NEWBOOLE: A Fast GBML System

NEWBOOLE: A Fast GBML System

Pierre Bonelli Alexandre Parodi

bonelli@Iri.Iri.fr parodi@Iri.Iri.fr
Equipe Inférence et INFODYNE SARL
Apprentissage 10, rue de 1a Paix
LRI 75002 Paris
bat. 490 France

Université de Paris-Sud
91405 Orsay, France

Abstract!

Genetics based machine learning systems are
considered by a majority of machine learners as
slow rate learning systems. In this paper, we
propose an improvement of Wilson's classifier
system BOOLE that shows how Genetics
based machine learning systems learning rates
can be greatly improved. This modification
consists in a change of the reinforcement
component. We then compare the respective
performances of this modified BOOLE, called
NEWBOOLE, and a neural net using back
propagation on a difficult boolean learning
task, the multiplexer function. The results of
this comparison show that NEWBOOLE
obtains significantly faster learning rates.

1 Introduction

In recent years, Genetics Based Machine Learning
(GBML) has received increasing attention from the ML
community due to the emergence of Classifier Systems.
However, despite the demonstrative results obtained by
various researchers with Classifier Systems (CS)
[Goldberg, 89], the slow learning rates that are usually
observed have considerably affected their credibility. The
results reported in this paper, using an improvement of
Wilson's BOOLE system, tend to show that convergence
speed of GBML systems can be greatly improved.

1 This research was partially supported by MRT
through PRC IA.

Tel.: (33)-(1)-42-61-56-08

Sandip Sen Stewart Wilson

sandip@dip.eecs.umich.edu wilson@think.com
EECS Department The Rowland Institute
University of Michigan for Science
Ann Arbor, MI 48109 100 Cambridge Parkway,
USA Cambridge, MA 02142
USA

2. Slow learning rates in GBML
systems.

A number of realizations in the domain of CS
have shown their undisputed ability to learn. Classifier
Systems [Holland, 86] form a family of inductive
learning systems which acquire rules incrementally.
However, these realizations all share the common
drawback of slow rate learning when compared to other
widespread learning algorithms such as decision tree
classification (such as ID3) or neural net back
propagation.

Wilson's classifier system BOOLE [Wilson, 87]
is an example of such a realization. BOOLE is an
incremental learning system that learns intricate
boolean functions such as logic multiplexers. However,
more recently, Quinlan [Quinlan, 88] compared the
respective performances of an improved version of the
ID3 algorithm (C4) and BOOLE on the multiplexer
problem, and evidenced a much faster convergence rate
with C4. We show in this paper that this drawback can
be greatly weakened by modifying the reinforcement
component of the original algorithm. Furthermore, C4
is non incremental, and as Booker mentions in [Booker,
891, having access to all the examples at once is a
definite advantage. Therefore, in our experiments, we
decided to compare the improved version of BOOLE
(NEWBOOLE) with a widely used incremental learning
system: a neural net using back-propagation.

153

154

Bonelli, Parodi, Sen, and Wilson

3. The BOOLE Classifier System

We now present BOOLE with some detail concerning
the parts that have been changed, in order to explain the
NEWBOOLE system in the following section.

BOOLE is a simplified version of the standard
Classifier System (CS) which was designed by Wilson
to test the ability of a GBML system to learn difficult
boolean functions.

Like any CS, Boole maintains a population of
classifiers (which can be thought of as bit-level zero
order rules) according to Darwinian evolution principles.
However, classifiers are not chained; they directly
provide an output and the decision is made within a
single step during recognition; consequently there is no
message list nor Bucket Brigade Algorithm. Thus each
classifier consists of a condition (taxon) and an action
which are fixed length strings over the {0,1,#) alphabet.

Like other CS, BOOLE has the following
components:

1/ Performance component: in the performance
cycle, an input string is presented to the system, the
match set M of all classifiers whose taxa match the
input string is formed, and a single classifier from M is
selected (using a probability that is proportional to its
strength) whose action is output as the system's
decision.

2/ Reinforcement component: this component
modifies the strengths of classifiers according to
performance level:

a/ Form the action set [A] consisting of classifiers
from [M] whose action is the same as the chosen
action; the remaining members of [M] form the set
Not[A);

b/ Deduct a fraction ¢ from the strengths of all
classifiers in [A];

¢/ *If the system's decision was correct, distribute
a payoff quantity R to the strengths of [A]; but
* If the decision was wrong, distribute a payoff
quantity R' (where 0 £ R' < R) to the strengths of [A]
and deduct a fraction p from the strengths of {A] (at least
one of R' and p is equal to 0);

d/ Deduct a fraction t from the strengths of Not [A].

The distribution of payoff 1s done so that rules which
have many # 's (thus more general) are favored.

3/ Discovery component, which modifies the
classifier population according to Holland's genetic
algorithm [Holland, 75} and employs reproduction,

genetic operations (crossover and mutation), and
deletion.

BOOLE's version of the genetic algorithm is
quite particular in the sense that only one offspring is
added per invocation of the genetic algorithm. In this
context, the parameter p will represent the average
number of invocations of the genetic algorithm per
cycle (i.e. the number of offspring added per cycle). For
the detailed algorithm, please see [Wilson, 1987].

Wilson experimented in [Wilson, 87] with this
system using a highly disjunctive function, the
multiplexer function, also used by Barto [Barto,1985].
In the case of the "6-multiplexer”, for each six-bit input
string (ag, a1, Xq, X1, X2, x3), the boolean expression
of the output is:

F6=—|a0.—|a1 .XO + ao.—.al .Xl +

+=ag.a;.Xp + 2ag.3; . %3 ()]

Figure 2 shows an experiment in which BOOLE
learned to respond correctly to this problem. The
parameters used for this experiment are given in section
4.

At each cycle, an example is chosen at random and is
presented to the system. The graph plots the system's
average score which is the percentage of correct
decisions over the past 50 cycles versus the number of
cycles since the experiment began.

The results obtained by BOOLE show that a
"rather difficult disjunctive incremental learning task”
can be solved by GBML. However, the learning rate is
extremely slow, as was pointed out by Quinlan in
[Quinlan, 88], where he compares the respective
performances of BOOLE and C4 on the same
multiplexer task.

4. The NEWBOOLE CS

NEWBOOLE is a CS derived from Boole which
obtains much faster learning rates. We examine in this
section the improved leaming algorithm,

4.1 A new payoff strategy:

*Symmetrical payoff-penalty

BOOLE's reinforcement component, under the
"payoff-penalty” reinforcement regime (p # 0) adjusts
classifier strengths in the following way:

- if the system's decision is correct, distribute a
quantity R to the strengths of the Actionset [A].

- if the system's decision is false, penalize the
strengths of [A] by deducting a fraction p from their
values.

- finally, whether the system's decision is correct
or not, deduct fractions e and t respectively from the
strengths of [A] and Not[A].

Thus, following each performance cycle, only the
sirengths of [A] are ajusted according to the system'’s
performance.

However, once we know that [A] contains
accurate classifiers, we also know that Not[A] only
contains inaccurate classifiers; in this case it would
make sense to penalize the rules in Not[A]. This
acknowledgement led us to a "symmetrical payoff-
penalty” algorithm, in which we respectively reward and
penalize the accurate and inaccurate classifiers present in
the Matchset.

The new reinforcement component is the
following:

1/ Form the subset of [M] consisting of those
classifiers whose action is accurate; this is the correct
set [C]. The remaining members of [M] form the set
NOTIC].

2/ Deduct a fraction e from the strengths of [C].

3/ Since [C] contains the accurate classifiers,
distribute a payoff quantity R to the strengths of [C].

4/ Since Not[C] contains the inaccurate
classifiers, deduct a fraction p from the strengths of
Not[C].

Thus, the effect of the reinforcement component
can be written as:

S[C](H'I) = (l-e) X S[C](t) + R (3)

SNotrC)t+ D = (1-p) X Sygrcq® @

where S [cy and SNot[C] are respectively [C]'s and
Not[C]'s total strengths.

This new algorithm constitutes a clear departure
from Boole: indeed, if we have several possible output
values then the knowledge of the correctness of the
output of each classifier from the match set is used.
This information can be provided by the knowledge of
the correct output for each example, as is done in most
learning systems. However, this does not make any
difference with boolean functions such as the
Muliiplexer since only two values are possible: if one
is known as wrong, then the other one is right.

NEWBOOLE: A Fast GBML System

As in Boole, the payoff R to [C] is distributed
by a biased distribution function D, which favors more
general rules (i.e. with many "don't cares” #) as follows.

First, the generality of each classifier i of length L is
computed as:

_humber of #'s in i

8i = I ®)
Let us define;
di=1+Gxg ©)

where G is a "generality emphasis” parameter.

Then, the portion of reward Rj that is given to
classifier i becomes:

di

R; = D(@) xR = R 0
=4

1

4.2 Experiments with NEWBOOLE

We experimented with NEWBOOLE using the
multiplexer problem, our main concerns being on the
one hand to compare BOOLE's and NEWBOOLE's
respective performances, and on the other, to compare
NEWBOOLE and a neural net using Back Propagation
(BP). We describe two sets of experiments, one with the
6-multiplexer, the other with the 11-multiplexer.

Each experiment was conducted by making 4
independent runs with different random initializations
and averaging the values over these runs.

The table below gives a complete description of the
genetic experimental parameters used.

4.2.1 NEWBOOLE and the 6-multiplexer
problem.

1/ In the first experiment (Figures 1, 2), we
tested NEWBOOLE's performance using exactly the
same parameter values as in BOOLE in order to evaluate
the effect of the change in the reinforcement component.
As it can be seen, the results are quite demonstrative:
without any "parameter tuning”, we are able to enhance
importantly the system's learning rate to 97.3 % after
only 2000 trials. The learning rate only takes into
account the system'’s performance,

The lower plot in Figure 1 shows a quantity called
the relative solution count, equal to the relative number
of instances of the solution set [S6], which represents
the minimal set of classifiers capable of solving the
problem perfectly.

156 Bonelli, Parodi, Sen, and Wilson

e X 18 G R p P deter-
Param. Cross- mutation } genera- reward | penalty | renewing popula- | mini-stic
over Tate lity coef. tion output
Experi. rate enfor-
cement
Boole 0.1 0.125 0.001 4 1000 0.8 1 0.1 400 NO
6Mux
Figl,2
NewBoole | 0.1 | 0.125 | 0.001 4 1000 o781 1 7 400 NO
6Mux
Fig 1, 2)
NewBoole 0.1 0.5 0.001 4 1000 0.95 4 i 400 YES
6Mux
(Fig. 3)
NewBoole 0.1 0.5 0.001 4 1000 0.95 4 " 1000 YES
11 Mux
(Fig. 4)

Table 1; Experimental parameters for Boole and NewBoole.

6-multiplexer with untuned NewBoole

<
1007 ~ vy v
Score
80 -
60 -
40 - Validity
20 1
cycles

0 v T r T r T Y T T T T T T T

0 2500 5000 7500 10000 12500 15000 17500

Figure 1: Untuned New Boole with stochastic output

1 p is taken as 0.78 and not 0.80 in order to ensure total equivalence between the experiments with Boole and
untuned Newboole, since the parameter t is no longer used in the Newboole algorithm.

Hence, this ratio is a measure of the validity of the
population: the predominance of {S6] in the evolved
population would show that the system is capable of
finding the best among the accurate classifiers.

NEWBOOLE: A Fast GBML System

It is interesting to notice that eventhough the system
attains quasi-perfect response (99.8) after 3200 cycles,
the validity (solution count) continues to grow at a
similar rate than in BOOLE.

NewBoole versus Boole

157

1207 &
1 @
1lQ
1101 &
] O
w
100 A
90 A
80
— Score NewBoo.
70 ¢ Score Boole
60 cycles
50 I v 1 T T
0 5000 10000 15000
Fi 2; Comparison n untuned NewBool)|
mswm (%) | Exror(%) [Error (%) * Secondly, we modified the Performance
Boole intuned Boole NewBoole Component in the following way: instead of selecting
NewBoole the "decision" classifier probabilistically, we
0 23 50 5 50 systematically picked the highest ranked classifier in the
500 759 867 21 133 match set: this deterministic selection affects in no way
2 2 . s the learning process, since the Correct and NotCorrect
1000 84.6 92,9 154 7,1 sets are not determined in function of the sclected
3200 91,2 99,8 8.8 0,2 classifier. This modification, as noted in [Booker, 89],
5200 939 100 6,1 0 permits a more steady convergence level; furthermore,
12000 97.3 100 2,7 0 since we are comparing NEWBOOLE with a
deterministic algorithm (Back Propagation), it seemed
Table 2: Comparison en Boole' NewBoole' logical to include some "determinism" in the algorithm.
nv tes

2/ We present in the second experiment (Figure
3) a "tuned" version of the NEWBOOLE algorithm.

* Firstly, we modified the values of certain
parameters in order to speed up the leaming process (see
Table 1).

We obtained an impressive learning rate after
only 800 trials by modifying the value of the fraction
deducted from the set of inaccurate classifiers (p = 0.95),
the frequence of invocation of the genetic algorithm per
cycle (p = 4), and the crossover rate (X, = 0.5). This
constitutes approximately a 17 fold improvement over
Boole's original convergence rate.

158

Bonelli, Parodi, Sen, and Wilson

100 +

90 ~

80 -

70 4

60 v T T T

6-multiplexer

& NEWBOOLE
—- BACK PROP.

Cycles

2000
Figure 3: Comparison

1 v Ll v 1
3000 4000 5000
n rministic NewBool

and Neural Net with BP on the 6 multiplexer problem

3/ Also in Figure 3, we present an experiment using
a Neural Network with a Back-Propagation leaming
algorithm. The architecture (6:20-20-10-10:1)! and the
parameters were tuned for this problem. Indeed, we see
that convergence is reached after 1600 trials.

Of course, we noticed that a more complex network
(6:100-50-40-30:1) converges within 900 trials.
However, the performance is not better than with
NEWBOOLE, and the memory occupied (6 X 100 +
100 x 50 + 50 x 40 + 40 x 30 + 30 = 8830
connections = 8830 x 4 = 35320 bytes) is unreasonably
beyond what our population occupies (400 classifiers of
7 units each with 2 bits per unit = 800 bytes).

Therefore, when comparing NEWBOOLE with a
Neural Net (NN) using BP, we restricted ourselves to
reasonable networks,

1This notation means that the multilayered network
has 6 inputs, then two layers of 20 cells, then two layers
of 10 cells, and one output layer of one cell.

In all the networks, the parameters of each cell
depend on the number of cell inputs Njp:
learning rate € = 0.1/sqrt(Nin), decay 8 = 0, noise 0 = 0,
momentum o = (; weights Wij(0) are initialized
randomly over the interval [-1.5/Njp; 1,5/Njp].

Please also note that the simplest NN that can solve
our problem (6:4:1) needs 7500 cycles to converge; this
compares with the number of cycles NEWBOOLE needs
to find the minimal set (around 5000 cycles for 80 % of
minimal rules; the other rules have a very low strength
and can easily be removed); however, NEWBOOLE finds
this set automatically, whereas the NN architecture had
to be provided at first.

4.2 NEWBOOLE and the 11-multiplexer
problem.

Figure 4 shows the results obtained using
NEWBOOLE to solve the 11-multiplexer compared with
those obtained using the following neural net: (11:40-
40-20-20:1).

The population was increased by a factor of 2,5 in
order to fit the considerably larger classifier search space
which grew by a factor of 311 x 2 /(36 x 2) = 243.

The number of links of the neural net rose much
more (by a factor of 3260 / 730 = 4,5) than the
population size.

Nonetheless, one notices that NEWBOOLE still
converges at a faster rate than the neural net,

Sl

NEWBOOLE: A Fast GBML System

L 11-multiplexer
1007 o o
o
J O
O
w -a- NewBoole
90 - Back Prop.
80 -
70 -
] Cycles
60 T Y T T T T d
0

(symmetrically smoothed over 1000 cycles)

5. Conclusion

In this paper, we presented an improvement to
the Boole system; indeed, we showed that convergence
speed could be drastically improved, thus showing that
GBML systems can learn far faster than were portrayed
by Quinlan in [Quinlan, 88]. Furthermore, the
comparison with an other incremental learning
algorithm, the widely used neural net with back-
propagation, showed that NEWBOOLE converges at
least as fast. The basic difference between GBML and
Connectionist learning thus seems to reside in the fact
that Classifier Systems are rule based systems which
provide comprehensive solutions, whereas neural
networks merely provide sets of numerical coefficients
without any semantic meaning.

6. References

[Booker, 89] "Triggered Rule Discovery in Classifier
Systems", in ICGA 89, Morgan Kaufmann.

[Goldberg, 891 "Genetic Algorithms in search,
Optimization, and Machine Learning”, Addison Wesley.

[Holland, 75] "Adaptation in natural and artificial
systems", Ann Arbor: University of Michigan Press.

[Holland 86] "Escaping brittleness: the possibilities of
general-purpose learning algorithms applied to parallel
rule-based systems” In "Machine Learning: an Artificial
Intelligence Approach, Vol 2, Michalski R.S.,
Carbonell J.G., Mitchell T.M. eds, Morgan Kaufmann,
Los Altos (CA), 1986.

[Quinlan, 88], "An Empirical Comparison of Genetic
and Decision-Tree Classifiers", Proceedings of the fifth
International Conference on Machine Leamning.

[Wilson,87] “Classifier Systems and the Animat
Problem", Machine Learning 2,199-228, 1987.

[Wilson & Goldberg, 89] "A critical Review of
Classifier Systems”, in ICGA 89, Morgan Kaufmann.

159

