XCS with Computed Prediction in Continuous Multistep Environments

Pier Luca Lanzi'*, Daniele Loiacond, Stewart W. Wilson**, David E. Goldberg*
t Artificial Intelligence Laboratory, Dip. di Elettronica eformazione
Politecnico di Milano — Milano 20133, Italy
*1llinois Genetic Algorithms Laboratory, Dept. of Generaldineering
University of lllinois at Urbana-Champaign, Urbana, Itis, USA
tPrediction Dynamics, Concord, MA 01742, USA
lanzi@elet.polimi.it, loiacono@elet.polimi.it, wils@prediction-dynamics.com, deg@illigal.ge.uiuc.edu

Abstract- We apply XCS with computed prediction space [10]. Unfortunately, such discretization process re
(XCSF) to tackle multistep reinforcement learning prob-  quires large tabular representations and most important, i
lems involving continuous inputs. In essence we use large multistep problems, it is source of slow convergence.
XCSF as a method of generalized reinforcement learn- In contrast, XCSF can be directly applied to continuous
ing. We show that in domains involving continuous in- domains [19]. Furthermore, the first results on a simple
puts and delayed rewards XCSF can evolve compact single-stepproblem involving continuous inputs (the frog
populations of accurate maximally general classifiers problem [19]) demonstrate that XCS with computed pre-
which represent the optimal solution to the target prob-  diction can (i) evolve populations which represent acaurat
lem. We compare the performance of XCSF with that of approximations of the problem solutions, (ii) providing ef
tabular Q-learning adapted to the continuous domains fective generalizations by evolving classifiers which gove
considered here. The results we present show that XCSF large sections of the problem.

can converge much faster than tabular techniques while In this paper, we apply XCSF to a set of multistep prob-

producing more compact solutions. Our results also sug- . L

N L lems, taken from the reinforcement learning literature [2]
gest that when exploration is less effective in some areas involving continuous inouts. The results we present show
of the problem space, XCSF can exploit effective gen- 9 puts. P

eralizations to extend the evolved knowledge beyond the f[hat XCSF can rap@l_y evolv&_a populations of e}ccurate max-
: . imally general classifiers which represent optimal sohgio
frequently explored areas. In contrast, in the same situa-

. . of the considered problems. We compare XCSF with a ver-
tions, the convergence speed of tabular Q-learning wors- . ; .
ens sion of tabular Q-learning adapted to the continuous do-

mains considered here. For this purpose, we follow the typ-
. ical approach suggested in the reinforcement learning lit-
1 Introduction eraure [10]. First, we empirically determine an adequate

discretization of the problem space (in this cagé@x 100

Computed prediction represents a major advance in Ieargr'id). Then we apply tabular Q-learning on the discretized

ing classifier system research. XCS with computed predlv'ersion of the problems considered and compare the results

:i(;)g\l[;ls’elp?'ecleg\}\/’isoer I?;Ce:irp:,[ f;sagzepnolr; r?(?rr:igl ggglrigg#;\_/vith those obtained with XCSF on the original problem.
tions of functions [4, 5]: (il to the learning of Boolean fun Our results show that, tabular Q-learning applied to the dis

. . : T L cretized problem domain tends to reach near optimal solu-
tions using piecewise linear approximation, as well as per-

: ; e .- tons very slowly while also requiring large Q-tables. In
ceptron based and sigmoid based approximations [6];diii) t y yw d g 'arg Q i
. . ) . .7 contrast, XCSF rapidly converges to optimal solutions that
solve multistep reinforcement learning problems invadyvin

integer inputs and delayed rewards [7]; and also (iv) toesolvreqUIre much less space than the corresponding Q-tables.

single-steproblems involving continuous inputs [19]. . .
. o 2 Reinforcement Learning
We now take XCS with computed prediction even further

and apply it tomultistepreinforcement learning problems Reinforcement learning is defined as the problem of an
involving continuous inputs. These types of problems remgentthat learns to perform a task througfal and error
resent an important testbed for XCSF and for learning clafteractionswith an unknowrenvironmentvhich provides
sifier systems in general. Tabular reinforcement learninigedback in terms of numericedward [10]. The agent and
techniques such as Q-learning [13] can be applied to tliee environment interact continually. At tintethe agent
simple multistep problems involving integer inputs, likesenses the environmentto be in statebased on its current
those considered in [7]. However, theannotbe ap- sensory inpuk; the agent selects an actiepin the set4
plied to problems involving continuous inputs, unless finef the possible actions; then actian is performed in the
grained discretization is applied to preprocess the inpgnvironment. Depending on the state on the actior,
performed, and on the effect af in the environment, the
1XCs with computed prediction was first introduced as XCSRB{fo  agent receives acalar rewardr;;; and a new state;, ;.
approximate functions defined over integer domains and éaiended to  The agent’s goal is tmaximizethe amount of reward it re-

XCS-LP in [19] for single step problems defined over contimidomains . ] -
involving discrete actions. In this paper we generally imertame XCSF ceives from the environmem the long run or expected

to abstract the general concept of computed prediction fremspecific  Payoff[10].
implementation.




2.1 Generalized Reinforcement Learning time; on the other hand, their effectiveness relies heavily
on the choice of the feature vectoy, in addition, they are
\?imited in that they cannot express interactions betwean fe
. ; ures. To improve linear methods, a number of approaches
function Q(,-) (or a state value functiofr(-)) that maps b . N, ot appro
: : . : have been developed in which linear approximation is en-
state-action pairs (or states) into the correspondingatede . . .
: ; riched with advanced representation of state features to al
payoff values. Reinforcement learning methods assume : . )
) : : [ow the expression of relations between input features, e.g
that action-value functions (and value functions) areeepr . . ; . . .
: -~ coarse coding, tile coding, radial basis functions, and kan
sented byook-up tablesvith one entry for each state-action .
) . erva coding [10].
pair (or one entry for each state in the case of value func-
tions). However, look-up tables easily become infeasible i 3C
problems involving many states. Large look-up tables rez-' onvergence
quire more memory but, most important, they require morghe convergence of generalized reinforcement learning is
on-line experience to converge. In addition, look-up tablea complex issue, still poorly understood (see [8] for a re-
cannot be applied to problems involving continuous stateent discussion). Most of the approximated reinforcement
spaces. When continuous inputs are involved the only agearning algorithms are not known to converge and there is
proach to apply tabular techniques consists of applying @o known way to extend the convergence proofs for tabular
discretization step to preprocess the inputs before Iqok-ueinforcement learning to the case of function approxima-
tables can be used. However, this approach raises some sgjis. Even if function approximators proved successful in
ous issues: while a coarse-grained discretization might prsolving challenging reinforcement learning tasks [11}; ye
vent the learner from reaching the optimal performance, ahey have been shown to be generally unstable, even in sim-
the other hand, a fine-grained discretization might lead tole problems [1]. In addition there are a large number of
large tables and slow convergence. To cope with the corfactors that influence the performance of function approxi-
plexity of large problems the agent must be ablge¢aeral- mation approaches, such as: the algorithm (e.g., Q-legrnin
izeover its experiences, i.e., to produce a good approximar SARSA [10]), the approximation used (e.g., linear, or
tion of the optimal value function from a limited number oftile coding), or the window used for the update (e.g., eli-
experiences, using a small amount of storage. gibility traces). For instance, [12] suggests (in the cdse o

In reinforcement learning generalization is implemented bQ-Iearnmg [10]), that the approximators induce noise @n th

methods of function approximation: the action-value funcdction-value function so that the system can overestimate
tion is not represented as a table but as a function pararT'll?—e expected payoff even when noise has zero mean.
eterized with a vectof. This means that at time step

the value associated to a particular state-action pairofor 8 The XCSF Classifier System

a particular state) depends on the current parameter vector ) _ .

9,. The action-value functio®(-, -) is viewed as a function XCSF extends XCS in three respects [18]: (i) classifiers

parameterized by a vect@that maps state-action pairs intocond'tlons_ are extenpl_ed for numerical Inputs, as done for
real numbers (i.e., the expected payoff) XCSI [17]; (i) classifiers are extended with a vector of

weightsw, that are used to compute classifier’s prediction;
finally, (iii) the weightsw are updated instead of the classi-
fier prediction.

These are the most widely used function apprommaﬂoelassiﬁers_ In XCSF, classifiers consist of a condition, an

methods. I_n gradient-descent methods, the parameter V%\%’[ion, and four main parameters. The condition specifies
tor has a fixed number of real-valued componefifs—=

. ) >~ which input states the classifier matches; it is represented
(0:(1)...0,(n)), while the target action-value fungnon is by a concatenation of interval predicatést; — (L, u;),
approximated by a smooth differentiable functiordpfor  \yherey; (“lower”) andu; (“upper’) are reals (whereas in the
allthe possible state-action pairs. Attime steparameters qyigina| XCSF they were integers [18]). The action speci-
0, are adjusted to minimize the mean-squared eMBE)  fio5 the action for which the payoff is predicted. The four

betweeq the new estimate qf the action-value function _‘”"'ga)érameters are: the weight vectdr used to compute the
the previous estimate. Gradient descent methods do this g ssifier prediction as a function of the current input; the

adjusting the parameter vector by a small amountin the diyegiction erroe, that estimates the error affecting classifier
rection that would reduce the error on that example. prediction; the fitnes#” that estimates the accuracy of the
Among gradient-descent approaches, linear methods refassifier prediction; the numerosityim a counter used to
resent probably the most important case in reinforcemepdresent different copies of the same classifier. The weigh
learning [2, 9, 10]. With linear methods, value functions,ectori has one weighty; for each possible input, and an

are represented by linear functions of the vector paramygitional weightu, corresponding to a constant inpey,
eter0,. For any states, a vector ofn features,¢s = ihatis set as a parameter of XCSF.

(¢s(1),...,0s(n)) is extracted, the approximated value

function fors is simply computed agtqgs while the gradi- Performance Component. XCSF works as XCS. At each

ent simply corresponds to the vector Linear methods are iMe stept, XCSF builds amatch sefM] containing the
very computationally efficient in terms both of space anglassifiers in the population [P] whose condition matches

In reinforcement learning the agent learns how to max
mize the incoming reward by developing an action-valu

2.2 Gradient-Descent Methods



the current sensory input; if [M] contains less thar,,.,, 4 Design of Experiments

actions,coveringtakes place; covering is controlled by the . .

parameter, and it works as in XCSI [17, 18] but consid- 10 apply XCSF to continuous multistep problems, we fol-
covering classifiers is randomly initialized with valuesrfr ~ ture [15]. Each experiment consists of a number of prob-

[-1,1]; all the other parameters are initialized as in XCS. lems that the system must solve. Each problem is either a
learning problem or atestproblem. Inlearningproblems,

F_or.each actiom; in [M], XCSF computes ths_ystem P the system selects actions randomly from those represented
d|f:t|on. Asin XCS, in XCSF thesystem predictionf action in the match set. Itestproblems, the system always selects
als compgted by the fltn_ess—vv_e|ghted average 9f all matc'f'ﬁe action with highest prediction. The genetic algoritlsm i
ing classifiers that specify actian In contrast with XCS, nabled only duringearning problems, and it is turned off

in XCSF classifier prediction is computed as a function Oguringtestproblems. The covering oioerator is always en-

the current state, and the cla53|_f|e_r vector We'g_m Ac- abled, but operates only if needed. Learning problems and

cordingly, in XCSF system prgd|ct|on IS alfunct|on Of_ bOthtest problems alternate. The reward policy we use is the one
the current state and the actioru. FoIIOW|_ng_a notation ,se in the reinforcement learning literature when stuglyin
similar to_ [31, the system prediction for actiafin states, linear approximators [2]. When XCSF solves the problem
P(s¢,a), is defined as: correctly, reaching the goal position, it receives a cartsta

ZC|€[M]|a cl.p(sy) x cl.F reward equal to O; otherwise it receives a constant reward

P(st,a) = S A F (1) equal to -0.5. The performance is computed as the aver-

cle[Mlla = age number of steps needed to reach goal or food positions

wherecl is a classifier, [M], represents the subset of clas-during the last 100 test problems. To speed up the experi-

sifiers in [M] with actiona, cl.F is the fitness otl; cl.p(s;)  ments, problems can last at most 1000 steps; when this limit

is the prediction otl in states;, which is computed as: is reached the problem stops even if the system did not reach

B ‘ . the goal. All the statistics reported in this paper are ayeda
cl.p(sy) = clawg X 0 + >Zocl.wl X s¢(i) @ overio experiments,

wherecl.w; is the weightw; of cl. The values of?(s;,a) Ve applied XCSF to two classes of real valued multistep
form theprediction array Next, XCSF selects an action to €nvironments: the one dimensional linear corridor and the
perform. The classifiers in [M] that advocate the selectedD _continuous gridworldenvironments firstly introduced
action are put in the curreaction sefA]; the selected ac- " [2].

tion is sent to the environment and a rewarid returned to

the system together with the next input state; 5 The Continuous Linear Corridor

Reinforcement Component. XCSF uses the incoming re-
ward to update the parameters of classifiers in action
[A] -1 corresponding to the previous time step; 1. At
time stept, the expected payoff is computed as:

We start from a very simple environment, a one dimensional
Sfdear corridoCor r (9 , inwhich the system inputs are de-
fined over the intervalo, 1], the goal is in positiori, and
there are two possible actiongeft, coded with 0, which
P =r_1+ymax P(s,a) (3) corresponds to a change of-$§” in the system position
acA (when the system tries to move below position 0, the system
wherer_; is the reward received at the previous time stefreaches position O}ight, coded with 1, which corresponds
The expected payoff is used to update the weight vectorig a change of 4+s” in the system position. The step-size
w of the classifier in [A]; using amodified delta rulg14].  parametes determines the size of the environment with re-
For each classifiesl € [A]_1, each weightl.w; is adjusted spect to the system movement capabilities, the smaller the
by a quantityAw; computed as: s, the larger the environment, the larger thethe smaller
o Ui . the environment. The system can start anywhere but in the
Aw; = [s¢—1(2)]? (P = clp(si—1))si-1(7) “) goal position (i.e., in the real interfl, 1)) and it reaches the

wheren, is the correction rate an, 1|2 is the norm the goal when moving iri or beyondl (i.e., the goal is reached

input vectors, -y, (see [18] for details). The valuesw; are g tQthnyf;Thizstlﬂzn Ics;eﬁ ri(t%:teecre?\;eesq;::éhraer\]/vvgrr:jer;r: haell the
used to update the weights of classifiéas: y 9 '

other cases it receives).5. Given the step-sizethe aver-
cl.w; — cl.w; + Aw; (5) age number of steps to reach the goal position is computed

Then the prediction erraris updated as: as(s +1)/2s (see Appendix A).

cle — cle + B(|P — cl.p(si_1)| — cl.e) (6) In the firsF experime_nt we apply XCSF to th_e continuous
corridor with a step size of 0.0&pr r ( 0.05) , with the fol-
Finally, classifier fitness is updated as in XCS. lowing parameter settingsy = 400, o = 0.01, 5 = 0.2;

Discovery Component. In XCSF, the genetic algorithm @ = 0.1; v =5; x = 0.8, it = 0.04, peyyr = 0.5, aer = 50,
works as in XCSI [17]; in the version used here the mutatiofica = 50, andd = 0.1; GA-subsumption is on with
of classifier conditions, controlled by parametgris based s« = 50; while action-set subsumption is off; the param-
on real values as in [19] instead of integers asin [17].  eters for real-valued conditions aney = 0.5, 7y = 0.25;
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Figure 1: XCSF inCorr ( 0.05) whene;=0.01,v = 0.9, Figure 2: XCSF irCor r ( 0.025) wheney=0.01,y = 0.95,
andy = 0.95. andy = 0.99.

the parametex, for XCSF is1 [18]. Figure 1 compares receives -0.5.
the performance of XCSF on tt@or r ( 0.05) for two val-
ues of discount factory = 0.9 andy = 0.95. As shown, 6.1 Empty Continuous Gridworlds

when~ = 0.95 XCSF reaches optimal performance whiIeW beain f the simplest . t tv arid
with v = 0.9 the performance of XCSF is slightly over € begin from the simplest environment an emply grid-

the optimum. With respect to the population size, in botﬁvorg_’ G Itﬂ( S)t, that_ XCtiF has to solve vgnth afst;ep S'ie
cases the final populations contain less than 40 classifief’s: hlvtfln € Is_g-_s:jze © averagte c?um erlo s'eps 1o
when~ = 0.9, the final populations contain an average of€ach the goalin i « (9 is compute asss_ +1)/s (see

36.4 classifiers (the 9.09% of), when~ — 0.95 the final Appendix A for details). In the first experiment we apply

populations contain an average of 34.2 macroclassifiegs (tﬁ(CSF t0G'i d(0.05) (Whi.Ch rgquires an average of 2.1
8.55% of V). steps to reach the goal) with different values of population

size N and the following parametersy = 0.005; 5 = 0.2;
In the second experiment, we reduce the step siftem o = 0.1; 7 = 0.95; v = 5; x = 0.8, it = 0.04, Peyyy = 0.5,
0.05 to 0.025, making the environment larger with respecty,;,;, = 50, g4 = 50, andd = 0.1; GA-subsumption
to the system actions. Figure 2 reports the performance @gf on with 6,,, = 50; while action-set subsumption is
XCSF inCor r (0.025) for two values of the discount fac- off; the parameters for integer conditions arg = 0.5,
tor,v = 0.95 and~y = 0.99. In both cases, the performancer, = 0.25 [17]; the parameter, for XCSF is1 [18].
of XCSF rapidly converges towards the optimum, but th

performance is fully optimal only foy = 0.99. Likewise = v .
to the previous experiment, also in this case final popula?poo’ N = 7500, andV = 10000. As can be noted, with

tions contain on the average less than 40 classifiers: 37%;?;252 (\elli/luv?/istriff\[ ’fciﬁ(l):ogi?]\(/ee;r)geer?otromt;]r?cc;pitgr;uer?;

0 — 0 ’ - b
(the 9'38_A) ofiv) wheny = 0.95, 28.36 (the 7.09% ON.) fectly optimal, while withV = 5000 and N = 7500, the
when~y = 0.99. As the~ approaches to one, the optimal ¢ i< sliahtly ab h i Noticeably. th
value function for the continuous corridor approachese lipPerformance Is slightly above the optimum. INoticeably, the
(see [7]) and thus is better approximated by XCSF. ACCOfd—eSUltS also show that the decrease of population size has al

ingly, on the average the evolved solutions are smaller whdost no mfIgence n XCSF. performance, with all the _three
~ = 0.99. population sizes XCSF rapidly converges near the optimum.

The populations evolved are in all the three cases rather
. . compact and always below the 10% &f more precisely,
6 The 2D Continuous Gridworlds final populations contain on the average, 991.8 classifiers

This class of environments has been introduced in [2] whe he 9.91% ofN) when.V = 10000, 791.3 cIassq‘lgrs (the
: : . ; . . .55% of N) when N = 7500, and 606.5 classifiers (the
studying reinforcement learning with function apprOX|ma-12 13% ofN) whenN' — 5000
tors. They are two dimensional environments in which the™ o '
current state is defined by a pair of real valued coordinatédssis interesting to compare XCSF to tabular Q-learning.
(z,y) in [0, 1]?, the only goal is in positior1, 1), and there For this purpose, before applying Q-learning, we need to
are four possible actions (left, right, up, and down) codesdelect an adequate discretization of the state space; we
with two bits; each action corresponds in a step of siie  tried different discretizations (e.ghp x 50, 75 x 75, and
the corresponding direction; actions that would take tise sy100 x 100) and found that Q-learning would perform best
tem outside the domain, 1]? take the system to the nearestwhen the state spadé, 1)2 is discretized according to a
position of the grid border. The system can starywhere 100 x 100 grid; in coarser grids Q-learning would perform
butin the goal position and it reaches the goal position whenuch worse; note that in this case, the step size 0.05
both coordinates are equal or greater than one. When tlterresponds to a move of 5 positions on the discretized grid.
system reaches the goal it receives 0, in all the other case&or this comparison, both XCSF and Q-learning use the

%igure 3 compares the performance of XCSF whén=



same explore-exploit strategy. Figure 4 compares the paptimal value function. Figure 5 depicts tRaddl es( s)
formance of XCSF withV = 10000 to tabular Q-learning environment that is derived fro@ i d(s) by adding two
applied with thel00 x 100 discretization. The performance puddles (the gray areas). When the system is in a puddle,
curve of XCSF covers only the very first section of thdt receives an additional negative reward of -2, i.e., the ac
plot, since XCSF converges to the optimum much fastdion has an additional cost of -2; in the area where the two
than the tabular Q-learning applied to th@0 x 100 grid. puddles overlap, the darker gray region, the two negative
Noticeably, even after 250000 problems, the performaneewards add up, i.e., the action has a total additional cost
of Q-learning is still slightly over the optimum; to reachof -4. Note that for this environment there is not a simple
full optimality, Q-learning would need more accurate disexpression of the average number of steps required to reach
cretization of the state space, though the convergenceiwouhe goal.

be even slower. These results confirm what discussed in

Section 2.3: in problems involving continuous state spaces

only fine grained discretizations allow the convergence to

optimal performance but this involves a very slow learning

process. With respect to generalization it is also interest y
ing to note that Q-learning applied @& i d( 0.05) with a

100 x 100 discretization requires a Q-table of 40000 entries,

whereas XCSF requires less than 1000 classifiers.

0

0 X 1

40

XCSF N=10000 ———
§§§5§M§§23§ — Figure 5: ThePudd! es(s) environment: the light gray
regions represent the two puddles; the dark gray region is

where the two puddles overlap; the goal is in positib).
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In the first experiment, we apply XCSF Ruddl es( 0.1)
wr 1 and compare its performance with tabular Q-learning by
0 1 discretizing the state space according to the sifiex 100
grid used in the previous section. We set XCSF parame-
ters as follows:¢;=0.005,5 = 0.2; « = 0.1; v = 0.95;
00 2600 4600 6600 8600 10600 12600 14600 162)00 18600 v = 5 X = 0.8, 0 = 0.04, DPexpr = 0.5, 04e1 = 50,
NUMBER OF LEARNING PROBLEMS 0ca = 50, andd = 0.1; GA-subsumption is on with
Figure 3: XCSF in Grid(0.05) for N c  Osup = 50_; while actiopjset subsumption is off; the param-
{5000, 7500, 10000}; curves are averages over 10 runs. ~ €ters for integer conditions are = 0.5, ro = 0.25 [17];
the parameter, for XCSF is1 [18]. Figure 6 compares the
performance of XCSF iRuddl es( 0.1) whenN = 5000,
T Ty S— N = 7500, andN = 10000 with the performance of tabular
| L f— | Q-learning obtained after 250000 learning problems, using
the 100 x 100 discretization. As can be noted, all the three
L 1 versions of XCSF converge rapidly to a performance that is

AVERAGE NUMBER OF STEPS TO GOAL
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slightly better than tabular Q-learning. After 4000 leami
problems the performance of all the three versions of XCSF
is below Q-learning; note however that whéh = 5000
spikes in the performance of XCSF appear. Figure 7 com-
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E
3

20 -

15 -

AVERAGE NUMBER OF STEPS TO GOAL

wor 1 pares the performance of XCSF whé&h = 10000 with

st 1 Q-learning performed on thE#)0 x 100 discretization. As

. ‘ ‘ ‘ ‘ in the case of the empty grid, XCSF converges much faster
0 50000 100000 150000 200000 than tabular Q-learning applied to the discretized version

NUMBER OF LEARNING PROBLEMS . .
the same environment. The solutions evolved by XCSF are

Figure 4: XCSF and the Q-learning i@ i d(0.05). also rather compact, containing an average of 1270 classi-

Curves are averages over 10 runs. fiers (the 12.7% ofV) when N = 10000, 1027.5 classifiers
(the 13.7% ofN) when N = 7500, and 420 classifiers (the
8.4% of N) when N = 5000.

6.2 Continuous Gridworld with Puddles . :
In the second experiment, we extend previous results and

We now add obstacles to the empty continuous gridworldie apply XCSF tdPudd| es( 0.05) with the same settings
discussed in the previous section. We follow the approaalsed in the previous experiment. Figure 8 compares the per-
in [2] and represent obstacles as areas in which there is Emmmance of XCSF irPuddl es( 0.05) whenN = 5000,
additional cost for moving. These areas are called “pudV = 7500, andN = 10000 with the performance of tabular
dles” [2], since they actually create a sort of puddle in th€-learning obtained after 250000 learning problems, using



the 100 x 100 discretization. Figure 9 compares the per- 2 L v-yvary v —
formance of XCSF whedV = 10000 with Q-learning per- o —
formed on thel00 x 100 discretization. Figure 11 reports  HEARNING (1007100) AFTER 250000 PROBLEMS —
an example of optimal value function evolved by XCSF for
Puddl es(0.05); to report the value function we sample
the state space with a resolution of 0.05. Figure 10 reports
an example of value function developed by Q-learning on
the100 x 100 discretization.

15

10

The results foPuddl es( 0.05) confirm the ones obtained
for Puddl es(0.1) . XCSF can rapidly converge to a so-
|Ut|0n that appears tO be fu”y Optlmal When a SUﬂ:ICIGnt 00 2(:;00 4600 6[;00 8(;00 10600 12600 14‘000 161‘300 18600
number of classifiers is providedV(= 10000); while with NUMBER OF LEARNING PROBLEMS

fewer classifiers XCSF performance appears slightly wor@

AVERAGE NUMBER OF STEPS TO GOAL

. . . . . gure 6: XCSF inPuddl es(0.1). Curves are averages
and sometimes more noisy evidencing some spikes.

the other hand, on thE)0 x 100 discretization of the state ver 10 runs.

space, the convergence of tabular Q-learning is much slower 20 ‘ ‘ ‘ ‘

than that of XCSF. Note that the convergence of Q-learning Q-LEARRING (1006100) ———
mainly depends on the complexity of the state space and )
not on the problem itself. In fact, the convergence speed
of Q-learning inPuddl es( 0.1) is almost slower than in
Puddl es( 0.05), although the latter environment, with re-
spect to the system actions, is larger than the former one.
Also in Puddl es( 0.05) the solutions evolved by XCSF
are rather compact in that they contain an average of 1720
classifiers (the 17.2% d@¥) whenN = 10000, 892.5 classi-
fiers (the 11.9% ofV) whenN = 7500, and 410 classifiers
(the 8.2% ofN) whenN = 5000. %o 50000 100000 150000 200000

NUMBER OF LEARNING PROBLEMS
Noticeably, even if for XCSRPudd| es( 0.05) is virtually _ _
four timeslarger tharPudd! es( 0.1) (with a smaller step Figure 7: XCSF and Q-learning Puddl es(0.1) . Curves
size more actions are required to reach the goal positiorj€ averages over 10 runs.
the populations evolved by XCSF in the two cases contain
on the average the same number of classifiers. For ipstan% final solutions. Noticeably,
whenN = 10000 in Puddl es( 0.1) the evolved solutions
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XCSF appears to be rather

. /| - robust: even if the number of available classifiers is dras-
contain an average of 1270 classifiersPudl es( 0.05) tically reduced (e.g., it is halved), XCSF can still converg

the evolved solutions contain an average of 1700 clasgjp,;'to optimal performance. Future research directions in

fiers. 1.e., XCSF has been able to partition the state Spagg,qe the extension to domains involving noise and to more
so as to produce effective generalizations, more or less Bitficult multistep problems

dependently from the action effect. In contrast, if we com-
pare the performance of Q-learningfadd| es( 0.1) and
Puddl es(0.05) (Figure 7 and Figure 9, respectively) WeAcknowIedgments
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We have applied XCSF to multistep problems involving_., ..
continuous inputs. We have presented results showing t {bllography

XCSF can easily converge toward optimal performance[1] J. Boyan and A. Moore.
while also producing compact representation of the solu-
tions. The comparison with tabular Q-learning adapted to
continuous domains shows that XCSF can converge faster
than such tabular methods and requires less memory to store

Generalization in rein-
forcement learning: Safely approximating the value
function. In Proceedings of Neural Information
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Figure 9: XCSF and Q-learning iffuddl es(0.05).
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Curves are averages over 10 runs.
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. . Figure 11: An example of value function evolved by XCSF
Figure 8: XCSF irPudd| es(0.05) . Curves are averages ¢, p,dd| es(0.05).

over 10 runs.
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