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Abstract- Computed prediction represents a major shift
in learning classifier system research. XCS with com-
puted prediction, based on linear approximators, has
been applied so far to function approximation, to sin-
gle step problems involving continuous payoff functions,
and to multi step problems. In this paper we take this
new approach in a different direction and apply it to the
learning of Boolean functions – a domain characterized
by highly discontinuous 0/1000 payoff functions. We
also extend it to the case of computed prediction based
on functions, borrowed from neural networks, that may
be more suitable for 0/1000 payoff problems: the per-
ceptron and the sigmoid. The results we present show
that XCSF with linear prediction performs optimally in
typical Boolean domains and it allows more compact so-
lutions evolving classifiers that are more general com-
pared with XCS. In addition, perceptron based and sig-
moid based prediction can converge slightly faster than
linear prediction while producing slightly more compact
solutions.

1 Introduction

With the introduction of XCSF [18] Wilson has recently
extended the traditional idea of learning classifier systems
through the concept of a computed classifier prediction.
In typical learning classifier systems the prediction (or the
strength [8]) associated to each classifier is memorized as a
parameter. In XCSF [18], classifier prediction is computed
as a linear combination of the current input and a weight
vector associated to each classifier. Originally, XCSF was
conceived as a pure function approximator [18]: classifiers
did not have an action and computed classifier prediction
was used to produce piecewise linear approximations of tar-
get functions. The initial results [18] shows that XCSF
can evolve populations of classifiers that represent accu-
rate piecewise linear approximations of sections of the tar-
get function. XCSF achieves such results through the bal-
ance of two main forces: (i) an evolutionary pressure, the
same as XCS [1], pushing toward accurate maximally gen-
eral classifiers so to break down the problem space into
subspaces were accurate generalizations are possible; (ii)
a learning mechanism based on typical linear approxima-
tors (Widrow-Hoff in [18], but others can be used) to adapt
classifier weights with respect to the problem subspace. Re-
cently, XCSF has been successfully applied to problems in-
volving discrete actions [19]) and delayed rewards [10].

In this paper, we take XCS with computed prediction in a
different direction. We start from XCSF with actions and
linear prediction (XCS-LP in [19]) which, from now on
we will simply call XCSF to abstract the concept of com-
puted prediction (first introduced with XCSF [18]) from the
more specific implementation with action and linear predic-
tion (XCS-LP in [19]). We apply XCSF with Boolean ac-
tions and linear prediction to well-known Boolean problems
which involve discontinuous 0/1000 payoff functions. The
results we report show that XCS with linear computed pre-
diction applied to Boolean functions can perform optimally
and it converges slightly faster than XCS. But, most im-
portant, XCSF can evolve solutions that are on the average
more compact than those evolved by XCS since the use of a
computed prediction allows more general solutions. Then,
we extend XCSF with alternative ways to compute classi-
fier prediction that may be more suitable in 0/1000 pay-
off landscapes, borrowed from neural networks, namely the
perceptron [13] and the sigmoid [7]. We apply these new
versions of XCSF to the same Boolean problems and show
that XCSF with perceptron based and sigmoid based predic-
tion can converge slightly better than the version with linear
prediction, while producing solutions that are also slightly
more compact.

2 The XCSF Classifier System

XCSF differs from XCS in three respects: (i) classifiers
conditions are extended for numerical inputs, as done in
XCSI [17]; (ii) classifiers are extended with a vector of
weightsw, that are used to compute classifier’s prediction;
finally, (iii) the original update of classifier prediction must
be modified so that the weights are updated instead of the
classifier prediction. These three modifications result in a
version of XCS, XCSF [18, 19], that maps numerical inputs
into actions with an associated calculated prediction. In the
original paper [18] classifiers have no action and assumes
that XCSF outputs the estimated prediction, instead of the
action itself. In this paper, we consider the version of XCSF
with actions and linear prediction (named XCS-LP [19]) in
which more than one action is available. As said before,
throughout the paper we do not keep the (rather historical)
distinction between XCSF and XCS-LP since the two sys-
tems are basically identical except for the use of actions in
the latter case.

In XCSF, classifiers consist of a condition, an action, and
four main parameters. The condition specifies which in-
put states the classifier matches; as in XCSI [17], it is rep-



resented by a concatenation of interval predicates,inti =
(li, ui), whereli (“lower”) and ui (“upper”) are integers,
though they might be also real. The action specifies the ac-
tion for which the payoff is predicted. The four parameters
are: the weight vectorw, used to compute the classifier pre-
diction as a function of the current input; the prediction error
ε, that estimates the error affecting classifier prediction;the
fitnessF that estimates the accuracy of the classifier pre-
diction; the numerositynum, a counter used to represent
different copies of the same classifier. Note that the size of
the weight vectorw depends on the type of approximation.
In the case of piecewise-linear approximation, consideredin
this paper, the weight vectorw has one weightwi for each
possible input, and an additional weightw0 corresponding
to a constant inputx0, that is set as a parameter of XCSF.

Performance Component.XCSF works as XCS. At each
time stept, XCSF builds amatch set[M] containing the
classifiers in the population [P] whose condition matches
the current sensory inputst; if [M] contains less thanθmna

actions,covering takes place and creates a new classifier
that matches the current inputs and has a random action.
Each interval predicateinti = (li, ui) in the condition of a
covering classifier is generated asli = st(i)− rand(r0), and
ui = st(i)+ rand(r0), wherest(i) is the input value of state
st matched by the interval predicatedinti, and the function
rand(r0) generates a random integer in the interval[0, r0]
with r0 fixed integer. The weight vectorw of covering clas-
sifiers is randomly initialized with values from [-1,1]; allthe
other parameters are initialized as in XCS (see [4]).

For each actionai in [M], XCSF computes thesystem pre-
dictionwhich estimates the payoff that XCSF expects when
actionai is performed. As in XCS, in XCSF thesystem pre-
diction of actiona is computed by the fitness-weighted av-
erage of all matching classifiers that specify actiona. How-
ever, in contrast with XCS, in XCSF classifier prediction is
computed as a function of the current statest and the classi-
fier vector weightw. Accordingly, in XCSF system predic-
tion is a function of both the current states and the action
a. Following a notation similar to [2], the system prediction
for actiona in statest, P (st, a), is defined as:

P (st, a) =

∑

cl∈[M ]|a
cl.p(st)× cl.F

∑

cl∈[M ]|a
cl.F

(1)

wherecl is a classifier, [M]|a represents the subset of clas-
sifiers in [M] with actiona, cl.F is the fitness ofcl; cl.p(st)
is the prediction ofcl computed in the statest. In particular,
when piecewise-linear approximation is considered,cl.p(st)
is computed as:

cl.p(st) = cl.w0 × x0 +
∑

i>0

cl.wi × st(i)

wherecl.wi is the weightwi of cl andx0 is a constant in-
put. The values ofP (st, a) form theprediction array. Next,
XCSF selects an action to perform. The classifiers in [M]
that advocate the selected action are put in the currentac-
tion set[A]; the selected action is sent to the environment
and a rewardP is returned to the system.

Algorithm 1 XCSF: Weights update with the modified delta
rule.

1: procedure UPDATE PREDICTION(cl, s, P )
2: error← P − cl.p(s)
3: norm← x2

0; ⊲ Compute|x|2

4: for i ∈ {1, . . . , |s|} do
5: norm← norm+s2

i

6: end for
7: correction← η

norm
× error ⊲ Compute the overall

correction
8: cl.w0 ← x0 × correction ⊲ Update the weights

according to the correction
9: for i ∈ {1, . . . , |s|} do

10: cl.wi ← cl.wi + si × correction
11: end for
12: end procedure

Reinforcement Component.XCSF uses the incoming re-
wardP to update the parameters of classifiers in action set
[A]. The weight vectorw of the classifiers in [A] is updated
using amodified delta rule[15]. For each classifiercl ∈ [A],
each weightcl.wi is adjusted by a quantity∆wi computed
as:

∆wi =
η

|st(i)|2
(P − cl.p(st))st(i) (2)

whereη is the correction rate and|st|
2 is the norm the

input vectorst, (see [18] for details). Equation 2 is usu-
ally referred to as the “normalized” Widrow-Hoff update or
“modifieddelta rule”, because of the presence of the term
|~st(i)|

2 [6]. The values∆wi are used to update the weights
of classifiercl as:

cl.wi ← cl.wi + ∆wi (3)

Then the prediction errorε is updated as:

cl.ε← cl.ε + β(|P − cl.p(st)| − cl.ε)

Finally, classifier fitness is updated as in XCS.

Discovery Component. The genetic algorithm and sub-
sumption deletion in XCSF work as in XCSI [17].

3 XCSF for Boolean Functions

XCSF can be applied to the learning of Boolean functions.
For this purpose, we consider a version of XCSF in which
the integer-based conditions originally used in [18] are re-
placed by the ternary representation [16]; there are two ac-
tions, 0 and 1, which represent the output of the Boolean
function; while matching, covering, crossover, and mutation
workexactlyas in the original XCS [16]. To update the clas-
sifier weights, during the update process Boolean inputs are
mapped into integer values by replacing zeros with -5 and
ones with +5. We need to do this since with linear approxi-
mators zero values for inputs must be generally avoided [7].
The procedure to update the weights of one classifier is re-
ported, following the notation of [4], as Algorithm 2.



Algorithm 2 XCSF: Weights update for Boolean inputs.
1: procedure UPDATE PREDICTION(cl, s, P )
2: for i ∈ {1, . . . , |s|} do
3: if si = 0 then⊲ Map Boolean inputs to integers
4: yi ← −5; ⊲ Input 0 is changed to -5
5: else
6: yi ← +5; ⊲ Input 1 is changed to +5
7: end if
8: end for
9: error← P − cl.p(y)

10: norm← x2
0; ⊲ Compute|x|2

11: for i ∈ {1, . . . , |s|} do
12: norm← norm+y2

i

13: end for
14: correction← η

norm
× error

15: cl.w0 ← x0 × correction
16: for i ∈ {1, . . . , |s|} do
17: cl.wi ← cl.wi + yi × correction
18: end for
19: end procedure

4 Design of Experiments

To apply XCSF to the learning of Boolean functions, we
follow the standard settings used in the literature [16]. Each
experiment consists of a number of problems that the sys-
tem must solve. Each problem is either alearningproblem
or a testproblem. Inlearningproblems, the system selects
actions randomly from those represented in the match set.
In testproblems, the system always selects the action with
highest prediction. The genetic algorithm is enabled only
during learning problems, and it is turned off duringtest
problems. The covering operator is always enabled, but op-
erates only if needed. Learning problems and test problems
alternate. The reward policy we use is the usual one for
Boolean functions [16]: when XCSF solves the problem
correctly, it receives a constant reward of 1000; otherwise
it receives a zero reward. The performance is computed as
the percentage of correct answers during the last 100 test
problems. All the reported statistics are averages over 50
experiments. In this paper, we consider two types of func-
tions: Boolean multiplexer and hidden parity.

Boolean Multiplexer. These are defined over binary strings
of lengthn wheren = k+2k; the firstk bits,x0, . . . , xk−1,
represent an address which indexes the remaining2k bits,
y0, . . . , y2k−1; the function returns the value of the indexed
bit. For instance, in the 6-multiplexer function,mp6, we
have thatmp6(100010) = 1 while mp6(000111) = 0.

Hidden Parity. This class of Boolean functions has been
first used with XCS in [9] to relate the problem difficulty
to the number of accurate maximally general classifiers
needed by XCS to solve the problem. They are defined over
binary strings of lengthn in which onlyk bits are relevant;
the hidden parity function (HPn,k) returns the value of the
parity function applied to thek relevant bits, that arehidden
among then inputs. For instance, given the hidden parity
functionHP6,4 defined over inputs of six bits (n = 6), in

which only the first four bits are relevant (k = 4), then we
have thatHP6,3(110111) = 1 while HP6,3(000111) = 1.

5 Linear Prediction

We apply the version of XCSF for Boolean problems to
the 11-multiplexer, with the following parameters setting:
N = 1000, β = 0.2; α = 0.1; ǫ0 = 10; ν = 5;
χ = 0.8, µ = 0.04, θdel = 20; θGA = 25; δ = 0.1;
GA-subsumption is on withθGAsub = 20; while action-set
subsumption is on withθASsub = 400; we use tournament
selection [3] with size 0.4; the don’t care probability for
ternary conditions isP# = 0.3. Figure 1a compares the per-
formance and the population size of the original XCS [16]
with those of XCSF; curves are averages over 50 runs. As
can be noted, XCSF reaches optimal performance slightly
faster and also evolves solutions that on the average are
slightly more compact. We apply the same version of XCSF
to the 20-multiplexer withN = 2000, P# = 0.5, and
θASsub = 800; all the other parameters are set as in the
previous experiment. Figure 1b compares the performance
and the population size of the original XCS [16] with those
of XCSF; curves are averages over 50 runs. The results con-
firm what found in the 11-multiplexer, XCSF converges to
optimal performance slightly faster, evolving solutions that
are also slightly more compact. In fact, XCS evolves solu-
tions that on the average contain 250 classifiers (the 12.5%
of N ), while XCSF evolves solutions that on the average
contain 172 classifiers (the 8.6% ofN ). Finally, we apply
XCSF to theHP20,5 problem with the parameter settings
taken from [11]:N = 2000, β = 0.2; α = 0.1; ǫ0 = 1;
ν = 5; χ = 1.0, µ = 0.04, θdel = 20; θGA = 25; δ = 0.1;
GA-subsumption is on withθGAsub = 20; while action-set
subsumption is off; the don’t care probability for ternary
conditions isP# = 1.0; the other XCSF parameters are set
as usual. Figure 1c compares the performance and the pop-
ulation size of the original XCS [16] with those of XCSF;
curves are averages over 50 runs. Also these results confirm
what priorly found, though in this problem the difference in
convergence between XCSF and XCS is more evident.

To understand why XCSF can evolve solutions that are
generally more compact, we need to analyze the evolved
solutions; for this purpose we consider the first experiment
on the 11-multiplexer. Table 1 reports the most numer-
ous classifiers in one of the populations evolved by XCSF;
column id reports a unique classifier identifier, column
Condition:Action reports the classifier condition and
action; columncl.p(~x) reports the equation used to com-
pute classifier prediction, for the sake of brevity zero and
near zero weights which do not contribute to the overall pre-
diction are not reported; columnscl.ε, cl.F, cl.exp, cl.num
indicate respectively classifier error, fitness, experience, and
numerosity. As can be noted, the population contains clas-
sifiers whose conditions have only three specific bits (e.g.,
classifier 0,1,2,4, and 5) instead of the usual four specific
bits that XCS would require to solve the same problem.
Such classifiers are characterized by (i) small weights cor-
responding to the address bits of the multiplexer, (ii) a large
weight for the the bit that should be specified in the solu-



tion evolved by XCS but it is actually generalized by XCSF,
(iii) all the weights associated to other inputs have zero or
near zero values. For instance, in classifier number 2 in
Table 1, the specific bits and the constant term (correspond-
ing to w0x0) provide a constant start value (equal to 500.1)
from which the classifier prediction is computed based on
the value of the target input bitx8: if the Boolean value of
input 8 is 1 (and thus the actual inputx8 is 5), then the clas-
sifier prediction is500.1 + 100.0× 5, that is 1000.1; if the
Boolean value of input 8 is 0 (and thus the actual inputx8 is
-5), then the classifier prediction is500.1 + 100.0 × (−5),
that is 0.1. Basically, XCSF can allow more general condi-
tions, with more “#”, by exploiting the numerical value of
the inputs matched by a “#”, to produce an accurate value
of the classifier prediction. Thus on the average XCSF can
evolve more compact solutions since it allows more general
conditions. This may also simplify the search space and
improve the convergence speed in problems, such as the
hidden parity, in which the number of specific bits highly
influences the learning process.

6 The Perceptron

In the previous section, we showed that XCSF can exploit
linear prediction to solve Boolean multiplexer and hidden
parity apparently faster than XCS. Another approach, re-
lated to neural networks, to tackle Boolean problems in-
volves the perceptron model [12]. The perceptron takes as
input a vector of real values~x = 〈x0, x1 . . . xn〉 (wherex0

is the usual constant input) and outputs either -1 either 1
through a two stage process: first the linear combination
~w~x of the real inputs~x and of the weight vector~w is calcu-
lated, then the perceptron outputs 1 if~w~x > 0, -1 otherwise.
The perceptron is trained from a set of examples{〈~xk, yk〉},
whereyk is the desired output for input~xk, by adjusting the
weights. Given the input vector~x and the desired outputy,
the weightwi associated to inputxi is updated according to
the perceptron training rule as follows [13]:

wi ← wi + η(y − o)xi (4)

whereo is the perceptron output for input~x, andη is the
usual learning rate.

Note that the perceptron training rule in Equation 4 is very
similar to the weight update used in XCSF for linear pre-
diction (Equation 2). There are only two differences. The
former one is in the way the current outputo is computed:
in XCSF,o = ~w~x, while in the perceptrono = sgn(~w~x),
with sgn the sign function. The latter is in the normaliza-
tion factor |~x|2 used in the delta rule update (Equation 2)
which is missing from Equation 4. It is thus straightforward
to modify XCSF by replacing the usual linear approxima-
tion with a perceptron like approximator to compute classi-
fier prediction. While XCSF exploits linear approximation
to learn a 0/1000 payoff function, with a perceptron based
approximator XCSF directly learns a two value function to
approximate the same payoff. In the version of XCSF mod-
ified with the perceptron approximation classifier prediction

Algorithm 3 XCSF: Weights update with perceptron.
1: procedure UPDATE PREDICTION(cl, s, P )
2: error← P − cl.p(s)
3: correction← η × error
4: cl.w0 ← x0 × correction
5: for i ∈ {1, . . . , |s|} do
6: cl.wi ← cl.wi + si × correction
7: end for
8: end procedure

is computed as,

cl.p(~x) =

{

1000 if ~x× cl.w > 0

0 otherwise.
(5)

while the update of classifier weights is performed accord-
ing to Algorithm 3.

We apply the version of XCSF with perceptron based
classifier prediction to all the problems previously consid-
ered, with the same parameter settings. Figure 2 com-
pares the performance and population size of XCSFwith
linear prediction and XCSF with perceptron based predic-
tion in (a) the 11-multiplexer, (b) the 20-multiplexer, and(c)
HP20,5. As the plots show, XCSF modified with the percep-
tron based prediction converges slightly faster than XCSF
with linear approximation; however, while in the Boolean
multiplexer there is almost no difference between the size
of the solutions evolved by linear and perceptron prediction,
perceptron based prediction evolves slightly larger solutions
in the hidden parity problem.

When analyzing the solutions evolved by this version
of XCSF we discover that the generalization produced are
similar since, also with perceptron, XCSF allows classifiers
with fewer specific bits. However, with perceptron based
prediction the weights are used in a completely different
way. In the case of linear prediction, XCSF needs to evolve
weight values that allow an accurate estimate of the classi-
fier prediction. In contrast, in the case of the perceptron,
XCSF must guarantee that the weight values are such that
the argument of the sign function (cl.~w × ~x) produces the
correct 0/1000 payoff value. This implies that with the per-
ceptron there are less constraints on the values that the clas-
sifier weights can take. Generally, it is convenient for XCSF
with perceptron to evolve classifiers for which the argument
of the sign function (cl.~w × ~x) has an high probability of
being far from zero. In fact, a near zero value ofcl.~w × ~x
might be source of sudden changes in the classifier predic-
tion which would make the classifier inaccurate. As an ex-
ample, let us consider the classifier 2 in Table 1), for the
same classifier XCSF with perceptron has evolved a weight
vector corresponding to the following value ofcl.~w × ~x:

cl.~w × ~x = 0.0− 234.1x1 + 234.1x5 + 234.1x6 +

+6764.1x8 − 2530.1x10 + 2000.0x11

which has zero prediction error and a classifier fitness of
0.956. Note that onlyx1 among the address bits has a non
zero weight, and, apart fromx8 which determines the cor-
rect prediction, there are also other inputs with a non zero



id Condition:Action cl.p(~x) cl.ε cl.F cl.exp cl.num

0 101######## : 0 420.5 + 9.7x1 + 6.2x2 + 12.4x3 − 100.0x9 0.000 1.000 5904 45
1 010######## : 0 486.2 + 3.4x1 + 7.5x2 + 1.3x3 − 100.0x6 0.000 1.000 6050 43
2 100######## : 1 337.6 + 16.9x1 − 16.9x2 + 1.3x3 + 100.0x8 0.000 0.994 5969 42
3 111#######1 : 0 58.2 − 0.2x1 − 4.8x2 − 4.1x3 − 2.5x11 0.000 0.999 1394 42
4 011######## : 0 438.6 + 5.8x1 + 4.9x2 + 13.1x3 − 100.0x7 0.000 1.000 6061 42
5 110######## : 1 312.5 + 12.1x1 + 12.3x2 − 13.2x3 + 100.0x10 0.000 0.999 5655 40
6 010##1##### : 1 984.6 − 21.5x1 + 32.4x2 − 23.6x3 − 74.4x6 0.000 1.000 4199 39
7 111#######1 : 1 501.9 + 24.5x1 + 18.3x2 + 31.5x3 + 25.3x11 0.000 0.927 4242 36
8 110######0# : 0 530.7 + 5.9x1 + 35.7x2 − 10.6x3 − 41.7x10 0.000 0.933 4425 36
9 100######## : 0 566.4 + 3.6x1 + 3.3x2 + 13.6x3 − 100.0x8 0.000 0.919 6133 35

10 101#####1## : 1 510.6 + 25.5x1 − 20.4x2 + 25.5x3 + 26.4x9 0.000 0.988 4473 35
11 111#######0 : 1 137.3 + 6.9x1 − 48.1x2 + 6.9x3 − 6.9x11 0.000 0.828 1522 33
12 0001####### : 0 99.3 + 17.5x1 − 5.0x2 + 2.1x3 − 5.2x4 0.000 0.912 1273 33
13 001######## : 0 286.9 − 13.9x1 − 14.3x2 + 14.3x3 − 100.0x5 0.000 0.676 6150 32
14 011###1#### : 1 573.8 − 23.4x1 + 27.7x2 + 9.7x3 + 24.4x7 0.000 0.903 4530 31
15 110######1# : 0 104.5 − 1.4x1 − 22.2x2 − 4.0x3 − 1.4x10 0.000 0.920 1282 31
16 101#####0## : 1 244.6 + 12.2x1 − 12.2x2 − 3.2x3 + 70.2x9 0.000 0.869 1400 30
17 111#######0 : 0 637.3 + 31.9x1 − 23.1x2 + 31.9x3 − 31.9x11 0.000 0.949 3865 30
18 011###0#### : 1 0.0 0.000 0.936 1464 29
. . . . . . . . . . . . . . . . . . . . .

Table 1: Example of classifiers evolved by XCSF for the 11-multiplexer.

contribution to the value ofcl.~w × ~x. However, the contri-
bution tocl.~w×~x of the relevant inputs (x1 andx8) alone is
so high (-32650 whenx8 = −5, +34991 whenx8 = 5) to
make the other contributions irrelevant with respect to the
perceptron output.

7 The Sigmoid

The sigmoid is the obvious extension of the perceptron and
it is one of the most typical activation functions used in neu-
ral networks [7]. It is defined as:

f(z) =
k

1 + e−z
(6)

wherez is ~w~x andk is a scale factor, specified by the user,
which defines an upper limit to functionf(z). We now ex-
tend XCSF with sigmoid based computation of classifier
prediction; since in this paper we focus on 0/1000 payoffs,
we setk = 1000 so that the prediction of a classifiercl is
now defined as:

cl.p(~x) =
1000

1 + e−cl.~w~x
,

which maps the input vector into a prediction value between
0 and 1000. The update of classifier weights is done accord-
ing to a simple gradient descent [7] on the prediction error
as follows:

wi ← wi + η(P − cl.p(z))
∂f(z)

∂z
xi (7)

wherez = cl.~w×~x. Unfortunately this update suffers from
the well-known problem of “flat spots” [7]: when|z| > 3
weights are adjusted very slowly and the derivative contri-
bution in Equation 7 tends to be zero very easily. To over-
come this problem, we adopt the most elementary technique
used in the literature [5] to limit flat spots: a constantǫ (em-
pirically determined based on the problem domain) is added
to the derivative contribution. The weight update is now,

wi ← wi + η(P − cl.p(z))[
∂f(z)

∂z
+ ǫ]xi

In all the experiments discussed here, we set the contribu-
tion ǫ to 25 which we determined from some preliminary
experiments as the 10% of the average contribution of the
central slope in our problem domain. The update of clas-
sifier weights for sigmoid based prediction is reported as
Algorithm 4.

Algorithm 4 XCSF: Weights update with sigmoid.
1: procedure UPDATE PREDICTION(cl, s, P )
2: error← P− cl.p(s); ⊲ Compute the error
3: z = cl.w0 × x0; ⊲ Computez
4: for i = 1 to |s| do
5: z ← z + cl.wi × s(i);
6: end for
7: gr← 1000/(1 + e−z)× [1− 1/(1 + e−z)) + ǫ];
8: correction← η× error× gr;
9: cl.w0 ← x0 × correction;

10: for i = 1 to |s| do
11: cl.wi ← cl.wi + si × correction;
12: end for
13: end procedure

We apply XCSF with sigmoid prediction to the same prob-
lems considered for the previous versions with the same ex-
perimental settings. Figure 3 compares the performance and
population size of XCSF with linear and sigmoid based pre-
diction in (a) the 11-multiplexer, (b) the 20-multiplexer,and
(c) HP20,5 respectively. As can be noted from the plots, in
Boolean multiplexer XCSF with sigmoid converges slightly
slower than linear prediction showing a performance curve
very similar to that of the perceptron (Figure 2a and Fig-
ure 2b); in the hidden parity problem, XCSF with sigmoid
prediction converges slightly faster than linear prediction.
With respect to the size of the solutions evolved, XCSF with
sigmoid prediction behaves basically as XCSF with percep-
tron prediction: it performs basically the same as linear pre-
diction in Boolean multiplexer, but produces bigger solu-
tions in the hidden parity problem.



8 Conclusions

We applied XCS with computed prediction, XCSF [18, 19]
to the learning of Boolean functions. In particular, we con-
sidered three versions of XCSF: one involving classifier
prediction based on linear approximation [18, 19]; one in-
volving classifier prediction based on the perceptron [13];
and finally, one involving classifier prediction based on the
sigmoid [7]. We applied these three versions of XCSF and
XCS [16] to the 11-multiplexer, the 20-multiplexer, and the
hidden parity problem (HP20,5).

Our results show that the use of computed prediction can
result in solutions that are more compact compared with
those evolved by XCS. In fact, XCSF can allow more gen-
eral conditions by exploiting the input values corresponding
to don’t care positions to produce accurate estimates of the
target payoff values.

As a general result, we note that all the three versions of
XCSF converge (slightly) faster than XCS; such difference
becomes more evident in problems (such asHP20,5) where
the number of specific bits needed to reach a solution has
more influence on the number of problems required to con-
verge. The approach involving the sigmoid has a small
drawback: to avoidflat spots[7] it might require adhoc pa-
rameter settings for the weight update.

We also note that all the three versions of XCSF evolve so-
lutions that are on the average at least as compact as those
evolved by XCS. Nevertheless, from our preliminary re-
sults, it appears that XCSF with linear prediction evolves
populations that are on the average more compact that those
evolved by XCSF with perceptron and sigmoid based pre-
dictions.

Finally, we wish to note that the work presented here is also
related to the work of Smith and Cribbs [14] where a simple
analogy between learning classifier systems and neural net-
works was discussed. Note however that in this work, clas-
sifiers are enriched with the simplest form of neural compu-
tation (a perceptron) that is used to compute solely classifier
prediction, while in [14] classifiers represent hidden nodes
of one competitive neural network. Nevertheless, given the
many similarities of this work to [14], a deeper comparison
between XCSF, the analogy proposed in [14], and typical
neural approaches is currently planned.

We believe that XCS with computed prediction represents a
major shift in learning classifier system research and a very
promising research direction for the future development in
this area. In [18], Wilson has shown that XCSF can solve
problems that cannot be tackled by traditional models. The
results presented in this paper suggest that XCSF can also
perform better than traditional models (better than XCS) in
problems were traditional models are usually applied. As a
matter of fact, XCSF is a proper generalization of XCS and
we can actually implement XCS with XCSF by consider-
ing a very simple function to compute classifier prediction,
i.e., cl.p(~x) = w0, and by using the basic Widrow-Hoff
update to adjustw0. On the other hand we can move the

idea of computed classifier prediction beyond the percep-
tron and the sigmoid considered here so as to allow any
type of approximation, depending on the problem consid-
ered. We might as well allow XCSF to evolve the most
adequate prediction function for providing an accurate ap-
proximation of payoff values in each problem subspace.
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Figure 1: XCS and XCSF in (a) the 11-multiplexer, (b) the
20-multiplexer, and (c)HP20,5: performance (solid dots)
and number of macroclassifiers (empty dots).
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Figure 2: Linear and perceptron prediction in the (a)
11-multiplexer, (b) 20-multiplexer, and (c)HP20,5: perfor-
mance (solid dots) and number of macroclassifiers (empty
dots).
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Figure 3: Linear and sigmoid prediction in (a) the
11-multiplexer, (b) the 20-multiplexer, and (c)HP20,5:
performance (solid dots) and number of macroclassifiers
(empty dots).


