Here is
a toy example. Suppose the classifier C2 = 1###:3, is ac-
curate and maximally general in some environment.
(Recall that “accurate” means having error less than ε0;
“maximally general” means you can’t change any 1 or 0
to # without making the classifier inaccurate.) The clas-
sifier C1 = 11##:3, is also accurate, since it is subsumed
by C2, but it is not maximally general, since C2 is. The
problem was that classifiers like C1 were often present
in evolved populations, whereas they are completely
unnecessary.

Investigation revealed a subtle distinction. Some-
times C1, being more specialized, would match in fewer
situations than C2, and so would eventually be elimi-
nated by the GA. Its presence simply reflected the
“waiting time” till deletion. In other cases, however, it
was not the case that C1 matched in fewer cases than C2.
The environment was such that every situation
matched by C2 was also matched by C1. This could oc-
cur if the environment was “sparse”, i.e., the number of
input strings that actually occurred in the environment
was less than the number permitted by the coding (as is
nearly always the case in real environments). Thus C2
was formally more general than C1, but this fact was not
reflected in the actual frequencies of matching inputs.
As a result, C2 and C1 had equal fitnesses and sat on the
same fitness plateau, so to speak.

Wilson (1995) described the second “1” in C1’s condi-
tion as an “optional” bit, since changing it to # did not
affect fitness. The first bit, on the other hand, is not op-
tional—changing it to # results in inaccuracy; it is “es-
sential”. We sought a technique that would in sparse
environments eliminate optional bits while preserving
essential ones.

A first approach was to change the fitness function so
that if two classifiers were accurate, but one was formal-

ly more general than the other, the former would have
a higher fitness. This technique was in the right direc-
tion, but a more powerful one was found, as follows.
When an offspring is generated by the GA, its parents
are examined to see if either of them is both accurate
and its condition logically subsumes the condition of
the offspring. The meaning of subsumption here is that
the set of possible strings matched by the offspring is a
proper subset of the set matched by the parent. If this
test is satisfied, the offspring is abandoned (not injected
into the population) and the numerosity of the parent is
incremented by one. A similar check for subsumption
was done in action sets since an occasional offspring
would be generated that was subsumed by some classi-
fier elsewhere in the population. In addition, the test was
extended to require that any subsuming classifier have
an experience value greater than a threshold (e.g., 20),
to insure that its accuracy had been sufficiently estimat-
ed.

The foregoing method of “subsumption deletion”
may be viewed genetically as a kind of directed muta-
tion. In effect, for parents estimated to be accurate, the
GA is constrained to generate and evaluate only off-
spring that are more general than the parents.

5 Results of Experiments
The two prospective improvements were tested on the
“Woods2” and multiplexer tasks of Wilson (1995). In
addition, earlier software problems were overcome per-
mitting the first XCS experiment on the 20-multiplexer.
Because the present objective is to compare with earlier
results, the descriptions of the tasks and input codings
will be abbreviated; please see Wilson (1995) for details.

5.1 Woods2
Woods2 (Figure 2) is a grid-like environment in which
an “animat” (shown by *) starts at a random open posi-
tion and moves under control of XCS until a food object
(F or G) is bumped into, at which point it receives a re-
ward of 1000 and is restarted randomly. A move into a
“rock” (O or Q) is not allowed to take place, but the step
is counted nevertheless. The animat’s sensory input
consists of a 24-bit vector, with three bits coding fea-
tures of the object (including the blank object) observed
in each of the eight cells surrounding the animat. The
animat’s available actions consist of moves into the
eight cells.

(Use of grid-like environments and discrete inputs
and actions is obviously a simplification from real envi-
ronments in which artificial creatures should eventually
operate. Our view is that the core problems of learning
involve prediction, generalization, and internal state,
and that these can be much more easily studied in dis-
crete environments with results that will later translate

S. W. Wilson 4 Generalization in the XCS Classifier System

single structure, instead of being dispersed. As a popu-
lation converges on increasingly general, accurate clas-
sifiers, its size in macroclassifiers, M, decreases. Thus M
is a measure of the space complexity of the classifier
system. It will be referred to further in the rest of the pa-
per. XCS also has a parameter N which determines the
(constant) effective length of the population in micro-
classifiers (ordinary classifiers), and corresponds to the
traditional fixed size of a classifier population. XCS’s
deletion regime (not detailed here) ensures that the sum
of the numerosities of the population’s macroclassiers
does not exceed N.

Other points of difference between XCS and tradi-
tional classifier systems include: XCS’s Q-learning-like
update regime (which is different from, but closely re-
lated to the traditional bucket-brigade algorithm (Dori-
go & Bersini 1994, Wilson 1994)); an action-selection
step that is not committed to a specific mechanism as is,
e.g., the traditional “roulette wheel” action selection;
and a deletion mechanism that keeps resources bal-
anced among niches (Booker 1989).

3.2 Generalization mechanism
In XCS, classifiers that predict more accurately get high-
er fitness. If a classifier’s condition is highly specific,
one would expect it to be more accurate than one with
a less specific condition, since it has to predict the pay-
off over a smaller number of situations. If fitness is
based on accuracy, more-specific classifiers should win
out over less-specific ones. Why then should XCS
drive, as advertised, toward general accurate classifiers?

The answer lies in the observation that, under a ge-
netic algorithm, reproductive success depends not only
on fitness but also on reproductive opportunity. Con-
sider two (micro)classifiers C1 and C2 having the same
action, where C2’s condition is a generalization of C1’s.
That is, C2’s condition can be generated from C1’s by
changing one or more of C1’s specified (1 or 0) alleles to
don’t cares (#). Suppose C1 and C2 have the same ε,
and are thus equally accurate. Which will win out?

Every time C1 and C2 occur in the same action set,
their fitness values will be updated by the same
amount. However, because C2 is a generalization of C1
it will tend to occur in more match sets than C1, and thus
probably (depending on the action-selection regime) in
more action sets. Because the GA occurs in action sets,
C2 will have more reproductive opportunities and thus
its number of exemplars will tend to grow with respect
to C1’s (in macroclassifier terms, the ratio of C2’s nu-
merosity to C1’s would increase). Consequently, when
C1 and C2 next meet in the same action set, a larger frac-
tion of the constant fitness update (the κj’ sum to 1.0)
would be “steered” toward exemplars of C2, resulting
via the GA in yet more exemplars of C2 relative to C1.
Eventually, C2 will displace C1 from the population.

Thus XCS does drive toward accurate classifiers, but
any accurate classifier will be beaten out be a more gen-
eral version of itself that maintains the same accuracy.
The process will continue until further generalization
results in a loss of accuracy. This point depends on the
value of ε0 in the accuracy function. Since accuracy falls
exponentially if error is greater than ε0, classifiers will
evolve to be as general as possible while still having er-
rors less than ε0. If they become more general still, their
chances of survival are greatly diminished. Kovacs
(1997) suggests that XCS’s generalization mechanism
drives toward populations that are optimal representa-
tions.

4 Improvements to XCS
As reported in Wilson (1995), experiments with XCS on
sequential and one-step reinforcement learning tasks
demonstrated both the system’s performance success
and its drive toward accurate general classifiers. How-
ever, in terms of generalization, the system as it then
stood had shortcomings. Examination of evolved pop-
ulations showed that the most general accurate classifi-
ers were accompanied by numerous others. Many were
specializations of the former—why? There were also
many inaccurate classifiers. It was clear that the popu-
lations were not as “condensed”—i.e., M was not as
small—as might be desired. For instance, what pre-
vented a population from condensing until it consisted
solely of accurate, maximally general classifiers suffi-
cient to cover X x A?

4.1 From GA in [M] to GA in [A]
A first step was to address the existence of inaccurate
classifiers. A clue was that they were usually “young”,
as indicated by an experience parameter that counts the
number of times a classifier occurs in an action set. This
suggested that most had recently been generated, and
that the GA would eventually eliminate them. But why
were they being generated in the first place? The GA
then occurred in the match sets, and all match set clas-
sifiers have to match the same input, so their conditions
are similar. In fact, if the GA is really working as pre-
dicted, shouldn’t each match set evolve to have one
macroclassifier per action, with identical maximally
general conditions? Any other classifiers in the match
set would be due to occasional mutation noise, since
crossover could not create anything new from classifi-
ers with identical conditions.

Study suggested that it is incorrect to assume that if a
classifier with action a has a maximally general, accu-
rate condition, then a classifier with the same condition
but a different action must also be maximally general
and accurate. Such a rule holds if a task has the right
symmetries, but is not true in general. In the Woods2
task we found many cases where it was not true. For ex-

S. W. Wilson 3 Generalization in the XCS Classifier System

tems. The idea of performing the GA in a niche (i.e., a
set of environmental states each of which is matched by
the same set of classifiers) instead of the whole popula-
tion was introduced by Booker (1982) (see also Fogarty
(1994)). XCS first followed Booker in performing the
GA in the match set [M], but the GA now takes place in
the action sets [A]-1 or [A]. As will be explained in Sec-
tion 4, this change increases the proportion of accurate,
maximally general classifiers in the population.

The basic idea of a niche instead of panmictic GA
eliminates the undesirable competition that otherwise
occurs between classifiers in different match sets of a
common, cooperative chain of actions. In addition, as
Booker pointed out, crossovers within a niche are more
likely to yield useful classifiers than crossovers between
potentially unrelated classifiers that match in different
niches. However, even with a niche GA, there remains
the problem that when fitness is based on strength (or,
in effect, payoff prediction) as in traditional classifier
systems, the GA cannot distinguish an accurate classifi-
er with moderate payoff from an overly general (i.e., in-
accurate) classifier having the same payoff on the

average. The result is reduced performance due to er-
rors by the latter (Cliff & Ross, 1994).
Macroclassifiers. Whenever XCS generates a new clas-
sifier, the population is scanned to see if the new classi-
fier has the same condition and action as any existing
classifier. If so, the new classifier is not actually added
to the population, but a numerosity field in the existing
classifier is incremented by one. If, instead, there is no
existing classifier with identical condition and action,
the new classifier is added to the population with its
own numerosity field initialized to one. We term such
classifiers macroclassifiers. They are essentially a pro-
gramming technique that speeds up matching and oth-
er aspects of processing. They do not affect the
underlying “microclassifier” operation of the system,
because all system functions are written so as to take
into account the numerosities (Kovacs (1996) evaluates
macro- vs. microclassifiers). Traditional classifier sys-
tems could also implement macroclassifiers.

However, experience with macroclassifiers has been
very helpful in understanding the evolution of popula-
tions, since equivalent classifiers are represented by a

Environment

[P]

[M]
Match Set

Prediction
Array

Action Set
[A]

Previous Action Set
[A]-1

Detectors Effectors

“left”

delay = 1discount
max

match

action

selection

(cover)

+
P

#011 : 01 43 .01 99
11## : 00 32 .13 9
#0## : 11 14 .05 52
001# : 01 27 .24 3
#0#1 : 11 18 .02 92
1#01 : 10 24 .17 15
 ...etc.

#011 : 01 43 .01 99
#0## : 11 14 .05 52
001# : 01 27 .24 3
#0#1 : 11 18 .02 92

nil 42.5 nil 16.6
#011 : 01 43 .01 99
001# : 01 27 .24 3

Update:

 predictions,

 errors,

 fitnesses

(Reward)

01

 p ε F

0011

GA

Figure 1. Schematic illustration of XCS (showing new GA site).

S. W. Wilson 2 Generalization in the XCS Classifier System

A corollary is that generalization will not be possible
if the creature’s internal representational architecture or
language cannot express it—e.g., if the temperature
creature can’t use rules of the kind above—even though
equivalent situations exist in the environment. The abil-
ity to generalize depends both on a system’s ability to
detect equivalences in the environment, and to express
them using its representational equipment.

Generalization is important, indeed vital, for learn-
ing systems because they depend on vectors of sensor
readings from an input space X whose size is exponen-
tial in the number of sensors. Fortunately, most real en-
vironments have regularities. The input space, or more
precisely the product space of X and the available action
set A, X x A, often contains regions of equivalent conse-
quence for the creature, permitting generalization if it
can detect and represent the regions. In fact, for sys-
tems of interest, X x A may be extremely large, so gen-
eralization is essential for practical artificial systems.
For the same reason, an essential part of understanding
animals will be to understand their processes of gener-
alization.

In a classifier system, generalization occurs whenev-
er a classifier is capable of matching more than one in-
put vector. For example, the (XCS) classifier 10##:1 ⇒
700, with “#” a “don’t care” symbol, predicts that taking
action “1” in response to any of the (four possible) input
vectors beginning with “10” will result in a payoff of
700. This classifier makes what we term a generalization
with respect to the subspace 10## x 1 of X x A. The as-
serted generalization may or may not be accurate, de-
pending on the degree to which the payoff actually
received varies from 700 within the subspace.

Via the standard {1,0,#} syntax of conditions, classifi-
ers can express conjunctive generalizations, which cor-
respond to terms in the disjunctive normal form (DNF)
of a Boolean formula. Via more general syntax—e.g.,
Lisp s-expressions and operators drawn from genetic
programming (Wilson 1994, Tufts in preparation)—
they may express arbitrary generalizations. Interesting-
ly, since the system’s generalizations, or concepts, are
expressed by individual classifiers, it can be relatively
easy to “see the knowledge”—more so than in learning
systems such as neural networks in which knowledge is
represented more diffusely. To the extent the classifier
system evolves accurate, maximally general classifiers,
the concepts it has learned will be even clearer. Of
course, our being able to see the knowledge is irrelevant
from the viewpoint of the creature itself. But further de-
velopment of artificial learning systems may involve
introspective operations, in which it will be useful for
the system itself to examine what it knows. Then the
perspicuity of classifiers, especially if they are accurate
and general, could be vital.

3 XCS & its generalization mechanism
3.1 Brief review of XCS
XCS has many resemblances to more usual classifier
systems (Holland 1986), but differs in key respects. A
detailed discussion is given in Wilson (1995). XCS em-
ploys standard classifier condition-action rules (inter-
nal state such as a message list has not yet been
implemented, but see Lanzi (1997)), updates parame-
ters of the classifiers each time they are active, and uses
a genetic algorithm (plus rare input covering) to gener-
ate new classifiers. The principal differences are as fol-
lows (see Figure 1).
New classifier parameters. Each classifier has three as-
sociated parameters: prediction pj, error εj, and fitness Fj.
The “strength” parameter is gone. The prediction pj is a
statistic estimating the Q-learning-like payoff P (see
Figure 1 for the computation of P) when that classifier
matches and its action is chosen by the system; it is up-
dated according to , where β
(0<β≤1) is a learning rate constant. The error εj is an es-
timate of the error in pj; it is updated according
to . The calculation of fit-
ness Fj is more complicated.

As noted in the Introduction, a classifier’s fitness is
based on the accuracy of its payoff prediction. The fit-
ness is arrived at in steps. First, the classifier’s accuracy
κj is computed using the formula
κj = exp[(ln α)(εj - ε0)/ε0)] for εj > ε0, otherwise 1.
In this expression, ε0 is a threshold such that if the clas-
sifier’s error is less than ε0, the classifier is deemed “ac-
curate”, and given accuracy 1. If, on the other hand, the
error is greater than ε0, the resulting lower accuracy is
given by a falling exponential of the error (0 < α < 1). A
negative power-law function of the error may also be
employed.

In the second step are calculated the κj of all the clas-
sifiers in the action set (the previous action set [A]-1 for
sequential problems, the current action set [A] for one-
step problems; see Figure 1). Then a relative accuracy κj’
is calculated for each classifier in the action set by divid-
ing its κj by the sum of the κjs of the set. Finally, the fit-
nesses of each classifier in the set are updated according
to .

Every time a classifier takes part in an action set, pj, εj,
and Fj are updated. The net effect is for the fitness of a
classifier to represent the accuracy of its payoff predic-
tion relative to the prediction accuracies of other classi-
fiers that typically occur in its action sets. This is the
basis for the selective pressure in XCS toward more ac-
curate classifiers.
A niche GA. In the original XCS, the genetic algorithm
was executed in the match set instead of panmictically
using the whole population as in many classifier sys-

pj pj β P pj−()+←

εj εj β P pj− εj−()+←

Fj Fj β κj ′ Fj−()+←

S. W. Wilson 1 Generalization in the XCS Classifier System

Abstract
 This paper studies two changes to XCS, a classifier
system in which fitness is based on prediction ac-
curacy and the genetic algorithm takes place in en-
vironmental niches. The changes were aimed at
increasing XCS’s tendency to evolve accurate,
maximally general classifiers and were tested on
previously employed “woods” and multiplexer
tasks. Together the changes bring XCS close to
evolving populations whose high-fitness classifi-
ers form a near-minimal, accurate, maximally gen-
eral cover of the input and action product space. In
addition, results on the multiplexer, a difficult cat-
egorization task, suggest that XCS’s learning com-
plexity is polynomial in the input length and thus
may avoid the “curse of dimensionality”, a notori-
ous barrier to scale-up. A comparison between
XCS and genetic programming in solving the 6-
multiplexer suggests that XCS’s learning rate is
about three orders of magnitude faster in terms of
the number of input instances processed.

1 Introduction
XCS, a recently developed classifier system (Wilson

1995), focused on the question of how the central quan-
tity in the system’s evolutionary process, classifier fit-
ness, should be defined. The answer, a fundamental
change, is important not only because it resulted in bet-
ter performance, but because it gave the classifier sys-
tem, for the first time, a substantial and theoretically
grounded generalization ability.

XCS’s definition of fitness is different from that of tra-
ditional classifier systems. The new fitness is based on
the accuracy of a classifier’s payoff prediction, instead of
the prediction itself, or strength. Combined with use of
a niche, instead of a panmictic, genetic algorithm (GA),
the new fitness results in a strong tendency to evolve
classifiers that are not only accurate but maximally gen-
eral. Previous classifier systems did not tend to pro-
duce accurate general classifiers (Cliff & Ross, 1994).

The present paper reports further improvements in
XCS’s generalization ability. One improvement is to

conduct the genetic algorithm in the action sets instead
of the match sets. The other is a technique in which an
offspring classifier whose condition is subsumed by
that of an existing accurate classifier is replaced by a
clone of the subsuming classifier. The improvements
increase the proportion of the population that consists
of maximally general, accurate classifiers, at the same
time reducing the total number of classifiers—at no re-
duction in performance. A classifier is a basic kind of
concept—it expresses the payoff to be received when its
action is taken in situations covered by its condition.
The techniques now in XCS advance classifier systems’
ability to generate and directly express accurate, maxi-
mally general concepts about their environments.

The next section briefly discusses generalization and
its desirability in natural and artificial learning systems.
Section 3 reviews the underlying generalization mecha-
nism in XCS. Section 4 describes the two improvements
in detail. Results of experiments with the multiplexer
and “woods” problems of Wilson (1995) are presented
in Section 5, together with a discussion of learning com-
plexity and a comparison with multiplexer learning by
genetic programming. Section 6 concludes.

2 Generalization
Briefly, generalization means to treat as equivalent, dif-
ferently appearing situations that nevertheless have
equivalent consequences for the learning system. Im-
plied—and necessary—in this is the idea that the sys-
tem not only knows the equivalence, but deals with it
“compactly”. For example, imagine a creature that is
active at temperatures below Tcrit and sleeps above. If
it were using a fine-grained lookup table to choose its
behavior, with a slot for each half-degree celsius, we
would not regard the creature as generalizing much.
We would regard it as generalizing if, e.g., the system
used a rule such as (if T < Tcrit then active else sleep),
that represents the conditions for the behaviors with
some degree of compactness. Thus, generalization
means to recognize environmental situations having
equivalent consequences, but to do so using internal
structure of significantly less complexity than the raw
environmental data.

Generalization in the XCS Classifier System

Stewart W. Wilson
The Rowland Institute for Science

100 Edwin H. Land Blvd.
Cambridge, MA 02142 USA
wilson@smith.rowland.org

From Genetic Programming 1998: Proceedings of the Third Annual Conference, J. Koza et al. (Eds.)
San Francisco, CA: Morgan Kaufmann

