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Abstract- Computed prediction represents a major shift  In this paper, we take XCS with computed prediction in a
in learning classifier system research. XCS with com- different direction. We start from XCSF with actions and
puted prediction, based on linear approximators, has linear prediction (XCS-LP in [19]) which, from now on
been applied so far to function approximation, to sin- we will simply call XCSF to abstract the concept of com-
gle step problems involving continuous payoff functions, puted prediction (first introduced with XCSF [18]) from the
and to multi step problems. In this paper we take this more specific implementation with action and linear predic-
new approach in a different direction and apply itto the  tion (XCS-LP in [19]). We apply XCSF with Boolean ac-
learning of Boolean functions — a domain characterized tions and linear prediction to well-known Boolean problems
by highly discontinuous 0/1000 payoff functions. We which involve discontinuous 0/1000 payoff functions. The
also extend it to the case of computed prediction based results we report show that XCS with linear computed pre-
on functions, borrowed from neural networks, that may diction applied to Boolean functions can perform optimally
be more suitable for 0/1000 payoff problems: the per- and it converges slightly faster than XCS. But, most im-
ceptron and the sigmoid. The results we present show portant, XCSF can evolve solutions that are on the average
that XCSF with linear prediction performs optimally in more compact than those evolved by XCS since the use of a
typical Boolean domains and it allows more compact so- computed prediction allows more general solutions. Then,
lutions evolving classifiers that are more general com- we extend XCSF with alternative ways to compute classi-
pared with XCS. In addition, perceptron based and sig- fier prediction that may be more suitable in 0/1000 pay-
moid based prediction can converge slightly faster than off landscapes, borrowed from neural networks, namely the
linear prediction while producing slightly more compact  perceptron [13] and the sigmoid [7]. We apply these new

solutions. versions of XCSF to the same Boolean problems and show
that XCSF with perceptron based and sigmoid based predic-
1 Introduction tion can converge slightly better than the version withdine

prediction, while producing solutions that are also slight
With the introduction of XCSF [18] Wilson has recently more compact.
extended the traditional idea of learning classifier system
through the concept of a computed classifier predictiorp The XCSF Classifier System
In typical learning classifier systems the prediction (@ th
strength [8]) associated to each classifier is memorized aX&SF differs from XCS in three respects: (i) classifiers
parameter. In XCSF [18], classifier prediction is computedonditions are extended for numerical inputs, as done in
as a linear combination of the current input and a weighXCSI [17]; (ii) classifiers are extended with a vector of
vector associated to each classifier. Originally, XCSF waseightsw, that are used to compute classifier's prediction;
conceived as a pure function approximator [18]: classifierfnally, (iii) the original update of classifier predictionust
did not have an action and computed classifier predictidme modified so that the weights are updated instead of the
was used to produce piecewise linear approximations of tastassifier prediction. These three modifications result in a
get functions. The initial results [18] shows that XCSFversion of XCS, XCSF [18, 19], that maps numerical inputs
can evolve populations of classifiers that represent accimo actions with an associated calculated predictionhén t
rate piecewise linear approximations of sections of the taoriginal paper [18] classifiers have no action and assumes
get function. XCSF achieves such results through the bahat XCSF outputs the estimated prediction, instead of the
ance of two main forces: (i) an evolutionary pressure, thaction itself. In this paper, we consider the version of XCSF
same as XCS [1], pushing toward accurate maximally gemvith actions and linear prediction (named XCS-LP [19]) in
eral classifiers so to break down the problem space intehich more than one action is available. As said before,
subspaces were accurate generalizations are possible; tfiroughout the paper we do not keep the (rather historical)
a learning mechanism based on typical linear approximaistinction between XCSF and XCS-LP since the two sys-
tors (Widrow-Hoff in [18], but others can be used) to adaptems are basically identical except for the use of actions in
classifier weights with respect to the problem subspace. Rie latter case.
cently, XCSF has been successfully applied to problems in-

. : ) In XCSF, classifiers consist of a condition, an action, and
volving discrete actions [19]) and delayed rewards [10]. four main parameters. The condition specifies which in-

put states the classifier matches; as in XCSI [17], it is rep-



resented by a concatenation of interval predicates, =

Algorithm 1 XCSF: Weights update with the modified delta
(I;,u;), wherel; (“lower”) and u; (“upper”) are integers, rule.

though they might be also real. The action specifies the aci: procedure UPDATE_PREDICTION(I, s, P)

tion for which the payoff is predicted. The four parameters 2:
are: the weight vectan, used to compute the classifier pre- 3:
diction as a function of the currentinput; the predictiomer  4:
¢, that estimates the error affecting classifier predictiba;  5:
fitnessF' that estimates the accuracy of the classifier pre-6:
diction; the numerosityyum a counter used to represent 7:

different copies of the same classifier. Note that the size of

the weight vectoiv depends on the type of approximation. 8:

In the case of piecewise-linear approximation, considered

this paper, the weight vectar has one weightv; foreach 9
possible input, and an additional weighg corresponding 10:
to a constant input, that is set as a parameter of XCSF. 11

error— P —cl.p(s)
norm« x3;
forie{1,...,]s|} do
norm«— norm-s?
end for
correction— —I—
correction
cl.wy < zo x correction > Update the weights
according to the correction
forie{1,...,]s|} do
cl.w; «— cl.w; + s; x correction
end for

> Computelz|?

x error > Compute the overall

Performance Component. XCSF works as XCS. At each 12: end procedure

time stept, XCSF builds amatch sefM] containing the

classifiers in the po_pulatio_n [P] whos_e condition matchegainforcement Component.XCSF uses the incoming re-
the current sensory input; if [M] contains less tha..a  ward P to update the parameters of classifiers in action set
actions,coveringtakes plape and creates a new cIaSS|f|_e[rA]_ The weight vectons of the classifiers in [A] is updated
that matches the current inputs and has a random ac“%ing amodified delta rulgL5]. For each classifi € [A],

Each interval predicatit, = (I;, u;) in the condition of a each weightl.w; is adjusted by a quantithw; computed
covering classifier is generatedias= s; (i) — randf), and

u; = s¢(2) +randgo), wheres,(4) is the input value of state
s; matched by the interval predicated;, and the function Aw; = L(p —cl.p(se))se (@) (2)
randf,) generates a random integer in the interjéal) |se (i) [?

with ry fixed integer. The weight vectar of covering clas-
sifiers is randomly initialized with values from [-1,1]; #fle
other parameters are initialized as in XCS (see [4]).

wheren is the correction rate antk;|? is the norm the
input vectors;, (see [18] for details). Equation 2 is usu-
ally referred to as therformalized Widrow-Hoff update or
For each actiom; in [M], XCSF computes theystem pre- “modifieddelta rule”, because of the presence of the term
dictionwhich estimates the payoff that XCSF expects whef¥; ()| [6]. The valuesAw; are used to update the weights
actiona; is performed. As in XCS, in XCSF theystem pre- of classifiercl as:
diction of actiona is computed by the fitness-weighted av-

erage of all matching classifiers that specify actiofow-

ever, in contrast with XCS, in XCSF classifier prediction is

computed as a function of the current statand the classi- Then the prediction erraris updated as:
fier vector weightw. Accordingly, in XCSF system predic-
tion is a function of both the current stat¢eand the action
a. Following a notation similar to [2], the system prediction
for actiona in states;, P(s,a), is defined as:

P(st,a) = 2 cleqary, C-P(se) X cl.F "

chG[M“a cl.F
wherecl is a classifier, [M], represents the subset of clas-3 XCSF for Boolean Functions

sifiers in [M] with actiona, cl.F is the fitness ofl; cl.p(s;)  XCSF can be applied to the learning of Boolean functions.
is the prediction ofl computed in the state. In particular, For this purpose, we consider a version of XCSF in which
when piecewise-linear approximation is consideotf(s:)  the integer-based conditions originally used in [18] are re
is computed as: placed by the ternary representation [16]; there are two ac-
tions, 0 and 1, which represent the output of the Boolean
function; while matching, covering, crossover, and motati
work exactlyas in the original XCS [16]. To update the clas-
wherecl.w; is the weightw; of cl andz, is a constant in- sifier weights, during the update process Boolean inputs are
put. The values oP(s;, a) form theprediction array Next, mapped into integer values by replacing zeros with -5 and
XCSF selects an action to perform. The classifiers in [Mpnes with +5. We need to do this since with linear approxi-
that advocate the selected action are put in the cusent mators zero values for inputs must be generally avoided [7].
tion set[A]; the selected action is sent to the environmenThe procedure to update the weights of one classifier is re-
and a reward® is returned to the system. ported, following the notation of [4], as Algorithm 2.

cl.w; «— cl.w; + Aw; 3)

cl.e — cl.e 4+ B(|P —cl.p(s)| — cl.e)

Finally, classifier fitness is updated as in XCS.

Discovery Component. The genetic algorithm and sub-
sumption deletion in XCSF work as in XCSI [17].

cl.p(st) = clawg x o + ch.wi X s¢(1)
>0



Algorithm 2 XCSF: Weights update for Boolean inputs. which only the first four bits are relevant & 4), then we
1: procedure UPDATE_PREDICTION(CI, s, P) have thaHPg 5(110111) = 1 while HPg 5(000111) = 1.
22 forie{l,...,|s|} do

3 if s; = 0 then> Map Boolean inputs to integers 5 |inear Prediction

4: yi — —H; > Input O is changed to -5

5: else We apply the version of XCSF for Boolean problems to
6: i «— +5; > Input 1 is changed to +5 the 11-multiplexer, with the following parameters setting
7: end if N = 1000, 8 = 0.2, a = 0.1; ¢¢ = 10; v = b5;

8: end for x = 0.8, u = 0.04, 4eg = 20; ga = 25; 6 = 0.1;

o: error— P — cl.p(y) GA-subsumption is on witlg 4,5 = 20; while action-set

10:  norm« z3; > Computelz|?  subsumption is on with 4ss., = 400; we use tournament
11: forie {1,...,]s|} do selection [3] with size 0.4; the don’t care probability for
12: norm+« norm-+y? ternary conditions i$’; = 0.3. Figure 1a compares the per-
13 end for formance and the population size of the original XCS [16]
14: correction— —1— x error with those of XCSF; curves are averages over 50 runs. As
15; cl.wg « o « correction can be noted, XCSF reaches optimal performance slightly
16 forie{1,...,|s|} do faster and also evolves solutions that on the average are
17: cl.w; « cl.w; + y; x correction slightly more compact. We apply the same version of XCSF
18: end for to the 20-multiplexer withV' = 2000, Py = 0.5, and

19: end procedure O0assup = 800; all the other parameters are set as in the

previous experiment. Figure 1b compares the performance
and the population size of the original XCS [16] with those
4 Design of Experiments of XCSF; curves are averages over 50 runs. The results con-

) . firm what found in the 11-multiplexer, XCSF converges to
To apply XCSF to the learning of Boolean functions, we,niimal performance slightly faster, evolving solutiohatt
follow the standard settings used in the literature [16LHEa 4pe 150 slightly more compact. In fact, XCS evolves solu-
experiment consists of a number of problems that the sygons that on the average contain 250 classifiers (the 12.5%
tem must solve. Each problem is eithdearningproblem o N1y while XCSF evolves solutions that on the average
or atestproblem. Inlearning problems, the system selectscontain 172 classifiers (the 8.6% ). Finally, we apply

actions randomly from those represented in the match sgtcsp o theHP,, 5 problem with the parameter settings
In testproblems, the system always selects the action witiken from [11:N = 2000, 3 = 0.2; @ = 0.1; ¢p = 1;

highest prediction. The genetic algorithm is enabled only _ 5. v = 1.0, 4 = 0.04, Oger = 20; 0ca = 25,6 = 0.1;
during learning problgms, and it i_s turned off durintgst GA-subsumption is on withc 4., = 20; while action-set
problems. The covering operator is always enabled, but 0gypsumption is off; the don't care probability for ternary
erates only if needed. Lear_ning problems and test problemgnditions isP, = 1.0; the other XCSF parameters are set
alternate. The reward policy we use is the usual one fofs ysyal. Figure 1c compares the performance and the pop-
Boolean functions [16]: when XCSF solves the problenation size of the original XCS [16] with those of XCSF;
correctly, it receives a constant reward of 1000; otherwisg,rves are averages over 50 runs. Also these results confirm
it receives a zero reward. The performance is computed gt priorly found, though in this problem the difference in
the percentage of correct answers during the last 100 tR¥nvergence between XCSF and XCS is more evident.
problems. All the reported statistics are averages over 50 T understand why XCSF can evolve solutions that are
experiments. In this paper, we consider two types of fungsenerally more compact, we need to analyze the evolved

tions: Boolean multiplexer and hidden parity. solutions; for this purpose we consider the first experiment
Boolean Multiplexer. These are defined over binary stringsOn the 11-multiplexer. Table 1 reports the most numer-
of lengthn wheren = &+ 2¥; the firstk bits, zo, ..., zx_1, °US classifiers in one of the populations evolved by XCSF;
represent an address which indexes the remaipingits, columni d reports a unique classifier identifier, column
Yo, . - -, yor_1; the function returns the value of the indexeocor_‘di tion: Acti on reports the classif_ier condition and
bit. For instance, in the 6-multiplexer functiomps, we ~action; columncl.p(Z) reports the equation used to com-
have thatnpg(100010) = 1 while mpg(000111) = 0. pute classifier prediction, for the sake of brevity zero and

near zero weights which do not contribute to the overall pre-
Hidden Parity. This class of Boolean functions has beeryiction are not reported; colummse, cl.F, cl.exp cl.num
first used with XCS in [9] to relate the problem difficulty jngjcate respectively classifier error, fitness, expeseand
to the number of accurate maximally general cI_assifier%merosity. As can be noted, the population contains clas-
needed by XCS to solve the problem. They are defined ovgfiers whose conditions have only three specific bits (e.g.,
binary strings of length in which onlyk bits are relevant; ¢|assifier 0,1,2,4, and 5) instead of the usual four specific
the hidden parity functionHP, ) returns the value of the pits that XCS would require to solve the same problem.
parity function applied to thé relevant bits, that areidden gy ch classifiers are characterized by (i) small weights cor-
among then inputs. For instance, given the hidden parityiesponding to the address bits of the multiplexer, (i) gdar
function HP; 4 defined over inputs of six bitsy(= 6), in \eight for the the bit that should be specified in the solu-



tion evolved by XCS but it is actually generalized by XCSFAlgorithm 3 XCSF: Weights update with perceptron.
(iii) all the weights associated to other inputs have zero or1: procedure UPDATE_PREDICTION(CI, s, P)

near zero values. For instance, in classifier number 2 irp: error— P —cl.p(s)

Table 1, the specific bits and the constant term (corresponds: correction«— 1 x error

ing to wgzp) provide a constant start value (equal to 500.1) 4 cl.wy < xo x correction

from which the classifier prediction is computed based ons: forie {1,...,|s|} do

the value of the target input hits: if the Boolean value of ¢: cl.w; «— cl.w; + s; x correction

input 8 is 1 (and thus the actual inpty is 5), then the clas- 7 end for
sifier prediction is500.1 4 100.0 x 5, thatis 1000.1; if the  s: end procedure
Boolean value of input 8 is 0 (and thus the actual inpyits
-5), then the classifier prediction 0.1 4- 100.0 x (=5),
that is 0.1. Basically, XCSF can allow more general condisS computed as,
tions, with more “#”, by exploiting the numerical value of

cl.p(¥) = {

1000 if Zxclw>0

the inputs matched by a “#”, to produce an accurate value _
0 otherwise

of the classifier prediction. Thus on the average XCSF can
evolyg more compact SO'““Or!S since itallows more generalh”e the update of classifier weights is performed accord-
conditions. This may also simplify the search space an\ﬁ

improve the convergence speed in problems, such as t'hg o Algorithm 3.
hidden parity, in which the number of specific bits highlyC We apply the version of XCSF with perceptron based

: . lassifier prediction to all the problems previously consid
influences the learning process. . . .

ered, with the same parameter settings. Figure 2 com-
pares the performance and population size of XCSFwith
6 The Perceptron linear prediction and XCSF with perceptron based predic-
tion in (a) the 11-multiplexer, (b) the 20-multiplexer, afal

In the previous section, we showed that XCSF can epr0||_t|F,20 5. As the plots show, XCSF modified with the percep-

Ilne_ar pred|ct|otr|1 t(f) S?IveihBoolfgg m:ltlﬁ)rllexer and h'ﬂde?ron based prediction converges slightly faster than XCSF
parity apparently faster than - ANOTNET apProach, ey, jinear approximation; however, while in the Boolean

lated to neural networks, to tackle Boolean problems Ir‘ﬁﬁultiplexer there is almost no difference between the size
volves the perceptron model [12]. The perceptron takes

inout tor of real values — h B the solutions evolved by linear and perceptron predigtio
input a vector of real valueg = (zo, 21 ... ) (Wherezo perceptron based prediction evolves slightly larger smhst

is the usual constant input) and outputs either -1 elther.l’,l,I ; :

h hart : - first the i binati in the hidden parity problem.

Hrﬁoufgth a W?_ N a%% pr(()jcefstsﬁ Irst hte 'nfaf _coml INation \when analyzing the solutions evolved by this version
wa orthe real Inputs and orthe WeIght vectaw 1S calCu- ¢ v ooe \ve discover that the generalization produced are

l_?rt]Ed’ then tthe p_erfeptrc:jnfoutputs itmff> 0,-1 otherwise. similar since, also with perceptron, XCSF allows classifier
€ perceptron is trained from a set of examgiles;, yi) }, with fewer specific bits. However, with perceptron based

wh_ereyk IS _the desw_ed output for inpuk,, by "i‘dlus“”g the prediction the weights are used in a completely different
Welght_s. Given the_lnput ve_ctdfand the desired OUtht way. In the case of linear prediction, XCSF needs to evolve
the weightu assoggted 1o Input; IS update'd according to weight values that allow an accurate estimate of the classi-
the perceptron training rule as follows [13]: fier prediction. In contrast, in the case of the perceptron,
4) XCSF must guarantee that the weight values are such that
the argument of the sign functioel(@ x Z) produces the
whereo is the perceptron output for inpat, ands is the —correct 0/1000 payoff value. This implies that with the per-
usual learning rate. ceptron there are less constraints on the values that the cla
o ) ) ) sifier weights can take. Generally, it is convenient for XCSF
Note that the perceptron training rule in Equation 4 is veryith perceptron to evolve classifiers for which the argument
similar to the weight update used in XCSF for linear preys the sign function ¢l x &) has an high probability of
diction (Equation 2). There are only two differences. Th%eing far from zero. In fact, a near zero valuechfs x z
former one is in the way the current outpuis computed:  might be source of sudden changes in the classifier predic-
in XCSF,0 = @, while in the perceptron = sgn(wZ),  tijon which would make the classifier inaccurate. As an ex-
with sgn the sign function. The latter is in the normaliza-ampje, let us consider the classifier 2 in Table 1), for the
tion factor |Z|* used in the delta rule update (Equation 2ame classifier XCSF with perceptron has evolved a weight

which is missing from Equation 4. Itis thus straightforward,ector corresponding to the following value@fi x z:
to modify XCSF by replacing the usual linear approxima-

tion with a perceptron like approximator to compute classi- cl.w x & = 0.0 — 234.1x1 + 234.1x5 + 234.126 +

fier prediction. While XCSF exploits linear approximation +6764.1x5 — 2530.1210 + 2000.0211

to learn a 0/1000 payoff function, with a perceptron based o o
approximator XCSF directly learns a two value function tgvhich has zero prediction error and a cIaSS|_f|er fithess of
approximate the same payoff. In the version of XCSF modR-956. Note that only; among the address bits has a non

ified with the perceptron approximation classifier prediati Z€ro weight, and, apart fromy which determines the cor-
rect prediction, there are also other inputs with a non zero

(%)

wi — wi +n(y — 0)x;



[ id | Condition:Action | clp(&) [ cle [ clF ] clexp] cl.num |

0 | 101######## . 0 | 420.5+ 9.7z + 6.222 + 12.423 — 100.0x9 0.000 | 1.000 | 5904 | 45
1 | OlO######## © 0 | 486.2 + 3.4x1 + 7.5z2 4+ 1.3x3 — 100.0z¢ 0.000 | 1.000 | 6050 | 43
2 | 100######## . 1 | 337.6 4 16.921 — 16.9x2 + 1.3x3 + 100.0x8 0.000 | 0.994 | 5969 | 42
3 | 111#######1 @ 0 | 58.2 — 0.2z — 4.822 — 4.1z3 — 2.5211 0.000 | 0.999 | 1394 | 42
4 | OL11######## © 0 | 438.6 + 5.8z1 +4.922 + 13.1x3 — 100.0z7 0.000 | 1.000 | 6061 | 42
5 | 110###H##H#H### . 1 | 31254 12.1x1 4 12.3z2 — 13.223 + 100.0z19 | 0.000 | 0.999 | 5655 | 40
6 | OLO##1##### © 1 | 984.6 — 21.5z1 + 32.4x9 — 23.6x3 — T4.4xe 0.000 | 1.000 | 4199 | 39
7| 111####HH#L 0 1 | 501.9 4 24.5x1 + 18.3w2 + 31.573 + 25.3711 0.000 | 0.927 | 4242 | 36
8 | 110######0# . 0 | 530.7 4 5.921 + 35.7x2 — 10.6x3 — 41.7x10 0.000 | 0.933 | 4425 | 36
9 | 100######## © 0 | 566.4 4 3.6x1 + 3.3z2 + 13.623 — 100.0z5 0.000 | 0.919 | 6133 | 35
10 | 101#####1## © 1 | 510.6 + 25.521 — 20.4x2 + 25.5x3 + 26.4x9 0.000 | 0.988 | 4473 | 35
11 | 111#######0 @ 1 | 1373+ 6.921 —48.1z2 + 6.923 — 6.9211 0.000 | 0.828 | 1522 | 33
12 | O0O1####### © 0 | 99.3+17.521 — 5.0z2 4+ 2.1x3 — 5.224 0.000 | 0.912 | 1273 | 33
13 | OO1######## © 0 | 286.9 — 13.921 — 14.3z2 + 14.323 — 100.0z5 0.000 | 0.676 | 6150 | 32
14 | Oll###1#### @ 1 | 573.8 — 23.4x1 + 27.7x2 4+ 9.7Tx3 + 24.4z7 0.000 | 0.903 | 4530 | 31
15 | 110######1# @ 0 | 104.5 — 1.4z — 22.220 — 4.0z3 — 14210 0.000 | 0.920 | 1282 | 31
16 | 101#####0## © 1 | 244.6 +12.221 — 12.222 — 3.223 4 70.2x9 0.000 | 0.869 | 1400 | 30
17 | 111#####4##0 @ 0 | 637.3 4+ 31.921 — 23.12x2 + 31.923 — 31.9211 0.000 | 0.949 | 3865 | 30
18 | OLl1###0#### @ 1 | 0.0 0.000 | 0.936 | 1464 | 29

Table 1: Example of classifiers evolved by XCSF for the 11tiplgxer.

contribution to the value ofl..i x Z. However, the contri- In all the experiments discussed here, we set the contribu-
bution tocl.« x # of the relevant inputsi(; andzg) aloneis tion ¢ to 25 which we determined from some preliminary

so high (-32650 whens = —5, +34991 whentg = 5) to  experiments as the 10% of the average contribution of the

make the other contributions irrelevant with respect to theentral slope in our problem domain. The update of clas-

perceptron output. sifier weights for sigmoid based prediction is reported as
Algorithm 4.

7 The Sigmoid

Algorithm 4 XCSF: Weights update with sigmoid.
The sigmoid is the obvious extension of the perceptron andi: procedure UPDATE_PREDICTION(CI, s, P)

it is one of the most typical activation functions used in-neu »: error— P— cl.p(s); > Compute the error
ral networks [7]. Itis defined as: 3 z = cl.wy X zg; > Computez
k 4: fori=1to|s| do
&)= 1= ®) s z— z+clw; x s(i);
wherez is wZ andk is a scale factor, specified by the user, 65 end f(;rooo 1+ o= 1-1/(1 . }
which defines an upper limit to functiof(z). We now ex- ;j gcr);;act' /(1 +e7®) x| n [+ e7%)) + el
tend XCSF with sigmoid based computation of classifier 10N 1px Errorx gr,
prediction; since in this paper we focus on 0/1000 payoffs o Cl'% o X correction;
' io: for i = 1to|s| do

we setk = 1000 so that the prediction of a classifiekis

. cl.w; < cl.w; 4+ s; x correction;
now defined as: i i i

12: end for

1000 13: end procedure

cLP(®) = T o

0 and 1000. The update of classifier weights is done acco apply XCSF with sigmoid prediction to the same prob-

ing to a simple gradient descent [7] on the prediction errdems considered for the previous versions with the same ex-
as follows: perimental settings. Figure 3 compares the performance and

populatlon size of XCSF with linear and sigmoid based pre-
w; — w; + (P — cl.p(z))af—(z)xi (7) diction in (a) the 11-multiplexer, (b) the 20-multiplexand
0z (c) HPy 5 respectively. As can be noted from the plots, in
wherez = cl.i x . Unfortunately this update suffers from Boolean multiplexer XCSF with sigmoid converges slightly
the well-known problem of “flat spots” [7]: whejx| > 3  slower than linear prediction showing a performance curve
weights are adjusted very slowly and the derivative contrivery similar to that of the perceptron (Figure 2a and Fig-
bution in Equation 7 tends to be zero very easily. To ovelre 2b); in the hidden parity problem, XCSF with sigmoid
come this problem, we adopt the most elementary techniggeediction converges slightly faster than linear predicti
used in the literature [5] to limit flat spots: a constaf@m-  With respect to the size of the solutions evolved, XCSF with
pirically determined based on the problem domain) is addegsigmoid prediction behaves basically as XCSF with percep-
to the derivative contribution. The weight update is now, tron prediction: it performs basically the same as linear pr
af(z) diction in Boolean multiplexer, but produces bigger solu-
w; — w; +n(P — cl.p(2))] 02 + €Jx; tions in the hidden parity problem.

which maps the input vector into a prediction value betwe?ré/
r




8 Conclusions idea of computed classifier prediction beyond the percep-
) . o tron and the sigmoid considered here so as to allow any
We applied XCS with computed prediction, XCSF [18, 19}ype of approximation, depending on the problem consid-
to the learning of Boolean functions. In particular, we congreqd. We might as well allow XCSF to evolve the most
sidered three versions of XCSF: one involving classifiegdequate prediction function for providing an accurate ap-

prediction based on linear approximation [18, 19]; one inyroximation of payoff values in each problem subspace.
volving classifier prediction based on the perceptron [13];

and finally, one involving classifier prediction based on th%\
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Figure 1: XCS and XCSF in (a) the 11-multiplexer, (b) the
20-multiplexer, and (cHP3 5: performance (solid dots)
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Figure 2: Linear and perceptron prediction in the (aJigure 3: Linear and sigmoid prediction in (a) the
11-multiplexer, (b) 20-multiplexer, and (&)P2o 5: perfor- 11-multiplexer, (b) the 20-multiplexer, and (¢)P2 s:
mance (solid dots) and number of macroclassifiers (empperformance (solid dots) and number of macroclassifiers
dots). (empty dots).



