
HIERARCHICAL CREDIT ALLOCATION IN A CLASSIFIER SYSTEM 

Stewart W. Wilson 
The Rowland Institute for Science 

100 Cambridge Parkway 
Cambridge MA 02142 USA 

ABSTRACT 

Learning systems which engage in sequential activity 
face the problem of properly allocating credit to steps or 
actions which make possible later steps that result in envi­
ronmental payoff. In the classifier systems studied by Hol­
land and others, credit is allocated by means of a "bucket-
brigade" algorithm through which, over time, environ­
mental payoff in effect Bows back to classifiers which take 
early, stage-setting actions. The algorithm has advan­
tages of simplicity and locality, but may not adequately 
reinforce long action sequences. We suggest an alternative 
form for the algorithm and the system's operating prin­
ciples designed to induce behavioral hierarchies in which 
modularity of the hierarchy would keep all bucket-brigade 
chains short, thus more reinforceable and more rapidly 
learned, but overall action sequences could be long. 

I INTRODUCTION 

Many learning systems face the problem of temporal 
credit allocation: the proper reinforcement of activities 
which do not directly result in need satisfaction or ex-
ternal reward but are nevertheless essential precursors to 
such outcomes. Animals learn extensive hunting, stalk­
ing, or foraging behaviors aimed at the ultimate payoff 
of something to eat. A person who values others' co-
operation must discover and reinforce effective precursor 
strategies. In the message-passing, rule-based classifier 
systems (Holland, 1986), credit is allocated by means of a 
"bucket-brigade" algorithm to earlier-acting rules which 
"set the stage" for later actions that bring external payoff. 
The essential idea is that classifiers which match messages 
and become active on a given time step "pay" a fraction 
e of their "strengths" to the strengths of the classifiers 
which posted the messages and were active on the pre­
vious time step. When finally external payoff enters the 
system, it is added to the strengths of the then currently 
active classifiers. If over time a given payoff-achieving se­
quence gets repeated, strength increments will in effect 
flow back to reinforce its early-acting classifiers. Con­
sequently, early-acting classifiers that indeed participate 
in sequences that make possible later payoff will, by the 
algorithm, receive due credit. 

In certain other AI systems which learn to perform 
multiple-step tasks [e.g., Mitchell's LEX system for sym­
bolic integration (Mitchell, Utgoff, and Banerji, 1983), 
and the ACT" cognitive architecture of Anderson (1983)], 
credit is assigned to early steps by keeping and analysing 

a record of all pre-payoff actions, both considered and 
taken, and the associated reasoning. In contrast, Hol­
land's bucket brigade technique does not depend on ret­
rospective analysis but operates locally, during perfor­
mance, in the strength transaction between steps, with 
the better classifiers at each step being selected statisti­
cally over time. The bucket-brigade principle would con­
sequently appear appropriate for systems such as ani­
mals and autonomous robots in on-going interaction with 
uncertain environments—where storage and analysis of 
raw experience is expensive or impractical. 

In this paper, however, we suggest that the bucket-
brigade may lose effectiveness as action sequences grow 
long. As a remedy, we propose a modification of the algo-
rithm that makes it more directly reflect the hierarchical 
nature of behavior. 

II LONG CHAINS 

The mechanics of the bucket brigade suggest that a 
classifier whose early action indeed contributes to later 
payoff may still have difficulty getting reinforced if the 
number of message-posting cycles from its activation to 
payoff is large. As a simple example, suppose that clas­
sifier C posts a message which, by triggering an effec­
tor, causes an action (e.g., application of hand pressure 
to a restaurant door) that leads eventually, n time-steps 
(message-postings) later to payoff in the form of satis­
faction at the taste of food. TV will at least equal the 
number of intervening elementary actions, which may be 
very large. If over time C is to be properly reinforced as 
a member of the sequence, the sequence will have to be 
repeated as many times as it takes the strength increment 
due to the food payoff to "reach" C. 

To estimate the number of repetitions required, we 
used a simple simulation in which a list of n strengths 
represented a bucket-brigade chain of n classifiers. Setting 
the strengths initially at zero, we provided external payoff 
R at one end and ran the chain repeatedly, according to 
the bucket-brigade rule of the previous section, until the 
nth strength reached 90% of R/e, where (as can be shown) 
R/e is the assymptotic value approached by all strengths 
in the chain. The number of repetitions required, M90%, 
was, to a close approximation, 

M90% = (3+ 1.2n)/c, 

for values of c in the range from 0.1 to 0.4. E should 
be kept small so that classifier strengths average over a 

Wilson 217 



number of payoff events; typically, c is chosen to be no 
greater than 0.1. Given that value, our equation says that 
a "stage-setting" classifier just 10 steps from environmen­
tal payoff will require no fewer than 150 repetitions of the 
sequence to be properly reinforced. 

HI BEHAVIORAL MODULES 

Clearly, something is wrong if the reinforcement al­
gorithm must feed strength increments back through the 
enormous number of elementary steps between, say, the 
push on a restaurant door and the enjoyment of food. In­
tuitively, that sequence consists of just a few big steps: 
< enter restaurant >, <get a table>, <get food>, <eat>. If 
the algorithm treated these as the bucket-brigade units, 
reinforcement would be faster since the chain would be 
short. Somehow we must also reinforce the smaller steps 
which compose the big ones. But we note that <enter 
restaurant> can be broken into the sequence: <find door>, 
<open door>, <go through>, and that <open door> ex­
pands, in turn, into a short sequence one of whose com­
ponents is <push>. Albus (1979), among others, shows 
how any complex activity can be decomposed into a hier­
archy of behavioral modules each consisting of just a few 
"steps".. If the bucket brigade could apply hierarchically 
to module steps, we might be able to reinforce quite ex­
tended activities without encountering the "long chain" 
problem. 

Our approach to this objective is to modify the stan­
dard classifier system's performance and reinforcement al­
gorithms so as explicitly to encourage behavioral modules 
and short bucket-brigade chains [see Holland (1985) for a 
different suggested approach]. The basic change is to use 
a hierarchical message list instead of the standard homo­
geneous one in which all messages have equal status, and, 
for the moment, to allow at most one message at a time 
on a given level. Our plan of exposition is first to take 
the reader through an example, then to present the new 
algorithm, and finally to discuss questions which the al­
gorithm raises. 

IV AN EXAMPLE 

Figure 1 illustrates the operation of the hierarchical 
performance and reinforcement algorithm over a certain 
interval of 17 time-steps. The figure shows principally the 
contents of the system's message list, but also indicates 
environment changes, actions, and bucket-brigade flows. 

At time t0 we imagine that the message M1 sponta­
neously appears on a previously empty message list. M1 is 
special in that it represents an internal system need, e.g., 
<get food>, in which case we could say that the system 
has just felt (renewed) hunger. We note that M1 stays on 
the list until the very end of the epoch, when food (R) is 
received. M1 is in effect the name of a behavioral module 
(intent, plan, subprogram) with the purpose <get food>. 

At t0 the message from the environment was E1 (top 
of figure). Since the system took no external action on 
that time step, the same environment holds (we assume) 
at t1 But the overall situation is different at t1 since 
the message list contains M1 The system now forms a 
match set consisting of all classifiers which match both E1 

and M1. From the match set, a single classifier is picked 
(through a competition based on classifier strengths) and 
that classifier's message, M2 , is posted on the list on the 
next level down. The interpretation is that M2 names a 
module of M1 that applies when the environment is E1. 

Still the system has not made an external action. At 
t2, a match set is again formed with the proviso that its 
members must match E1 (still unchanged) and M2, illus­
trating the matching rule: "if no external action occurred 
in the previous time-step, compare only against the low­
est level message on the list in forming the match set." 
The rationale is that the lowest level message represents 
the system's most immediate intent, which should have 
priority. Again, the figure shows the posting of message 
M3 and thus a deepening of the hierarchy. 

At T3 something new happens. Following the same 
rules as above, the system picks a winning classifier whose 
message specifies an external action A1. In this case the 
action is taken and no new message is posted (action mes­
sages cause only actions). We have reached the level of 
a module (M3) whose components are not intents or sub-
modules but external activity. 

At t4, a new matching rule applies: "if an external 
action occurred during the previous time-step, compare 
against all messages on the list; if the (again) single win­
ning classifier matched a message on level k of the list, 
erase all lower-level messages (if any) and post the win­
ner's message one level below K." In the current case, we 
see from the figure that M3 must have been the highest 
message matched (since no messages got erased) and that 
the winner's message was the action A2. The interpre­
tation is that the system simply executes another action 
belonging to M3. 

At t5, bigger changes occur. The second matching 
rule (the "ascent" rule) again applies, and this time the 
winning classifier matcxied M2 (and E3), resulting in era­
sure of M3 and the posting of M4. Here the interpretation 
is that, given environment E3, module M2 moves on to its 
second submodule M4; i.e., its first submodule, M3, has 
been successfully carried out. 

We now have enough information to understand the 
rest of the figure. From t6 through t8, the system executes 
the actions of M4 , but this also completes M2. At t9 the 
system enters "descent" (the first matching rule applies) 
and begins execution of the module M5, which lasts until 
t16. Note that the first three steps of M5 are actions 
but the fourth is a submodule. Finally, the fifth step, the 
action A10, results in external reward entering the system, 
which causes erasure of the entire message list. 

The "ascent" matching rule, which acts most dramat­
ically at t8 and t16, is designed to identify the highest-level 
module to which the environment resulting from the cur­
rent action is relevant, and to terminate all lower level 
modules. This corresponds to the observation that com­
pletion of a high-level subplan usually means completion 
of all subplans which immediately underlie it. For exam­
ple, completion of the subplan <get a table> under the 
plan <get food> also completes <take a seat> and, under 
that, <pull the chair back up to the table>, etc. 

The operation of the bucket brigade in figure 1 is il­
lustrated by the small arrows, which indicate strength 

218 KNOWLEDGE ACQUISITION 



flows. An arrow from one message to another, as between 
M4 and M3, means a payment from the classifier which 
posted M4 to the classifier which posted M3. As usual, 
the amount involved is a fraction of the strength of the 
source classifier, and it is added to the strength of the 
recipient. Similarly, an arrow from one action to another 
(or from a message to an action, or vice versa) means a 
payment between the two corresponding classifiers. The 
special case of an arrow leaving the first step of a mod­
ule, as with M2 , means a fraction of the strength of the 
posting classifier is simply removed and "thrown away". 

At time-steps 5, 8, 15, and 16, a more complicated 
payment pattern occurs. For example, at t8, the standard 
strength fraction is deducted from the classifier which sent 
M5 , but the resulting quantity is paid to each of the three 
recipients indicated by the arrows. That is, if an amount 
Q is deducted from the source classifier, each recipient 
has its strength incremented by Q. Similarly, at t16, the 
payoff quantity J? (and not one-third of R) is paid to each 
of the three recipients shown. The intent of this "non-
splitting" of payoff is to encourage hierarchical deepening 
where appropriate; a different rule may of course turn out 
to be better. 

We may note in figure 1 how the bucket-brigade pat­
tern causes strength flows along the constituent steps of 
each module, thus reinforcing the steps in the spirit of the 
original bucket-brigade principle. But this "hierarchical 
bucket brigade" also achieves our objective of reducing 
the length of any individual chain. Note that the over­
all activity of figure 1 consists of ten action steps (and 
17 time-steps) yet no classifier is more than five payment 
steps from the external reward. More generally, hierarchy 
means that the average payment sequence length will be 
of the order of log n, where n is the number of steps in 
the overall activity. 

V HIERARCHICAL ALGORITHM 

We now state the hierarchical performance and rein­
forcement algorithm. 

1) Obtain the current message E from the environmental 
input interface. 

2) If phase= "descent", form the match set [M] of all clas­
sifiers which match both E and the lowest-level mes­
sage on the message list, else 

If phase = "ascent", form the match set [M] of all clas­
sifiers which match both E and any message on the 
message list. 

3) Compute the bid B of each classifier C in [M] by taking 
the product of C's strength and a small constant (say 
0.1). 

4) Select a classifier C* from IM] using a procedure in 
which higher-bidding classifiers are more likely to be 
selected. 

5) Reduce C*'s strength by the amount of its bid; then 

If phase = "ascent", pay an amount equal to B to each 
of the classifiers (if any) which sent messages lower 
on the list than the message matched by C*, erase 
those lower messages, and pay an amount B to the 
classifier whose action was carried out on the previous 
time-step; 

6) If C*'s message is an external action, 
set phases "ascent". 

Else post the message on the next lower empty level 
of the message list and set phase= "descent". 

Wilson 219 



7) If the message of step 6 was an action, take it. 

8) If payoff R is received from the environment, pay 
amounts equal to R to each of the classifiers which 
sent messages now on the list, erase all messages, and 
pay an amount R to the classifier whose action was 
just taken. 

Set phase="descent". 

9) Return to step 1. 

The new algorithm leaves some operational questions 
unanswered. For instance, we are not told what to do 
in step 2 if the match set [M] is null (this is also not 
covered in the standard algorithm). In "descent", the 
sensible thing would seem to be to assume that the most 
recent posting (lowest message) was a "mistake", erase 
it, and retry the match against the next higher message. 
In "ascent" the situation is more complicated, but fail­
ure to match is less likely since the whole list is matched 
against. A possible response would be to "reverse" the 
last action (if possible) and retry the match. In both 
cases, the stochastic element in the selection of C* (step 
4) would permit alternative outcomes. If the system be­
came truly stuck in a certain state or loop, a "fatigue" 
process could come into play, causing messages gradually 
to drop from the list. All these questions are more prop­
erly addressed at the level of the system routine of which 
the hierarchical algorithm is a component. 

VI DISCUSSION 

An important difference between the hierarchical clas­
sifier system outlined here and the standard system is 
that parallelism appears to be greatly reduced. The stan­
dard classifier system permits numerous messages to be 
posted in each cycle, whereas the hierarchical system per­
mits the addition, to those already on the list, of no more 
than one message per cycle. Parallelism in the standard 
system is intended to serve several functions (Holland, 
1986). Having numerous classifiers active on each cycle 
should allow the system simultaneously to test numerous 
hypotheses about the best way to get to payoff. Over 
time, those that profit in the bucket brigade should win 
out (and, under the discovery algorithm, become progen­
itors of new, possibly even better, classifier hypotheses). 
Secondly, parallelism is intended to give the system grace­
fulness in the sense that when control is divided among a 
cluster of rules, the failure or absence of one rule can be 
expected to have only a marginal effect on performance. 
Finally, complex situations may be more flexibly repre­
sented internally by a set of numerous activated rules,, 
each responding to an element of the situation, than by 
a few, or just one, rule which would have to encompass 
all relevant aspects in its condition. In short, multiple 
activation is intended to give the system a more powerful 
mental model of the world (Holland et ., 1986). 

This is clearly an important objective for any learning 
system. We suggest, however, that the hierarchical sys­
tem is not so narrow as it may appear. At any moment, in 
general, the message list contains a number of messages, 
which could be taken to represent a mental model, but in 
this case an hierarchical one. The higher level messages 

represent broader, more general, aspects of the situation 
than the lower level messages. Selection of a message 
for posting on a given level is the result of a competition 
which on another occasion could well pick a different clas­
sifier's message for testing. Furthermore, the hierarchical 
system can be modified to permit more than one message 
on each level (essentially, one lets C* be a set instead of 
a single classifier, but there is not space here to go into 
detail). The single place where the hierarchical system is 
clearly "narrower" than the standard one is in "descent", 
where our rule is that only the lowest-level message gets 
matched against, corresponding to the principle that a 
plan cannot be achieved before its subplans. (To prevent 
insensitivity to environmental surprises, a multi-level in­
terrupt can be provided by adding "If E differs from the 
previous E, set phase ='ascent'" to step 1.) 

Further research is needed to determine the hierar­
chical classifier system's merit. We intend to apply it in 
an extension of our previous "animat", or artificial ani­
mal, simulations (Wilson, 1985, in press). In concluding, 
we would stress the hierarchical system's two apparent 
plusses: short bucket-brigade chains and explicit modu­
larity. 

REFERENCES 

(Note: ICGATA abbreviates J.J. Grefenstette (Ed.), Pro­
ceedings of an International Conference on Genetic Al­
gorithms and Their Applications. Pittsburgh: Carnegie-
Mellon University.) 

Albus, J.S. (1979). "Mechanisms of planning and problem 
solving in the brain." Mathematical Biosciences, 45, 247-
298. 

Anderson, J. R. (1983). The architecture of cognition. 
Cambridge: Harvard University Press. 

Holland, J.H. (1985). "Properties of the bucket brigade 
algorithm." ICGATA. pp. 1-7. 

Holland, J.H. (1986). "Escaping brittleness: The pos­
sibilities of general-purpose learning algorithms applied 
to parallel rule-based systems." In R.S. Michalski, J.G. 
Carbonell & T.M. Mitchell (Eds.), Machine learning; an 
artificial intelligence approach. Volume II. Los Altos, Cal­
ifornia: Morgan Kaufmann Publishers, Inc. 

Holland, J.H., Holyoak, K.J., Nisbett, R.E., and Thagard, 
P.R. (1986). Induction; Processes of Inference, Learning, 
and Discovery. Cambridge, MA: MIT Press. 

Mitchell, T. M., Utgoff, P. E., & Banerji, R. (1983). 
"Learning by experimentation: acquiring and refining pro-
blem-solving heuristics." In R. S. Michalski, J. G. Car­
bonell & T. M. Mitchell (Eds.), Machine learning, an arti­
ficial intelligence approach. Palo Alto, California: Tioga. 

Wilson, S.W. (1985). "Knowledge growth in an artificial 
animal." ICGATA, 16-28. 

Wilson, S.W. (in press). "Classifier systems and the ani­
mat problem." Machine Learning. 

220 KNOWLEDGE ACQUISITION 


