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Abstract- We apply XCS with computed prediction
(XCSF) to tackle multistep reinforcement learning prob-
lems involving continuous inputs. In essence we use
XCSF as a method of generalized reinforcement learn-
ing. We show that in domains involving continuous in-
puts and delayed rewards XCSF can evolve compact
populations of accurate maximally general classifiers
which represent the optimal solution to the target prob-
lem. We compare the performance of XCSF with that of
tabular Q-learning adapted to the continuous domains
considered here. The results we present show that XCSF
can converge much faster than tabular techniques while
producing more compact solutions. Our results also sug-
gest that when exploration is less effective in some areas
of the problem space, XCSF can exploit effective gen-
eralizations to extend the evolved knowledge beyond the
frequently explored areas. In contrast, in the same situa-
tions, the convergence speed of tabular Q-learning wors-
ens.

1 Introduction

Computed prediction represents a major advance in learn-
ing classifier system research. XCS with computed predic-
tion [16, 18, 19], or XCSF1, has been recently applied (i)
to evolve piecewise linear [18] and polynomial approxima-
tions of functions [4, 5]; (ii) to the learning of Boolean func-
tions using piecewise linear approximation, as well as per-
ceptron based and sigmoid based approximations [6]; (iii) to
solve multistep reinforcement learning problems involving
integer inputs and delayed rewards [7]; and also (iv) to solve
single-stepproblems involving continuous inputs [19].

We now take XCS with computed prediction even further
and apply it tomultistepreinforcement learning problems
involving continuous inputs. These types of problems rep-
resent an important testbed for XCSF and for learning clas-
sifier systems in general. Tabular reinforcement learning
techniques such as Q-learning [13] can be applied to the
simple multistep problems involving integer inputs, like
those considered in [7]. However, theycannot be ap-
plied to problems involving continuous inputs, unless fine
grained discretization is applied to preprocess the input

1XCS with computed prediction was first introduced as XCSF in [16] to
approximate functions defined over integer domains and later extended to
XCS-LP in [19] for single step problems defined over continuous domains
involving discrete actions. In this paper we generally use the name XCSF
to abstract the general concept of computed prediction fromthe specific
implementation.

space [10]. Unfortunately, such discretization process re-
quires large tabular representations and most important, in
large multistep problems, it is source of slow convergence.
In contrast, XCSF can be directly applied to continuous
domains [19]. Furthermore, the first results on a simple
single-stepproblem involving continuous inputs (the frog
problem [19]) demonstrate that XCS with computed pre-
diction can (i) evolve populations which represent accurate
approximations of the problem solutions, (ii) providing ef-
fective generalizations by evolving classifiers which cover
large sections of the problem.

In this paper, we apply XCSF to a set of multistep prob-
lems, taken from the reinforcement learning literature [2],
involving continuous inputs. The results we present show
that XCSF can rapidly evolve populations of accurate max-
imally general classifiers which represent optimal solutions
of the considered problems. We compare XCSF with a ver-
sion of tabular Q-learning adapted to the continuous do-
mains considered here. For this purpose, we follow the typ-
ical approach suggested in the reinforcement learning lit-
eraure [10]. First, we empirically determine an adequate
discretization of the problem space (in this case a100×100
grid). Then we apply tabular Q-learning on the discretized
version of the problems considered and compare the results
with those obtained with XCSF on the original problem.
Our results show that, tabular Q-learning applied to the dis-
cretized problem domain tends to reach near optimal solu-
tions very slowly while also requiring large Q-tables. In
contrast, XCSF rapidly converges to optimal solutions that
require much less space than the corresponding Q-tables.

2 Reinforcement Learning

Reinforcement learning is defined as the problem of an
agentthat learns to perform a task throughtrial and error
interactionswith an unknownenvironmentwhich provides
feedback in terms of numericalreward [10]. The agent and
the environment interact continually. At timet the agent
senses the environment to be in statest; based on its current
sensory inputst the agent selects an actionat in the setA
of the possible actions; then actionat is performed in the
environment. Depending on the statest, on the actionat

performed, and on the effect ofat in the environment, the
agent receives ascalar rewardrt+1 and a new statest+1.
The agent’s goal is tomaximizethe amount of reward it re-
ceives from the environmentin the long run, or expected
payoff [10].



2.1 Generalized Reinforcement Learning

In reinforcement learning the agent learns how to maxi-
mize the incoming reward by developing an action-value
function Q(·, ·) (or a state value functionV (·)) that maps
state-action pairs (or states) into the corresponding expected
payoff values. Reinforcement learning methods assume
that action-value functions (and value functions) are repre-
sented bylook-up tableswith one entry for each state-action
pair (or one entry for each state in the case of value func-
tions). However, look-up tables easily become infeasible in
problems involving many states. Large look-up tables re-
quire more memory but, most important, they require more
on-line experience to converge. In addition, look-up tables
cannot be applied to problems involving continuous state
spaces. When continuous inputs are involved the only ap-
proach to apply tabular techniques consists of applying a
discretization step to preprocess the inputs before look-up
tables can be used. However, this approach raises some seri-
ous issues: while a coarse-grained discretization might pre-
vent the learner from reaching the optimal performance, on
the other hand, a fine-grained discretization might lead to
large tables and slow convergence. To cope with the com-
plexity of large problems the agent must be able togeneral-
izeover its experiences, i.e., to produce a good approxima-
tion of the optimal value function from a limited number of
experiences, using a small amount of storage.

In reinforcement learning generalization is implemented by
methods of function approximation: the action-value func-
tion is not represented as a table but as a function param-
eterized with a vector~θ. This means that at time stept,
the value associated to a particular state-action pair (or to
a particular state) depends on the current parameter vector
~θt. The action-value functionQ(·, ·) is viewed as a function
parameterized by a vector~θ that maps state-action pairs into
real numbers (i.e., the expected payoff).

2.2 Gradient-Descent Methods

These are the most widely used function approximation
methods. In gradient-descent methods, the parameter vec-
tor has a fixed number of real-valued components,~θt =
〈θt(1) . . . θt(n)〉, while the target action-value function is
approximated by a smooth differentiable function of~θt for
all the possible state-action pairs. At time stept, parameters
~θt are adjusted to minimize the mean-squared error (MSE)
between the new estimate of the action-value function and
the previous estimate. Gradient descent methods do this by
adjusting the parameter vector by a small amount in the di-
rection that would reduce the error on that example.
Among gradient-descent approaches, linear methods rep-
resent probably the most important case in reinforcement
learning [2, 9, 10]. With linear methods, value functions
are represented by linear functions of the vector param-
eter ~θt. For any states, a vector ofn features,~φs =
〈φs(1), . . . , φs(n)〉 is extracted, the approximated value
function fors is simply computed as~θt

~φs, while the gradi-
ent simply corresponds to the vector~φt. Linear methods are
very computationally efficient in terms both of space and

time; on the other hand, their effectiveness relies heavily
on the choice of the feature vector~φs, in addition, they are
limited in that they cannot express interactions between fea-
tures. To improve linear methods, a number of approaches
have been developed in which linear approximation is en-
riched with advanced representation of state features to al-
low the expression of relations between input features, e.g.,
coarse coding, tile coding, radial basis functions, and kan-
erva coding [10].

2.3 Convergence

The convergence of generalized reinforcement learning is
a complex issue, still poorly understood (see [8] for a re-
cent discussion). Most of the approximated reinforcement
learning algorithms are not known to converge and there is
no known way to extend the convergence proofs for tabular
reinforcement learning to the case of function approxima-
tors. Even if function approximators proved successful in
solving challenging reinforcement learning tasks [11], yet
they have been shown to be generally unstable, even in sim-
ple problems [1]. In addition there are a large number of
factors that influence the performance of function approxi-
mation approaches, such as: the algorithm (e.g., Q-learning
or SARSA [10]), the approximation used (e.g., linear, or
tile coding), or the window used for the update (e.g., eli-
gibility traces). For instance, [12] suggests (in the case of
Q-learning [10]), that the approximators induce noise on the
action-value function so that the system can overestimate
the expected payoff even when noise has zero mean.

3 The XCSF Classifier System

XCSF extends XCS in three respects [18]: (i) classifiers
conditions are extended for numerical inputs, as done for
XCSI [17]; (ii) classifiers are extended with a vector of
weightsw, that are used to compute classifier’s prediction;
finally, (iii) the weightsw are updated instead of the classi-
fier prediction.

Classifiers. In XCSF, classifiers consist of a condition, an
action, and four main parameters. The condition specifies
which input states the classifier matches; it is represented
by a concatenation of interval predicates,inti = (li, ui),
whereli (“lower”) andui (“upper”) are reals (whereas in the
original XCSF they were integers [18]). The action speci-
fies the action for which the payoff is predicted. The four
parameters are: the weight vector~w, used to compute the
classifier prediction as a function of the current input; the
prediction errorε, that estimates the error affecting classifier
prediction; the fitnessF that estimates the accuracy of the
classifier prediction; the numerositynum, a counter used to
represent different copies of the same classifier. The weight
vector ~w has one weightwi for each possible input, and an
additional weightw0 corresponding to a constant inputx0,
that is set as a parameter of XCSF.

Performance Component.XCSF works as XCS. At each
time stept, XCSF builds amatch set[M] containing the
classifiers in the population [P] whose condition matches



the current sensory inputst; if [M] contains less thanθmna

actions,coveringtakes place; covering is controlled by the
parameterr0 and it works as in XCSI [17, 18] but consid-
ers real values instead of integers. The weight vectorw of
covering classifiers is randomly initialized with values from
[-1,1]; all the other parameters are initialized as in XCS.

For each actionai in [M], XCSF computes thesystem pre-
diction. As in XCS, in XCSF thesystem predictionof action
a is computed by the fitness-weighted average of all match-
ing classifiers that specify actiona. In contrast with XCS,
in XCSF classifier prediction is computed as a function of
the current statest and the classifier vector weightw. Ac-
cordingly, in XCSF system prediction is a function of both
the current states and the actiona. Following a notation
similar to [3], the system prediction for actiona in statest,
P (st, a), is defined as:

P (st, a) =

∑

cl∈[M ]|a
cl.p(st)× cl.F

∑

cl∈[M ]|a
cl.F

(1)

wherecl is a classifier, [M]|a represents the subset of clas-
sifiers in [M] with actiona, cl.F is the fitness ofcl; cl.p(st)
is the prediction ofcl in statest, which is computed as:

cl.p(st) = cl.w0 × x0 +
∑

i>0

cl.wi × st(i) (2)

wherecl.wi is the weightwi of cl. The values ofP (st, a)
form theprediction array. Next, XCSF selects an action to
perform. The classifiers in [M] that advocate the selected
action are put in the currentaction set[A]; the selected ac-
tion is sent to the environment and a rewardr is returned to
the system together with the next input statest+1

Reinforcement Component.XCSF uses the incoming re-
ward to update the parameters of classifiers in action set
[A] −1 corresponding to the previous time step,t − 1. At
time stept, the expected payoffP is computed as:

P = r−1 + γ max
a∈A

P (st, a) (3)

wherer−1 is the reward received at the previous time step.
The expected payoffP is used to update the weight vector
w of the classifier in [A]−1 using amodified delta rule[14].
For each classifiercl ∈ [A]−1, each weightcl.wi is adjusted
by a quantity∆wi computed as:

∆wi =
η

|st−1(i)|2
(P − cl.p(st−1))st−1(i) (4)

whereη is the correction rate and|st−1|
2 is the norm the

input vectorst−1, (see [18] for details). The values∆wi are
used to update the weights of classifiercl as:

cl.wi ← cl.wi + ∆wi (5)

Then the prediction errorε is updated as:

cl.ε← cl.ε + β(|P − cl.p(st−1)| − cl.ε) (6)

Finally, classifier fitness is updated as in XCS.

Discovery Component. In XCSF, the genetic algorithm
works as in XCSI [17]; in the version used here the mutation
of classifier conditions, controlled by parameterr0, is based
on real values as in [19] instead of integers as in [17].

4 Design of Experiments

To apply XCSF to continuous multistep problems, we fol-
low the standard experimental design used in the litera-
ture [15]. Each experiment consists of a number of prob-
lems that the system must solve. Each problem is either a
learningproblem or atestproblem. Inlearningproblems,
the system selects actions randomly from those represented
in the match set. Intestproblems, the system always selects
the action with highest prediction. The genetic algorithm is
enabled only duringlearningproblems, and it is turned off
during testproblems. The covering operator is always en-
abled, but operates only if needed. Learning problems and
test problems alternate. The reward policy we use is the one
used in the reinforcement learning literature when studying
linear approximators [2]. When XCSF solves the problem
correctly, reaching the goal position, it receives a constant
reward equal to 0; otherwise it receives a constant reward
equal to -0.5. The performance is computed as the aver-
age number of steps needed to reach goal or food positions
during the last 100 test problems. To speed up the experi-
ments, problems can last at most 1000 steps; when this limit
is reached the problem stops even if the system did not reach
the goal. All the statistics reported in this paper are averaged
over 10 experiments.

We applied XCSF to two classes of real valued multistep
environments: the one dimensional linear corridor and the
2D continuous gridworldenvironments firstly introduced
in [2].

5 The Continuous Linear Corridor

We start from a very simple environment, a one dimensional
linear corridorCorr(s), in which the system inputs are de-
fined over the interval[0, 1], the goal is in position1, and
there are two possible actions:left, coded with 0, which
corresponds to a change of “−s” in the system position
(when the system tries to move below position 0, the system
reaches position 0);right, coded with 1, which corresponds
to a change of “+s” in the system position. The step-size
parameters determines the size of the environment with re-
spect to the system movement capabilities, the smaller the
s, the larger the environment, the larger thes, the smaller
the environment. The system can start anywhere but in the
goal position (i.e., in the real interal[0, 1)) and it reaches the
goal when moving in1 or beyond1 (i.e., the goal is reached
if the system position is greater or equal than1). When the
system reaches the goal it receives zero reward, in all the
other cases it receives−0.5. Given the step-sizes the aver-
age number of steps to reach the goal position is computed
as(s + 1)/2s (see Appendix A).

In the first experiment we apply XCSF to the continuous
corridor with a step size of 0.05,Corr(0.05), with the fol-
lowing parameter settings:N = 400, ǫ0 = 0.01, β = 0.2;
α = 0.1; ν = 5; χ = 0.8, µ = 0.04, pexplr = 0.5, θdel = 50,
θGA = 50, and δ = 0.1; GA-subsumption is on with
θsub = 50; while action-set subsumption is off; the param-
eters for real-valued conditions arem0 = 0.5, r0 = 0.25;
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Figure 1: XCSF inCorr(0.05) whenǫ0=0.01,γ = 0.9,
andγ = 0.95.

the parameterx0 for XCSF is1 [18]. Figure 1 compares
the performance of XCSF on theCorr(0.05) for two val-
ues of discount factor,γ = 0.9 andγ = 0.95. As shown,
whenγ = 0.95 XCSF reaches optimal performance while
with γ = 0.9 the performance of XCSF is slightly over
the optimum. With respect to the population size, in both
cases the final populations contain less than 40 classifiers:
whenγ = 0.9, the final populations contain an average of
36.4 classifiers (the 9.09% ofN ), whenγ = 0.95 the final
populations contain an average of 34.2 macroclassifiers (the
8.55% ofN ).

In the second experiment, we reduce the step sizes from
0.05 to 0.025, making the environment larger with respect
to the system actions. Figure 2 reports the performance of
XCSF inCorr(0.025) for two values of the discount fac-
tor, γ = 0.95 andγ = 0.99. In both cases, the performance
of XCSF rapidly converges towards the optimum, but the
performance is fully optimal only forγ = 0.99. Likewise
to the previous experiment, also in this case final popula-
tions contain on the average less than 40 classifiers: 37.52
(the 9.38% ofN ) whenγ = 0.95, 28.36 (the 7.09% ofN )
whenγ = 0.99. As theγ approaches to one, the optimal
value function for the continuous corridor approaches a line
(see [7]) and thus is better approximated by XCSF. Accord-
ingly, on the average the evolved solutions are smaller when
γ = 0.99.

6 The 2D Continuous Gridworlds

This class of environments has been introduced in [2] when
studying reinforcement learning with function approxima-
tors. They are two dimensional environments in which the
current state is defined by a pair of real valued coordinates
〈x, y〉 in [0, 1]2, the only goal is in position〈1, 1〉, and there
are four possible actions (left, right, up, and down) coded
with two bits; each action corresponds in a step of sizes in
the corresponding direction; actions that would take the sys-
tem outside the domain[0, 1]2 take the system to the nearest
position of the grid border. The system can startanywhere
but in the goal position and it reaches the goal position when
both coordinates are equal or greater than one. When the
system reaches the goal it receives 0, in all the other cases it
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Figure 2: XCSF inCorr(0.025)whenǫ0=0.01,γ = 0.95,
andγ = 0.99.

receives -0.5.

6.1 Empty Continuous Gridworlds

We begin from the simplest environment an empty grid-
world, Grid(s), that XCSF has to solve with a step size
s. Given the step-sizes the average number of steps to
reach the goal inGrid(s) is computed as(s + 1)/s (see
Appendix A for details). In the first experiment we apply
XCSF to Grid(0.05) (which requires an average of 21
steps to reach the goal) with different values of population
sizeN and the following parameters:ǫ0 = 0.005; β = 0.2;
α = 0.1; γ = 0.95; ν = 5; χ = 0.8, µ = 0.04, pexplr = 0.5,
θdel = 50, θGA = 50, and δ = 0.1; GA-subsumption
is on with θsub = 50; while action-set subsumption is
off; the parameters for integer conditions arem0 = 0.5,
r0 = 0.25 [17]; the parameterx0 for XCSF is1 [18].

Figure 3 compares the performance of XCSF whenN =
5000, N = 7500, andN = 10000. As can be noted, with
all the three values ofN , XCSF converges to the optimum;
more precisely, withN = 10000 the performance is per-
fectly optimal, while withN = 5000 andN = 7500, the
performance is slightly above the optimum. Noticeably, the
results also show that the decrease of population size has al-
most no influence in XCSF performance, with all the three
population sizes XCSF rapidly converges near the optimum.
The populations evolved are in all the three cases rather
compact and always below the 10% ofN ; more precisely,
final populations contain on the average, 991.8 classifiers
(the 9.91% ofN ) whenN = 10000, 791.3 classifiers (the
10.55% ofN ) whenN = 7500, and 606.5 classifiers (the
12.13% ofN ) whenN = 5000.

It is interesting to compare XCSF to tabular Q-learning.
For this purpose, before applying Q-learning, we need to
select an adequate discretization of the state space; we
tried different discretizations (e.g.,50 × 50, 75 × 75, and
100 × 100) and found that Q-learning would perform best
when the state space[0, 1]2 is discretized according to a
100× 100 grid; in coarser grids Q-learning would perform
much worse; note that in this case, the step sizes = 0.05
corresponds to a move of 5 positions on the discretized grid.
For this comparison, both XCSF and Q-learning use the



same explore-exploit strategy. Figure 4 compares the per-
formance of XCSF withN = 10000 to tabular Q-learning
applied with the100× 100 discretization. The performance
curve of XCSF covers only the very first section of the
plot, since XCSF converges to the optimum much faster
than the tabular Q-learning applied to the100 × 100 grid.
Noticeably, even after 250000 problems, the performance
of Q-learning is still slightly over the optimum; to reach
full optimality, Q-learning would need more accurate dis-
cretization of the state space, though the convergence would
be even slower. These results confirm what discussed in
Section 2.3: in problems involving continuous state spaces,
only fine grained discretizations allow the convergence to
optimal performance but this involves a very slow learning
process. With respect to generalization it is also interest-
ing to note that Q-learning applied toGrid(0.05) with a
100×100 discretization requires a Q-table of 40000 entries,
whereas XCSF requires less than 1000 classifiers.
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Figure 3: XCSF in Grid(0.05) for N ∈
{5000, 7500, 10000}; curves are averages over 10 runs.
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Figure 4: XCSF and the Q-learning inGrid(0.05).
Curves are averages over 10 runs.

6.2 Continuous Gridworld with Puddles

We now add obstacles to the empty continuous gridworld
discussed in the previous section. We follow the approach
in [2] and represent obstacles as areas in which there is an
additional cost for moving. These areas are called “pud-
dles” [2], since they actually create a sort of puddle in the

optimal value function. Figure 5 depicts thePuddles(s)
environment that is derived fromGrid(s) by adding two
puddles (the gray areas). When the system is in a puddle,
it receives an additional negative reward of -2, i.e., the ac-
tion has an additional cost of -2; in the area where the two
puddles overlap, the darker gray region, the two negative
rewards add up, i.e., the action has a total additional cost
of -4. Note that for this environment there is not a simple
expression of the average number of steps required to reach
the goal.
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Figure 5: ThePuddles(s) environment: the light gray
regions represent the two puddles; the dark gray region is
where the two puddles overlap; the goal is in position〈1, 1〉.

In the first experiment, we apply XCSF toPuddles(0.1)
and compare its performance with tabular Q-learning by
discretizing the state space according to the same100×100
grid used in the previous section. We set XCSF parame-
ters as follows:ǫ0=0.005,β = 0.2; α = 0.1; γ = 0.95;
ν = 5; χ = 0.8, µ = 0.04, pexplr = 0.5, θdel = 50,
θGA = 50, and δ = 0.1; GA-subsumption is on with
θsub = 50; while action-set subsumption is off; the param-
eters for integer conditions arem0 = 0.5, r0 = 0.25 [17];
the parameterx0 for XCSF is1 [18]. Figure 6 compares the
performance of XCSF inPuddles(0.1)whenN = 5000,
N = 7500, andN = 10000 with the performance of tabular
Q-learning obtained after 250000 learning problems, using
the100× 100 discretization. As can be noted, all the three
versions of XCSF converge rapidly to a performance that is
slightly better than tabular Q-learning. After 4000 learning
problems the performance of all the three versions of XCSF
is below Q-learning; note however that whenN = 5000
spikes in the performance of XCSF appear. Figure 7 com-
pares the performance of XCSF whenN = 10000 with
Q-learning performed on the100 × 100 discretization. As
in the case of the empty grid, XCSF converges much faster
than tabular Q-learning applied to the discretized versionof
the same environment. The solutions evolved by XCSF are
also rather compact, containing an average of 1270 classi-
fiers (the 12.7% ofN ) whenN = 10000, 1027.5 classifiers
(the 13.7% ofN ) whenN = 7500, and 420 classifiers (the
8.4% ofN ) whenN = 5000.

In the second experiment, we extend previous results and
we apply XCSF toPuddles(0.05)with the same settings
used in the previous experiment. Figure 8 compares the per-
formance of XCSF inPuddles(0.05) whenN = 5000,
N = 7500, andN = 10000 with the performance of tabular
Q-learning obtained after 250000 learning problems, using



the 100 × 100 discretization. Figure 9 compares the per-
formance of XCSF whenN = 10000 with Q-learning per-
formed on the100 × 100 discretization. Figure 11 reports
an example of optimal value function evolved by XCSF for
Puddles(0.05); to report the value function we sample
the state space with a resolution of 0.05. Figure 10 reports
an example of value function developed by Q-learning on
the100× 100 discretization.

The results forPuddles(0.05) confirm the ones obtained
for Puddles(0.1). XCSF can rapidly converge to a so-
lution that appears to be fully optimal when a sufficient
number of classifiers is provided (N = 10000); while with
fewer classifiers XCSF performance appears slightly worse
and sometimes more noisy evidencing some spikes. On
the other hand, on the100 × 100 discretization of the state
space, the convergence of tabular Q-learning is much slower
than that of XCSF. Note that the convergence of Q-learning
mainly depends on the complexity of the state space and
not on the problem itself. In fact, the convergence speed
of Q-learning inPuddles(0.1) is almost slower than in
Puddles(0.05), although the latter environment, with re-
spect to the system actions, is larger than the former one.
Also in Puddles(0.05) the solutions evolved by XCSF
are rather compact in that they contain an average of 1720
classifiers (the 17.2% ofN ) whenN = 10000, 892.5 classi-
fiers (the 11.9% ofN ) whenN = 7500, and 410 classifiers
(the 8.2% ofN ) whenN = 5000.

Noticeably, even if for XCSFPuddles(0.05) is virtually
four timeslarger thanPuddles(0.1) (with a smaller step
size more actions are required to reach the goal position),
the populations evolved by XCSF in the two cases contain
on the average the same number of classifiers. For instance,
whenN = 10000 in Puddles(0.1) the evolved solutions
contain an average of 1270 classifiers, inPuddles(0.05)
the evolved solutions contain an average of 1700 classi-
fiers. I.e., XCSF has been able to partition the state space
so as to produce effective generalizations, more or less in-
dependently from the action effect. In contrast, if we com-
pare the performance of Q-learning inPuddles(0.1) and
Puddles(0.05) (Figure 7 and Figure 9, respectively) we
note that the convergence of Q-learning is slightly slower.
This because with a large step size the exploration of the
state space is less effective (the systems jumps around too
much). Since tabular Q-learning has no generalization ca-
pabilities, the reduction of exploration inPuddles(0.1)
corresponds to a decrease in the convergence speed. In con-
trast, XCSF can exploit effective generalizations to extend
the evolved knowledge beyond the highly explored areas.

7 Conclusions

We have applied XCSF to multistep problems involving
continuous inputs. We have presented results showing that
XCSF can easily converge toward optimal performance
while also producing compact representation of the solu-
tions. The comparison with tabular Q-learning adapted to
continuous domains shows that XCSF can converge faster
than such tabular methods and requires less memory to store
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Figure 7: XCSF and Q-learning inPuddles(0.1). Curves
are averages over 10 runs.

the final solutions. Noticeably, XCSF appears to be rather
robust: even if the number of available classifiers is dras-
tically reduced (e.g., it is halved), XCSF can still converge
near to optimal performance. Future research directions in-
clude the extension to domains involving noise and to more
difficult multistep problems.
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A Optimal Average Performance

We now compute the average number of steps required
by an optimal policy in the continuous linear corridor
Corr(s) and in the 2D continuous gridworld.

A.1 The linear corridor

To compute the optimal average number of steps for
Corr(s) we first compute the minimum number of steps
to reach the goal position starting from positionx ∈ [0, 1),
as

⌈

1− x

s

⌉

, (7)

Now the average number of step can be obtained integrating
Equation 7 on all the input space:

steps∗ =

∫ 1

0

⌈

1−x
s

⌉

dx
∫ 1

0
dx

(8)

Applying the substitutionz = 1−x
s

and considering that
∫ 1

0 dx = 1, Equation 8 becomes:

steps∗ = s

∫ 1

s

0

⌈z⌉ dz (9)

Integral in Equation 9 can be easily solved using the additive
property of integrals:

steps∗ = s

1

s
−1

∑

i=0

∫ i+1

i

⌈z⌉ dz = s

1

s
−1

∑

i=0

∫ i+1

i

(i + 1)dz

= s

1

s
−1

∑

i=0

(i + 1) = s ·
1
s
· (1

s
+ 1)

2

=
(1

s
+ 1)

2
=

(s + 1)

2s
(10)

where we make the hypothesis2 that 1
s
∈ IN.

A.2 The Empty 2D Continuous Grid

The extension toGrid(s) is straightforward. In this case,
the minimum number of steps to reach the goal starting from
position〈x, y〉 is:

⌈

1− x

s

⌉

+

⌈

1− y

s

⌉

. (11)

As in the previous case, the average number of step can be
obtained integrating Equation 11 on all the input space:

steps∗ =

∫ 1

0

∫ 1

0

(⌈

1−x
s

⌉

+
⌈

1−y
s

⌉)

dxdy
∫ 1

0

∫ 1

0 dxdy
. (12)

Considering that
∫ 1

0

∫ 1

0
dxdy = 1 and that the integral at

numerator of Equation 12 can be separated in the two vari-
ables,steps∗ in the empty continuous gridworld is the dou-
ble of the one obtained for the corridor:

steps∗ =
s + 1

s
(13)

2This assumption it is not strict and it can be easily relaxed.In fact if
1

s
/∈ IN Equation 9 can be written as,

steps∗ = s

∫ ⌊ 1

s
⌋

0

⌈z⌉ dz +

∫ 1

s

⌊ 1

s
⌋

⌈

1

s

⌉

dz,

and thereforesteps∗ =
⌊ 1

s
+1⌋
2

+
⌈

1

s

⌉

·
(

1

s
−

⌊

1

s

⌋)


