
What Is a Learning Classifier System?

A learning classifier system (LCS) is an adaptive system that learns to perform the best
action given its input. By “best” is generally meant the action that will receive the most re-
ward or reinforcement from the system’s environment. By “input” is meant the environment
as sensed by the system, usually a vector of numerical values. The set of available actions
depends on the system context: if the system is a mobile robot, the available actions may be
physical: “turn left”, “turn right”, etc. In a classification context, the available actions may
be “yes”, “no”, or “benign”, “malignant”, etc. In a decision context, for instance a financial
one, the actions might be “buy”, “sell”, etc. In general, an LCS is a simple model of an
intelligent agent interacting with an environment.

An LCS is “adaptive” in the sense that its ability to choose the best action improves with
experience. The source of the improvement is reinforcement—technically, payoff —provided
by the environment. In many cases, the payoff is arranged by the experimenter or trainer
of the LCS. For instance, in a classification context, the payoff may be 1.0 for “correct”
and 0.0 for “incorrect”. In a robotic context, the payoff could be a number representing
the change in distance to a recharging source, with more desirable changes (getting closer)
represented by larger positive numbers, etc. Often, systems can be set up so that effective
reinforcement is provided automatically, for instance via a distance sensor. Payoff received
for a given action is used by the LCS to alter the likelihood of taking that action, in those
circumstances, in the future. To understand how this works, it is necessary to describe some
of the LCS mechanics.

Inside the LCS is a set—technically, a population—of “condition-action rules” called clas-

sifiers. There may be hundreds of classifiers in the population. When a particular input
occurs, the LCS forms a so-called match set of classifiers whose conditions are satisfied by
that input. Technically, a condition is a truth function t(x) which is satisfied for certain
input vectors x. For instance, in a certain classifier, it may be that t(x) = 1 (true) for
43 < x3 < 54, where x3 is a component of x, and represents, say, the age of a medical pa-
tient. In general, a classifier’s condition will refer to more than one of the input components,
usually all of them. If a classifier’s condition is satisfied, i.e. its t(x) = 1, then that classifier
joins the match set and influences the system’s action decision. In a sense, the match set
consists of classifiers in the population that recognize the current input.

Among the classifiers—the condition-action rules—of the match set will be some that
advocate one of the possible actions, some that advocate another of the actions, and so
forth. Besides advocating an action, a classifier will also contain a prediction of the amount
of payoff which, speaking loosely, “it thinks” will be received if the system takes that action.
How can the LCS decide which action to take? Clearly, it should pick the action that is
likely to receive the highest payoff, but with all the classifiers making (in general) different
predictions, how can it decide? The technique adopted is to compute, for each action, an
average of the predictions of the classifiers advocating that action—and then choose the
action with the largest average. The prediction average is in fact weighted by another
classifier quantity, its fitness, which will be described later but is intended to reflect the
reliability of the classifier’s prediction.

The LCS takes the action with the largest average prediction, and in response the environ-
ment returns some amount of payoff. If it is in a learning mode, the LCS will use this payoff,
P , to alter the predictions of the responsible classifiers, namely those advocating the chosen
action; they form what is called the action set. In this adjustment, each action set classi-

fier’s prediction p is changed mathematically to bring it slightly closer to P , with the aim of
increasing its accuracy. Besides its prediction, each classifier maintains an estimate ǫ of the
error of its predictions. Like p, ǫ is adjusted on each learning encounter with the environment
by moving ǫ slightly closer to the current absolute error |p − P |. Finally, a quantity called
the classifier’s fitness is adjusted by moving it closer to an inverse function of ǫ, which can
be regarded as measuring the accuracy of the classifier. The result of these adjustments will
hopefully be to improve the classifier’s prediction and to derive a measure—the fitness—that
indicates its accuracy.

The adaptivity of the LCS is not, however, limited to adjusting classifier predictions. At
a deeper level, the system treats the classifiers as an evolving population in which accurate—
i.e. high fitness—classifiers are reproduced over less accurate ones and the “offspring” are
modified by genetic operators such as mutation and crossover. In this way, the population
of classifiers gradually changes over time, that is, it adapts structurally. Evolution of the
population is the key to high performance since the accuracy of predictions depends closely
on the classifier conditions, which are changed by evolution.

Evolution takes place in the background as the system is interacting with its environment.
Each time an action set is formed, there is finite chance that a genetic algorithm will occur in
the set. Specifically, two classifiers are selected from the set with probabilities proportional to
their fitnesses. The two are copied and the copies (offspring) may, with certain probabilities,
be mutated and recombined (“crossed”). Mutation means changing, slightly, some quantity
or aspect of the classifier condition; the action may also be changed to one of the other
actions. Crossover means exchanging parts of the two classifiers. Then the offspring are
inserted into the population and two classifiers are deleted to keep the population at a
constant size. The new classifiers, in effect, compete with their parents, which are still (with
high probability) in the population.

The effect of classifier evolution is to modify their conditions so as to increase the overall
prediction accuracy of the population. This occurs because fitness is based on accuracy. In
addition, however, the evolution leads to an increase in what can be called the “accurate
generality” of the population. That is, classifier conditions evolve to be as general as possible
without sacrificing accuracy. Here, general means maximizing the number of input vectors
that the condition matches. The increase in generality results in the population needing
fewer distinct classifiers to cover all inputs, which means (if identical classifiers are merged)
that populations are smaller, and also that the knowledge contained in the population is
more visible to humans—which is important in many applications. The specific mechanism
by which generality increases is a major, if subtle, side-effect of the overall evolution.

Summarizing, a learning classifier system is a broadly-applicable adaptive system that
learns from external reinforcement and through an internal structural evolution derived from
that reinforcement. In addition to adaptively increasing its performance, the LCS develops
knowledge in the form of rules that respond to different aspects of the environment and
capture environmental regularities through the generality of their conditions.

Many important aspects of LCS were omitted in the above presentation, including among
others: use in sequential (multi-step) tasks, modifications for non-Markov (locally ambigu-
ous) environments, learning in the presence of noise, incorporation of continuous-valued ac-
tions, learning of relational concepts, learning of hyper-heuristics, and use for on-line function
approximation and clustering. An LCS appears to be a widely applicable cognitive/agent
model that can act as a framework for a diversity of learning investigations and practical
applications.

