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On the retino-cortical mapping
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Based on Hubel & Wiesel’s physiological findings on the projection from retina to
cortex, a schematic model of that stage of visual processing is constructed and its
properties investigated. The projection or mapping appears to carry out an automatic
“normalization of description” for the same object independent of retinal image size.
This property suggests new concepts regarding (1) contrast sensitivity, (2) the nature
and role of indirect vision, (3) the role of eye movements and (4) the recognition of
patterns and the analysis of scenes.

Introduction

This article explores implications for human visual perception of the results of Hubel
& Wiesel (1974), in macaque monkeys, on the relationship between receptive field
size, magnification and eccentricity. A schematic model of the retino-cortical projection
is constructed which seems roughly to include their results, and leads to an hypothesis
about the general purpose of that stage of visual processing. The model introduces
the notion of ‘“data field” as a generalization of Hubel & Wiesel’s ‘‘aggregate
receptive field”’, and the notion of “message sending unit” (MSU), as a dedicated cell
sub-assembly of which their ‘“hypercolumn” is the prototypical example. The
hypothesis about the retino-cortical projection is that it is arranged so that, in the
presence of certain world constancies whose retinal images change with viewing
distance, the output signals—in the model’s terms, messages—of the primary visual
cortex are constant and independent of viewing distance. The model is applied to an
explanation of the contrast sensitivity function; to Aubert & Foerster’s (in Helmholtz,
1962) classic experiment, and Lettvin’s (1976) observations, on peripheral visibility;
and to some basic questions of pattern recognition.

Physiology and model

In the view of Hubel & Wiesel (1979), the primary visual cortex is both anatomically
and physiologically a regular array in which a standard unit of neuronal processing
machinery, the hypercolumn, is repeated over and over. Each hypercolumn has some
thousands of input fibers which project backwards via the lateral geniculate body to
ganglion cells subserving a delimited region of the retina. Each cortical cell measured
in a perpendicular penetration of the hypercolumn will respond to a characteristic
stimulus over a locale within that delimited region; the precise response locale is
termed that cell’s receptive field. The fields vary in size for different cells in the
hypercolumn by a factor of two or three. The variation is probably because different
cortical cells compute different things: for example, the so-called ‘“‘complex” cells by
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definition have a larger field than the ‘“‘simple” cells. The receptive fields in one
hypercolumn also tend to vary somewhat in position (the positions of their centers);
the variation is about the same as the variation in (linear) field size; this is termed
“scatter”. Hubel & Wiesel call the ‘‘pile of superimposed fields that are mapped in
a penetration beginning at any point on the cortex the ‘aggregate field’ of that point”.
In effect, each hypercolumn may be said to have an aggregate field.

In the model which will now be developed, the hypercolumn is regarded as a
“message sending unit” (or MSU) and its aggregate field is regarded as an experi-
mentally observed manifestation of the MSU’s ‘“‘data field”’, i.e. the retinal region
over which the MSU collects stimulus information. Hubel & Wiesel say the hyper-
column has “perhaps 50,000’ output fibers. Incorporating this, the model’s MSU is
an entity which receives input on some thousands of input fibers from its data field,
computes simple overall properties of the stimulus (related to, but not necessarily the
same as, those that Hubel & Wiesel have identified by probing single cells within the
hypercolumn-MSU) and outputs the presence or absence of these properties—‘‘the
messages’’—as a code on the 50,000 output fibers. In the ensuing discussion, the
reader may certainly still think of ‘“‘hypercolumn” for “MSU” and ‘‘aggregate field”
for ““data field”. New terminology has been introduced because the model and the
physiology are distinct, and to emphasize suggested function.

In developing the model further, let us go back to Hubel & Wiesel (1974) and
examine particularly their fig. 6A (reproduced here as Fig. 1). We want to know more
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F1G. 1. Field size and magnification " vs distance from fovea in macaque monkey. [From Hubel & Wiesel
(1974), with original caption. Reprinted by permission of Alan R. Liss, Inc., copyright owners.]
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precisely the relationship between retina and primary visual cortex. At a given
eccentricity, how big is the aggregate field of a hypercolumn, and to what extent do
the aggregate fields of adjacent hypercolumns overlap?

Figure 1, while containing just a few hard-won points, gives an answer. (1) Field
size increases as a linear function of eccentricity, with a slope of about 0-05 deg/deg,
and the field size close to the fovea is about 0-25°. (“Field size” is the average size
of the receptive fields comprising the aggregate field at that point.) (2) The parallelism
between field size and “magnification” ">’ means that the spacing between aggregate
fields for adjacent hypercolumns is such that the diameters of the two aggregate fields
overlap by about 50%.

For the model, it will be assumed that field size vs distance from fovea in Fig. 1
really is a straight line; also that the overlap percentage is constant, independent of
eccentricity. As noted, field size in Fig. 1 is about 0:25° at 0° *“distance from fovea”’.
Whether this is distance from the fovea’s boundary or center is not made clear. The
model is neater if one assumes that the slope of the curve outside the fovea would
allow straight-line extrapolation to zero field size at exact fovea center.

Suppose now that one wants to diagram the input domain of the retino-cortical
mapping on a piece of paper. For this, place the fovea center at the center of the
paper and let radial distance from there represent angular distance to a given point
on the retina. To show the mapping, one might place dots on the paper, one for
each hypercolumn, wherever the center of the hypercolumn’s aggregate field falls.
But how should the dots be arranged? What is the correct pattern of their spacing?

The above interpretation of Fig. 1, plus the assumption that the arrangement is
radially symmetric, gives the answer. One curve says field size (diameter, say) is
proportional to distance. The other curve says overlap is a constant percentage of
field size. Since overlap is linearly related to both field size and field separation,
constancy of percentage overlap requires that the dots be laid out so that the distance
between adjacent dots is also proportional to distance from the center.

Figure 2 shows the resulting arrangement. Imagine each dot to be encircled by a
field which extends more-or-less up to the nearest neighboring dots. One can see that
(1) field size is proportional to eccentricity; (2) the fields have constant percentage
-overlap; and (3) (a consequence of the first two properties) field spacing is proportional
to eccentricity.

The pattern of Fig. 2 has a fundamental property which we can establish by placing
an object on the pattern. In Fig. 3, imagine that the inner square is the outline of
some general object which has been imaged on the retina. The object happens to be
fixated at its center in this case. The various parts of the object are being examined,
so to speak, by the data fields (aggregate fields) of the MSUSs (hypercolumns) whose
representative dots fall on the object. (It is assumed, as before, that the data field of
a dot is a circle extending more-or-less up to the nearest neighboring dots.) The outer
parts of the object are examined by fewer data fields per unit area than the inner
parts. We can suppose that this object has surface detail of some kind, so that the
various data fields see various things ‘“under” them and the associated MSUSs send
out various messages.

Now, let us magnify the object on the retina somewhat so it now is represented by
the outer square. The diagram reveals that for every data field now receiving input
from some portion of the object, there was, prior to magnification, another data field
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FiG. 2. Arrangement of MSU data field centers in retinal space.

FI1G. 3. Array of Fig. 2 with superimposed, centered images of a “‘generalized object” at two magnifications.

which received its input from precisely the same object portion. Thus, if all MSUs
are similar (Hubel & Weisel’s assumption for hypercolumns), the ensemble of messages
output by the MSUs will not differ between the two magnifications. The particular
set of MSUs sending the messages will shift slightly, but not the messages themselves.

It therefore appears conceivable that the retino-cortical mapping is a system designed
to produce a similar output or, so to speak, to “tell the same story”, whatever the
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size of an object’s image on the retina. The output message ensemble may be likened
to a set of reports that speak about the various portions of an object, where ““portion”
has units something like “percent of overall object size”. The effect is to extract
information about an object’s visual pattern, independently of its size in space or the
distance at which it is seen. Such a property is consistent, of course, with daily
experience. The appearance of an object is substantially independent of its accidental
size on the retina.

Indirect vision

" In the Physiological Optics, Helmholtz (1962) described experiments by Aubert &

Foerster on “‘the precision of vision in the peripheral parts of the retina”. In one
experiment, they investigated the extent to which, during a brief flash, subjects could
identify letters and numerals which occurred at an angle to the direction of vision at
the moment of the flash. That is, they asked: what is the maximum off-axis (horizontal,
in this case) angle at which a letter of a given size will still be just recognizable?
Aubert & Foerster’s main result was that, for letters of a given actual size, the maximum
angle was proportional to the letter’s visual angle, the ratio being approximately five
to one.

It may be helpful to put this important result somewhat differently. Imagine the
following special kind of eye chart which an eye doctor might have. On a large white
card there is a small x on which one fixates, and then, somewhat to the side of the x,
a single letter such as “E”’. Suppose that when you look at the x, you can indirectly
see the E just well enough to tell that it is an E. What Aubert & Foerster discovered
is that if you can just barely tell the E at this distance from the chart, you can move
forward and backward (within fairly wide limits, always fixating the x), and the E will
still be just barely identifiable.

Some flavor of the experiment may be gained by looking at Fig. 4. If the x is fixated,
the appearance of the E will be substantially independent of the distance at which
you hold the paper.

X E

F1G. 4. “Eye chart” for indirect vision.

These phenomena are very important for the model of the retino-cortical mapping.
In the “expanding diagram” of Fig. 2, suppose the fixated x to be at the center; the
image of the E will then fall somewhere away from the center. It will be “under” the
data fields of some number of MSUs—more if the E is close to the center, fewer if
farther away—but, in any case, some definite number. Now, what will happen as, say,
our patient approaches the eye chart, or we move Fig. 4 nearer? The answer is clearly
that the E will move farther out from the center; at the same time, it will also grow
larger. In fact, its distance and its size will grow by exactly the same factor.

But if this is true, a brief consideration of the properties of Fig. 2 will persuade
one that the E, in its new position, will fall under the same number of MSU data
fields as before. Put more generally, as long as the point of fixation does not change,
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the number of MSU data fields “‘subtended” by an indirectly seen object is independent
of distance.

Now, from Aubert & Foerster’s experiment we can draw two important conclusions.
First, since they found that recognizability in this situation is independent of distance,
one can infer that the MSUs, as information processors, are functionally identical.
For, if equal recognizability at all distances goes together with an unchanging number
of “inspecting MSUs”, then, since the actual MSUs doing the inspecting do change,
it must be concluded that one MSU is just as good as any other MSU—i.e. they are
functionally alike.

There is thus independent support for Hubel & Wiesel’s assumption of the similarity
of the hypercolumns. But from Aubert & Foerster one can infer something more.
Since the “E” on the eye chart may be drawn at such a distance from the fixation
“x” that it is no longer recognizable, it must be the case that each MSU has a finite
and limited information processing capacity. Can we say anything about this capacity,
that is, about the specific computations which the MSU performs?

In an article entitled “On seeing sidelong’, Lettvin (1976) drew attention to the
way in which the visibility of an indirectly seen object depends strongly on the presence
or absence of other objects in its immediate neighborhood. Figure 5 gives examples
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F1G. 5. “Eye chart” for indirect vision with isolated and embedded letters.

of an E by itself and between M and N, likewise an isolated and an embedded O. In
each case the associated dot should be used as a point of fixation. After inspecting
the figure, notice that the indistinctness of the embedded E and O is not a matter of
insufficient basic visual acuity; for, if one fixates the letters instead, the dots are sharp.

The present model seems to shed some light on these observations. In particular,
the notion of finite processing capacity in the MSU suggests that the MSUs that are
“speaking” about an embedded letter and its environs may be unable to describe
“cleanly” a situation of this degree of complexity; whereas, when the letter exists in
isolation, the situation is inherently less complicated and the processing machinery
may be more adequate to the task of description.
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The above is rather vague; but the problem is subtle. Up to a point one might say
it is just a matter of “resolving power’: the embedded letter is harder to separate
from its neighbors; without neighbors, we ‘“‘see it better”’. But a more powerful notion,
that the MSU is a primitive pattern recognizer, is suggested by the work of Hubel &
Wiesel. In the hypercolumn they found cells sensitive to spots, cells sensitive to
oriented bars, cells sensitive to a properly oriented bar anywhere within a relatively
large area, etc. Let us assume that these stereotyped single-cell responses represent
aspects of the MSU’s calculation of its output message, and that the message itself is
drawn from a quite limited vocabulary. Then, if the MSU sees a stimulus which has
simple properties of the appropriate type, its output message will be strong and clear:
e.g. “‘there is a corner’’, “‘there is a round patch”, etc. But, if the stimulus is not easily
summarized in the terms the MSU is designed to detect and express, its message will
be indecisive—an outcome whose conscious consequence is the belief that we ““can’t
see the form clearly”.

The concept of the MSU as a primitive pattern recognizer implies that it is an
information-reducer: the MSU operates on a stimulus so as to describe it in certain
simplified or stylized terms. This leads to a further question. If, by detecting and
talking in a language of simple forms, the MSU acts as an information-reducer, then
for every output message there must be a set of physically distinct stimuli which will
all produce the same output. Put another way, are there ways to vary a stimulus seen
indirectly such that one would not notice any change? And, what variations produce
pronounced changes? Experiments to answer these questions would give further clues
as to the forms for which the MSU is looking.

Luminance gradiénts

To test and extend the ideas developed so far, we shall consider the major phenomena
in a rather different area, that of the visibility of sinusoidal luminance gradients. Here,
it is not always the case that the appearance of an object is independent of distance
or subtended visual angle. Instead, there appear to be two regions: for objects of
“low” spatial frequency, appearance and threshold visibility are independent of retinal
image size; while for objects of ‘‘high’ spatial frequency, retinal image size matters.
Quotation marks have been used because the dividing line is not well defined in the
literature; an alternative viewpoint will be offered here in which “‘spatial frequency’’
turns out not to be the central variable. In the process, the investigation will identify
a widely useful characteristic parameter of the mapping.

A number of people (see McCann, Savoy, Hall & Scarpetti, 1974) have investigated
the “high” frequency region. McCann and his co-workers (McCann et al., 1974,
McCann, 1978) extensively studied the “low” region and showed that it had to be
treated quite differently. There are many experiments and the subject is conceptually
tricky to navigate. For simplicity we shall describe a typical experiment and use it in
explaining both the phenomena and the new viewpoint.

In general, subjects look at displays or ‘‘targets’, usually square, in which the
luminance varies as a sinusoidal function across the target in, say, the horizontal
direction. Figure 6 shows the luminance profile of a typical target. The target may
have a uniformly luminous surround: sometimes the surround is black, sometimes it
is equal in luminance to the average of the sinusoid, etc. “Contrast” in the display is
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Luminance

Distance across target

F1G. 6. Luminance profile of a sinusoidal target.

defined by McCann as (Lmax—Lmin)/Lmax, Where the Ls are luminances. “Spatial
frequency” means the rate of variation of the target luminance, in cycles per degree
measured at the eye. “Retinal gradient” is defined as contrast divided by the retinal
angle between Lpax and Luyin. “Number of cycles” is just the number of cycles through
which the luminance varies in going across the display; it need not be an integer.

Now, suppose in our experiment we use a fixed target size and average luminance,
but allow ourselves to change the target’s contrast, its number of cycles and the
distance at which we view it (angular size on the retina). We will begin with a low
number of cycles, say 0-5, set the contrast to zero, and then gradually increase contrast
until we just see the luminance pattern. This contrast value is the “‘threshold contrast”
and its reciprocal is ‘“‘contrast sensitivity”’.

We repeat the experiment at a different viewing distance and, perhaps surprisingly,
find no difference in threshold contrast. We realize that we might have guessed this
result: the ensemble of messages output by the MSUs is concerned with the pattern
of an object, and is independent of the object’s size. Certainly this target, once it is
visible above threshold, looks the same at any distance. It would be natural to expect
the threshold value to be independent of distance, as well.

We now increase the number of cycles in the target, using 1, 2, 3 and 4 cycles. In
each case we find a threshold independent of viewing distance, but the threshold
becomes lower as the number of cycles increases. Contrast sensitivity is increasing
with number of cycles. However, as we proceed above about 4 cycles, contrast
sensitivity stops increasing; instead, it plateaus for a while and then begins a steady
decline as number of cycles goes higher and higher. Furthermore, we find a point
somewhere above 4 cycles where, for any given number of cycles, contrast sensitivity
falls as we move away from the target, instead of staying constant as before.
Figure 7 shows the contrast sensitivity curve we would typically have obtained in the
experiment. The widening band at the upper end shows the effect of distance; the
lower lines correspond to the observer being farther from the target.

How, in the light of the retino-cortical mapping, can we explain this overall curve?
Two new concepts are needed. The first is “‘object frequency”’, which will be represen-
ted by f,. Object frequency means number of cycles per object and is intended to
indicate the amount of detail of an object independent of object size, viewing distance,
etc. For these targets, object frequency is equivalent to number of cycles. (A more
complex target or object would have an “object frequency spectrum”, based on the
Fourier spectrum of a geometrically similar object whose longest dimension was unity.)
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F1G. 7. Schematic contrast sensitivity curves as plotted against number of cycles in the target. Curves for
different viewing distances superimpose at low number of cycles, diverge for higher number of cycles.

For the other new concept, recall the expanding data field array of Fig. 2. Note
how the field centers form rays and that there is a certain angle between adjacent
rays. In fact, if fields overlap 50%, then twice this angle (in radians) is equal to the
ratio of field size to distance from the center. Define this ratio as the array’s characteris-
tic angle, Cy. The explanation of Fig. 7 will center around the relationship between
f. (a property of the object) and Cy (a property of the perceiver).

Suppose we are observing at the low end of the curve, with, for example, f, =1
(one cycle). Figure 8 is intended to show the situation on the data field array. There
is an outer square, representing the retinal image of the display as seen at one distance,

F1G. 8. Sinusoidal luminance gradient target containing one cycle (f, =1) of sinewave superimposed on

the retinal array of Fig. 2. Outer square: the target as seen at one distance; inner square: as seen at twice

the first distance. Vertical broken and solid interior lines are minima and maxima, respectively, of luminance.
Circles are data fields drawn in for one sector of the array.
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and an inner square, representing the image of the display at twice the first distance.
Each square has a solid and a broken vertical line. These indicate, respectively, the
peak and the valley of the luminance sinusoid. Finally, a sector of the data field array
has its fields explicitly drawn in; note that the sector has angle Cy,.

Considering first the outer square, let us ask: which field of those drawn in is most
strongly stimulated by the sinusoid, in the sense of having the greatest luminance
change across it? Clearly it is the one next to the square’s edge. That field is both the
largest in the sector (of fields completely on the square) and it is positioned close to
a place of maximum rate of change of luminance. Thus it is the field (of those in the
sector) with the maximum absolute luminance change across it.

Suppose we now gradually turn the display’s contrast up from zero. Suppose also
that among the computations that any MSU makes is one which notes the overall
change in luminance across its data field, and suppose that the MSU sends out a
message when that change exceeds a certain AL. Under this assumption, it will be
the MSU having the field discussed in the previous paragraph which, as we turn the
overall display contrast up, first reports that it ‘‘sees something’’. The hypothesis is
that this is the point we call ‘‘threshold”’; that is, threshold is the point at which this
“trigger field”’, as it will now be called, first reports. The contrast at threshold will be
that contrast value which results in the luminance change across the trigger field
exceeding the field AL.

Returning to Fig. 8, we may note that the trigger field diameter is rather small
relative to a half-cycle of luminance; if f, were 2 instead of 1, the trigger field would
have a larger luminance change across it and threshold would occur at a smaller value
of overall contrast. Since contrast sensitivity is the inverse of threshold contrast we
might therefore expect contrast sensitivity to be a rising function of f, in this part of
the curve, and a glance at Fig. 7 shows this to be the case. This part of the curve is
thus characterized by the trigger field “‘seeing’ a larger and larger portion of the total
luminance change as f, increases.

Turning to the inner square of Fig. 8, it may be observed that changing the viewing
distance has not materially changed the situation. The trigger field is a different one,
to be sure, but it is still the one next to the square’s edge and it still sees the same
fraction of the display. This confirms the result that contrast sensitivity, in this part
of the curve, is independent of distance.

Let us move on to Fig. 9. Here f, =4 and we have reached a critical point. The
trigger field is again at the square’s edge, but for the first time it exactly covers a
half-cycle of luminance. The trigger field, regarded as a detector, has reached maximum
efficiency: it spans the display’s full luminance change. Thus we would not expect
contrast sensitivity to go higher than the value it has here. What, in fact, would be
the case if f, were, say, 5? A slight mental extrapolation of Fig. 9 shows that the trigger
field begins moving inwards ; the field at the edge will now cover more than a half-cycle
and so will be less efficient than one a little way in from the edge. This latter field,
in fact, being smaller, can still cover exactly a half cycle of the higher f,. The trigger
field thus changes or ‘“moves”, but still retains maximal efficiency. We would thus
expect the contrast sensitivity curve to have a peak which is in fact a plateau, at least
for some range of f,. Figure 7 shows that this in fact occurs.

Returning to Fig. 9, we note that the point at which maximum contrast sensitivity
is first reached can be mathematically characterized. It occurs for f, such that the
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F1G. 9. As Fig. 8 except that f, =4.

product f,Cy becomes unity. This may be derived by asking: when is the trigger field
diameter first equal to a half cycle of the display? This can be answered directly from
Fig. 9. The trigger field diameter is Cy; times half the side of the square. The display’s
half cycle is the full side of the square divided by f,, all times one-half. Setting these
equal gives f,Cy = 1.

For f, greater than 1/Cy;, we have concluded from the model that contrast sensitivity
should hold constant, at least for a while, and indeed it is observed to do so. But
Fig. 7 shows that the curve eventually declines. How can we explain this?

The answer comes in examining distance effects. In Fig. 9, doubling the distance
(the inner square now applies) changes nothing since the new trigger field still sees
the same portion of the display. In effect, everything scales uniformly. As f, increases,
the trigger field will move in from the edge, but the scaling for different distances will
not be affected. Or will it?

What happens when the trigger field is so far in that viewing from a greater distance
shifts the properly scaled position of the trigger field onto the fovea? In Fig. 10, the
dot diagram has been enlarged and there is now a “fovea”, i.e. a region where data
field size and spacing are no longer proportional to distance from the center. The
scaling rule cannot continue as before, since the cells are finite in size. A convenient
assumption for the model is that the foveal data field size is constant and equal to
the field size of the fields just outside the fovea.

Now consider the outer square in Fig. 10. Here f, = 8 and the trigger field is more
than half-way in toward the center. If we double the distance, the new trigger field,
under scaling, would want to fall in the fovea. Thus, under the assumption above, the
most efficient detecting field available has the efficiency of the field at the fovea’s
edge, and this efficiency is lower than that of the trigger field before the distance was
doubled. This means that contrast sensitivity is beginning to be affected by distance,
which is what we should have according to Fig. 7.
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F1G. 10. An enlarged version of Fig. 8 with f, = 8 and the central disk considered to be the fovea.

We can be quite precise about the onset of these effects. If the fovea’s half-angle
is F, then the angular size of the field at the fovea’s edge is FCy. On the other hand,
for a target of angular size S and object frequency f,, the angular size of one half-cycle
is S/(2f,). The distance begins to matter when these are equal, or for S=2f,CyF. If
the fovea half-angle is 0-5°, then we may write S = f,Cy. The meaning of this is that
if you do the experiment of Fig. 7 with a target S degrees in size, the contrast sensitivity
curve will start to decline at f, =S/Cy.

We can get something more out of this formula. It tells the conditions under which
the most efficient available gradient detector of the model becomes fixed in size: i.e.
the size of a foveal data field. But the implication of the most efficient detector being
always the same angular size at this point on the curve and beyond is that threshold
can henceforth only be a function of the luminance change over a fixed angular
increment; that is, a function of spatial frequency. Thus the condition f, = S/Cy marks
the beginning of the region where contrast sensitivity depends solely on spatial
frequency. In fact, since f,/S is by definition spatial frequency f;, we may also describe
the critical point as occurring at f, = 1/Cy;, a formula which will be useful later.

Let us look at some real data! Figures 11 and 12 are from McCann (1978). Figure
11 plots contrast sensitivity vs number of cycles (f,) for targets of various angular
sizes. We note that the two smallest targets were smaller than the fovea. Let us ignore
them for the moment. The three curves for larger targets stay together up to about
f, = 4. The model says this point occurs for f, = 1/Cy; therefore we shall take Cy =3
rad. Next, the theory says the curves will start to fall from their plateaux at f, =S/Cw.
Plugging in, we have the curve for the 16° target turning down at f, = 64; that for the
7-6° target starting down at 30-4; and the drop for the 2-7° target beginning at 10-8.
The actual facts are not extremely different from these values.

Figure 11 is actually a replot of the original experimental data shown in Fig. 12.
In Fig. 12, contrast sensitivity is shown vs spatial frequency (f;) in cycles/degree. The
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(1978). Reprinted by permission of the Society of Photographic Scientists and Engineers, copyright owners
of Photographic Science and Engineering.}

model predicts that contrast sensitivity will begin to depend on spatial frequency—
regardless of target size—for f; = 1/Cy (for a fovea half-angle of 0-5°), or f; =4. That
seems to be quite near where the curves do gather together in Fig. 12.

Let us return now to Fig. 11, and the two curves for targets smaller than the fovea.
Assuming still that data field size is constant in the fovea, and equal to the data field
size at the fovea’s edge, we may ask: how large actually is it? From the other curves,
we have Cy=1. If the half-angle of the fovea is taken to be 0-5° then the field size
on this argument must be 0-125°. We would thus expect the fovea to be maximally
sensitive to displays with half-cycle widths of 0-125°. In Fig. 11, the peak in the 0-83°
target curve occurs at 3-5 cycles. The half-cycle width at this point is therefore 0-12°.
The 0:28° target curve peaks at 2 cycles. The corresponding half-cycle width is 0-07°.
Given our uncertainty about what is actually going on in the fovea, the agreement of
these numbers with 0-125° is encouraging.
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The number of data fields

It is of some interest at this point to calculate the model’s estimate of the total number
of data fields or MSUs in the human system. A calculation is now feasible because,
from our interpretation of the sinewave gradient data, we have a value for Cy, the
characteristic angle of the data field array (Fig. 2). The calculation is useful as a
cross-check on the theory developed so far, and because it brings out strikingly the
rapid decline in data field density as one goes from the fovea into the periphery.

In Fig. 2, the dots represent field centers. Assuming a 50% overlap of fields, the
angle Cy is, as explained earlier, twice the angle between adjacent “‘rays’ of field
centers. Figure 2 can also be seen as consisting of “‘rings” of field centers. The first
step in the calculation is to notice that each ring has the same number of fields. Then,
since there are 27 radians in a ring, if the angle between field centers on adjacent
rays is Cy/2 rad, there are

47/ Cy\ fields per ring. (1)

How many rings are there? Let us imagine that the blank spot in Fig. 2 is indeed
the fovea, and that the smallest ring shown is right at the fovea’s edge (we shall count
foveal fields later). Call this the “zeroth” ring and let its radius be R, degrees (of
visual angle).

What is the radius R; of the next ring? From the earlier discussion, we want the
separation between field centers to be proportional to distance R from the center of
the array. A convenient way to state this is

R..1—R,=aR,, (2)
where a is some constant. Therefore the distance between the first two rings is given
by

R;—Ro=aRy, (3)
which says that
R; =Ro(1+a). (4)
By inspection, we see that this and equation (2) imply that, in general,
R, =Ry(l+a)" (5)
To get the value of a, we refer to Fig. 2 and observe that we want the actual distance
between rings to be essentially the same as the actual distance between rays at that
point. At Ry, the distance to the next ring is, from equation (3), given by aRo. But

also at Ro, the distance between rays is (Cp/2)Ro. Thus we have a = Cy/2, and
equation (§) becomes

R, = Ro(1+Cnm/2)" (6)

This gives us the radius of the nth ring. But, looked at the other way round, equation
(6) also says that within radius R,, there are exactly n rings. Thus, to find the number
of rings out to radius R, we solve equation (6) for n and get

NR) = 1 R/Ro)

" In (1+Cum/2) )
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where N(R) has been written for n. To get the total number of fields on these rings,
we multiply N(R) by expression (1).

The fovea must be treated differently. The assumption has been that the foveal
data field density is constant and equal to the density at the fovea edge. To get the
latter, we first find the area of a field at the edge. By definition of Cy, the field
diameter is RoCy and thus the area is 7 (RoCnm)?/4. Ordinarily, one would just invert
this to get the density. But since the fields are assumed to overlap by 50%, the density
is actually four times greater. Thus the density becomes

2

aE %(R:CM) ®)

fields per square degree.
From this we can get the number of data fields in the fovea,
2

4
NF=7TR(2)O'F=(_> , (9)
Cm
which, it is interesting to note, is independent of the fovea’s size.
Combining equations (9), (1) and (7), we get a complete expression for the number
of fields out to radius R:
4\> 47 In(R/Ry)
NR)= (—) . 10
One further expression is interesting to have, namely the density of fields at the
radius R. By the same reasoning used in deriving equation (8), this is
2

1/ 4
Y 11
or, alternatively,
R 2
o (R) = aF(E"> (12)

fields per square degree [an expression which may be integrated to give an alternative,
but almost identical, expression for N(R) as equation (10)]. For the constants in
equations (10)-(12) we may choose Cm =3 as found from the gradient data, and a
fovea half-angle Ry =0-5°.

Table 1 shows N(R) and o (R) for values of R from 0-5° to 90°. In carrying R out
to 90°, we are of course quite beyond the limits of the ‘“flat retina” approximation of
Fig. 2. However, the highly asymptotic behavior of N(R) beyond about 10° suggests
that recalculating for a spherical geometry would not yield important differences at
this stage. In Table 1 it is striking that within the first 10° or so, N(R) has climbed a
major part of the way toward its 90° value. Correspondingly, the field density falls at
such a great rate that beyond about 10° it takes a large increment of angle to add an
appreciable number of new fields to the total.

This section began with the aim of estimating the total number of fields. From Table
1, a reasonable figure might be about 2200 fields, or roughly the value for R =45°,
But the calculation depends, and perhaps sensitively, on the values used for R, and
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TABLE 1
Number of data fields N(R) between the
center of vision and eccentric angle R (in
degrees), and density o(R) of data fields
(in degrees_z), with Rp=0'5° and Cy =

0-25rad

R N(R) g(R)

0-5 256 326

1 552 81:5

2 848 20-3

5 1239 3.26
10 1534 0-82
15 1708 0:-36
30 2003 0-09
40 2126 0-05
45 2176 0-04
50 2221 0-033
60 2299 0-023
70 2365 0-017
80 2422 0-013
90 2472 0-010

Cum. To see the effect of changing them, we may calculate N(45°) for values of Cy
and R, differing by factors of two on either side of 0-25 rad. and 0-5°, respectively,
as shown in Table 2. There is nearly a factor of 20 range between extremes.

To check whether these numbers are anywhere near correct we may again make a
connection with the work of Hubel & Wiesel. The number of hypercolumns times
the area of cortex per hypercolumn (a constant) should give the total area of pr1mary
visual cortex. Hubel & Wiesel (1979) seem to have settled on about 1 mm’ per
hypercolumn, in monkeys. (The hypercolumn has halves for each eye, but that does
not affect this calculation.) If the human system also has 1 mm?® hypercolumns, then
Table 2 suggests that the total primary area—both sides of the bram—should be
somewhere between 500 and 9600 mm’. Hubel & Wiesel give 3000 mm’ as an
approximation to the actual total human area. This figure is not greatly different from

TABLE 2
Values of N(45°) under various assumptions for R,
and CM
CM (rad)

0-125 0-25 05

R 0:25 9635 2472 649

(de r(ées) 0-5 8485 2176 571

g 1 7336 1881 492
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the “middle value” (2176) in Table 2, which lends support to the model and to the
value of Cym(3) which has been employed.

A further element of support comes by noting, in Table 1, that the number of data
fields in the fovea is about one-tenth of the number for the whole retina. This is in
good accord with the fact that the fraction of optic nerve fibers serving the fovea is
also about one-tenth.

The cortical image

So far in this study of the retino-cortical mapping, we have not considered how the
information originating at the retina might be physically arranged on the cortex. That
is, we have discussed the hypercolumn-MSUs, their data fields and how the data field
centers are arranged on the retina (Fig. 2); but we have not inquired how the MSUs
are actually laid out in the cortex.

One might first propose that the MSUs are just arranged randomly, a notion which
is not so odd as it might seem. After all, if the overall system needs to keep straight
“what is next to what” in the visual world, it need not go so far as to use actual
physical adjacency in the cortex for this purpose. The MSUs could instead be arranged
irregularly or even randomly, with subsequent cortical areas ‘“wired”’ to the primary
area in such a way that adjoining parts of the visual world are treated as adjoining,
even though their MSUs are not physically next to each other.

This hypothesis seems unnecessarily complicated. It would seem, in fact, that a very
good thing to do would be to keep adjacent visual world information adjacent in the
primary cortex precisely because, if adjacency is important, subsequent wiring would
be greatly simplified. Thus we would expect that the MSUs would be laid out so as
to preserve the connectedness of the visual world.

How then should the MSUs be arranged? A way to approach the question is to
think of the dots in Fig. 2 as being of constant, fixed size, and to imagine shoving
them together until each just touches its neighbors. The resulting mosaic could
represent the corresponding hypercolumn-MSUs in the cortex: MSUs of constant size
and spacing as found by Hubel & Wiesel. Thus we might guess that the cortical
arrangement simply condenses Fig. 2 down to equal spacing (it would separately
condense the two halves of Fig. 2 to form the left and right primary cortexes).

But unless the condensing is done in just the right way, connectedness will get lost
in the process. This can be seen by recalling, in Fig. 2, that each ‘‘ring” contains the
same number of dots. If rings are simply pushed together toward the center, the dots
of one ring must begin to interpenetrate the dots of adjacent rings since the total
perimeter over which the dots are spread keeps growing and the number of dots per
ring does not. Interpenetration of rings evidently destroys connectedness.

Is there another way of pushing the dots of Fig. 2 together? We have already
numbered the “rings” of Fig. 2 from zero upwards. Number also the ‘‘rays” starting
with zero for the ray at 12 o’clock and continuing up to the ray at 6 o’clock. (Number
correspondingly clockwise and counterclockwise for the two visual world halves.)
Define a rectangular co-ordinate system—a sort of checkerboard—in which the x-axis
represents ring number and the y-axis represents ray number. The dots for each visual
world half will now map onto that half’s checkerboard preserving connectedness.



378 S. W. WILSON

OOOOOOOO
-30°

o ©

OOO

0o 10°

-10° 5
o
o - 30 o O, 4

Q
OOOQQQoOOO‘O:

R

' 5
Q....

+~10°
o°
-10

SRS ENEAN, SYLVIAN

. 5 SULCUS ~.__

9

FiG. 13. Visual cortex of the Owl Monkey showing retino-cortical mapping relationships found by John

M. Allman of California Institute of Technology and Jon H. Kaas of Vanderbilt University. Please see

text for explanation. [From “Thinking about the Brain” by F. H. C. Crick. Copyright © 1979 by Scientific
American, Inc. All rights reserved.]



ON THE RETINO-CORTICAL MAPPING 379

Furthermore, because they form a checkerboard pattern, we have not lost the required
equal size and spacing of the cortical MSUs.

Crick (1979) shows an illustration of the retina-to-cortex mapping in the owl
monkey, as measured by Allman & Kaas. The illustration is reproduced here as
Fig. 13. The large elliptical area labeled V1 is the (left-hemisphere) primary visual
cortex. In the lower left part of the figure appears a representation of the rignt visual
field. By relating the contours formed, respectively, of squares, triangles and circles
in the two regions, and by relating the 10°, 30° and 60° rings, one can get an idea of
the actual mapping.

To a first approximation it would seem, remarkably enough, that in the owl monkey
Nature is doing something very like the ‘“ray-and-ring to checkerboard”” mapping
described above. If we assume that the left-hand end of the cortical ellipse contains
the foveal field MSUs (which would map without spatial distortion), and if we allow
for a little rounding at the ellipse boundary, then it looks very much as though rays
map into parallel horizontal lines and rings map into parallel vertical lines.

Whether the spacings are just right, as well, we cannot definitely tell from the
diagram. That is, (1) do equally spaced rays go into equally spaced horizontal lines
and (2) do exponentially spaced rings go into equally spaced verticals? On the first
question, the diagram provides almost no information. On the second, it is ambiguous.
Nevertheless, there is enough shown to suggest that deeper investigation may provide
positive answers to both questions. It would appear that the owl monkey mapping
lends support to the model that has been developed.

To gain insight into the properties of the ray-and-ring to checkerboard mapping it
is helpful to see its results “pictorially”’. Quotation marks are used because, while the
mapping’s input—an image on the retina—is a sort of picture, the mapping’s output
is certainly not one. Rather, the output is an array of messages (in a largely unknown
language) emanating from the hypercolumn-MSUs of the primary cortex. Neverthe-
less, the first thing we need to comprehend about the mapping is the way in which it
transforms spatial relations: that is, if an object on the retina has a certain shape,
what is the spatial ““shape” of the transformed object (i.e. its pattern of activity) on
the cortical surface?

To answer this, we can map what is perhaps the simplest feature of an image: the
local average intensity or gray level. With the aid of a computer, we can effectively
superimpose the array of Fig. 2 on a photograph, centering the array on some chosen
point (which becomes the center of vision). For each dot in the array we can compute
the average gray level in a circular neighborhood about the dot. We let the diameters
of these neighborhoods grow proportionately to distance from the center of vision,
so that each neighborhood corresponds to an MSU data field.

Next, we transfer the gray level averages to an output array of cells which are
indeed arranged like a checkerboard. In transferring we obey the rule of the mapping:
the information from the field centered at ray i, ring j goes to the cell at row i, column
J. To “see” the results of the mapping, we construct a display consisting of rows and
columns of small squares, then set the gray level of each square equal to the numerical
value in the corresponding cell of the output array. The display can be photographed
and compared with the original image. ,

Figure 14(a) shows the results of this process for an input picture which is a close-up
of a woman’s face. The retinal array was centered on the highlight in the right eye
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(a)

(b)

(c)

(d)

Fi1Gs. 14(a)-(d). Left column: retinal images of a woman seen at four distances. Right column: correspond-
ing cortical “pictures”. Fixation point is the highlight in her left eye.
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(her left eye). The curious bow-tie shape of the output cortical display arises as follows.
Each half corresponds to the primary visual cortex on one side of the brain. Further,
each half consists of a rectangular part and a triangular part. The rectangular part is
the rectangular array just described (for half the visual field). The triangular part
corresponds to half of the fovea (discussed below).

To aid visual interpretation the two halves have been arranged in the picture with
the foveal triangles adjacent. In fact, according to Fig. 13, the foveal areas are at
opposite ends of the two cortical strips. In addition, the cortical images are inverted
with respect to the correct orientation as given in Fig. 13. Finally, the cortical half
on our left in Fig. 14(a) belongs in the right hemisphere, etc. If we were to rotate
each cortical half through 180° and look through the back of the picture, the cortical
and image orientations would be correct as seen from behind the brain.

The foveal mappings come about as follows. A constant density of MSU data fields
has been assumed in the fovea, equal to the density at the fovea’s edge. Consistent
with this, R. C. Crumrine (who created this and the following cortical pictures) spaced
the foveal field centers at equal intervals along equally spaced rings. But this implies,
for example, that on a ring half way between the center and the fovea edge there are
half as many fields as are on the ring right at the edge. Thus, the number of fields
per ring is proportional to distance from the center. Now, if the fovea is split vertically
and the semicircular rings of each half are straightened into columns, the resulting
figure is a triangle. In Fig. 13, the cortical area associated with the fovea is roughly
triangular.

One further point on technique: in the photographs, the right-hand half of the
cortical image is shorter than the left half because the rest of the right half maps
mostly black (the black area on the woman’s left). By not displaying that part it was
possible to enlarge the image slightly.

Figures 14(a)-(d) show retinal—cortical pairs for the woman as seen at four different
distances, centered on the highlight in the right eye. Looking at the cortical images,
we see all parts of the woman’s face. The distortion is severe: one eye is gigantic, the
nose-mouth line has become practically horizontal, etc. Only the other eye, by accident
(it is on a horizontal ray with respect to the fixation point), looks nearly normal.

Despite the distortion, one quickly perceives the striking regularity of the series
from Figures 14(a) to 14(d). It looks as though the face—or at least the part from the
nose—mouth line leftward—maintains the same size and (distorted) shape on the cortex,
even though the retinal image size changes by a large factor. Only as the retinal image
becomes so small that much of the face falls on the fovea (Fig. 14(d)) does the cortical
image change markedly. We note, further, that the cortical face slides horizontally
along the cortex as the retinal face changes size.

It would appear, therefore, that one of the properties of the retino-cortical mapping
is to transform image size variations about a fixed position on the retina into positional
variations of an image of fixed size on the cortex. Put somewhat differently, the group
consisting of contractions and dilations (‘‘zooming”’) about a fixed point is mapped
into a one-dimensional translation group.

A second property of the retino-cortical mapping is seen when the retinal image is
rotated about the center of vision. We recall that retinal ‘“‘rays” go into horizontal
lines on the cortex; thus rotation makes the cortex image slide vertically. For example,
if the input image of Fig. 14(a) were rotated clockwise about the right eye highlight,
the cortical image would rise in the left half and fall in the right half. Lines of the
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image that disappeared from one half of the cortical image would re-emerge in the
other half. Thus, rotations about a fixed point are also mapped into a one-dimensional
translation group which is orthogonal to the first property’s translation group.

The mapping has behaved rather neatly so far. It is now time to acknowledge an
apparently disastrous property: cortical image size and shape are not at all constant
with movement of the center of vision. Figure 15 shows the result of applying the

Fi1G. 15. Cortical “pictures” of the woman of Fig. 14 with four different fixation points. Clockwise from
top left, fixation points are: (her) left eye, bridge of nose, right earring, right eye. The woman is seen at
the same distance as in Fig. 14(b).

mapping to the input picture of Fig. 14(b), with the center of vision on the right eye,
the nose, the left eye and an earring. Clearly, the cortical image of any chosen facial
feature varies wildly with fixation point. Is the visual system really equipped to handle
the same object under so many different cortical incarnations? Are the size and
rotation properties of the mapping worth such a price? In short, do we really have
this kind of mapping in our heads? The experimental evidence cited so far indicates
that we do. However, there is another kind of evidence, in contrast quite speculative,
which also supports the case for the mapping. The next section will attempt to suggest
how the visual system, now considered in its role as a perceptual or pattern recognizing
system, could find the characteristics of the mapping natural and advantageous.
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Pattern recognition

The size and rotation properties just discussed would certainly seem to offer advantages
for pattern recognition, for they suggest ‘‘normalization” processes: i.e. the reduction
of a range of variation to a standard form. However, there appears to be more to the
mapping’s contribution than just this. With the addition to the model of a small
amount of further structure, and by making a connection with voluntary eye move-
ments, we will obtain some important further results.

To prepare the ground for the augmented model, the reader is asked to participate
in some simple seeing and looking experiments. For equipment one needs only a large
(and unfamiliar) book or magazine having pictures; Life or Paris Match are excellent
for the purpose.

In the first experiment we will make some observations on peripheral vision. Place
the magazine closed on the table in front of you and slide your hand somewhere
between the pages. Now gaze at your index finger as though you could see it through
the magazine (you will find this to be possible) and, with your other hand, open the
magazine to that place. Without moving your eyes, observe what you can—and
cannot—make out in the periphery.

Most people are able to see very little, except near the finger tip. At the same time,
certain kinds of things seem nevertheless to stand out, even when quite far from the
center of vision. To make what is possibly an oversimplification: the things that stand
out are edges, particularly those that close on themselves to form a round object.
However, to be visible peripherally as a distinct entity an edge or round object must
be relatively separate from other similar edges or forms, the more so as the edge is
farther from the center of vision.

This has a familiar ring based on the earlier discussion of indirect vision. But doing
the experiment shows convincingly that when fixating a point, one’s ability to describe
most of the rest of a scene is really exceedingly limited and, apart from lightness and
color, is restricted to a vocabulary consisting essentially of ‘“‘edge”, ‘“round” and a
few degrees of textural coarseness.

For the second experiment, find in the magazine the image of a relatively simple,
though still interesting, object such as an automobile or a large capital letter. Look
at it and notice that when it is your intention to see such an object as a whole, you
tend automatically to direct your eyes so that the object is more-or-less centered
around your line of vision. This seems particularly true with letters; to view a letter
‘“as a whole” from an off-center gaze point seems peculiar and even uncomfortable.
But the same holds to a greater or lesser degree with other objects, especially those
having familiar shapes. There seems to be something special about centering.

In the third experiment, look again at the previous image; suppose it was that of
a car seen from the side. Look at some part of the car, say a wheel or the rear
side-window. You may find that as you now center on the part, the car as a whole,
although perceptually still present, has in a strange but nevertheless definite sense
moved into the perceptual periphery. It is as though the act of centering on an object
or object-part has the corollary effect of imposing a certain ordering or emphasis
ranking on other objects or “‘object-wholes’’ in the scene.

The retino-cortical mapping model will now be extended in a way that reflects the
foregoing experiments and also provides a greater degree of definiteness about the
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normalization processes sketched earlier. Some of the assumptions to be made will
have the character of hypotheses that should eventually be testable.

Human pattern recognition surely implies learning. The vast majority of the patterns
we respond to were learned at some point. Learning evidently involves the generation
of some sort of description of the objects learned. The arrangement or relationship
of descriptions in the overall structure of memory is not known. Yet it seems reasonable
to suppose that every new object attended to gets described in some language, the
description may be stored, and when that object or one like it is subsequently
recognized, a match has in some sense been made with the stored description.

The first assumption in extending the model is that there is a high degree of similarity
between (a) the “vocabulary” used for these stored descriptions, (b) the vocabulary of
the MSU reports and (c) the minimal distinct visual elements that we are able to make
out peripherally. Specifically, the stored description is assumed to use the MSU report
vocabulary directly, and it is further suggested that we can guess the elements of this
common vocabulary by looking carefully in peripheral vision. When we look there,
the minimal distinct forms seem to be the edge and the round object, and we also
have crude sensations of texture. [Lightness and color are certainly visual elements;
but they seem to be non-locally determined, as discussed by Land (1977), and will
be omitted here.]

The second assumption is that, while for well-learned objects we may have a number
of stored descriptions, there is a principal stored description which consists of the ensemble
of MSU reports that the mapping produces when the object is centered about the line of
vision. This ensemble, of course, by the basic properties of the mapping and of the
MSUs, is size-normalized; that is, it gives the same cortical picture independent of
retinal size. Note that this means that not only the spatial extent of the cortical
“picture”’, but also the specific ensemble of reports within it, is independent of retinal
size.

It is worth asking at this point about the grain of the principal stored description.
In other words, how finely detailed is the description? Since, according to the first
assumption, the MSU reports constitute the elementary vocabulary, this question
amounts to asking: how many reports make up the description? Or, since for a centered
object the density of MSUs near the object’s edge is least—and therefore might best
be said to measure graininess—what is that density?

We can get at the answer by supposing first that the object is exactly circular. Then,
we may note that by the definition of the angle Cy;, there will be something of the
order of 4m/Cwu (depending on overlap, etc.) fields inspecting the perimeter of the
circle regardless of the size of the circle. What if the object is not circular? In this
case, a little experimentation with the array of Fig. 2 will persuade one that, unless
the object is exceedingly irregular, the number 477/ Cy still gives a good approximation
to the number of fields on the object’s perimeter.

Thus we have the important result that the grain of all stored descriptions is the
same, and is proportional to 1/Cy, the reciprocal of the MSU array’s characteristic
angle. This has an interesting consequence. Suppose an object has a local part which
is too small or too detailed to be made out well when the object is seen in a centered
view. This would be the case if the angle which the part subtended with respect to
object center were less than Cy. To see the part better the eye might move to and
center on it. The striking thing is that now the eye will see the part just as well as it
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previously saw the whole object—since, as just found, all descriptions have equal
grain. The system seems designed to treat parts and wholes with equal processing
efficiency.

A further observation related to grain shows an important pattern recognition
advantage of the mapping as contrasted with a visual system having uniformly spaced
and sized fields. Suppose one is shown a relatively interesting object, for example a
doll, at a distance of 10 ft. Suppose one centers on it, one’s MSUs inspect it and their
reports are duly filed away. A week later the doll is seen again, but at a distance of
2 ft. The MSUs again inspect and report, the set of reports exactly matches the set
that was stored, and the doll is recognized. At both ends of the process the MSUs
have gone through a perfectly routine procedure. Although the scales differ by a
factor of five, the results match.

Very different would be the situation with a uniform array of equal sized fields.
Now, the set of reports for the doll’s larger image is in general entirely different from
before. To achieve recognition, it is necessary to interpret correctly parts of the image
as being the same as parts before, except five times larger. But how can this be done
since the system does not know what scale factor to apply? One might propose dividing
by the doll’s overall size so as to get a ‘‘normalized” description. However, the doll
would typically be presented against a varied background, which would make determin-
ing its size—prior to recognizing it—essentially impossible. For the retino-cortical
mapping, these problems do not arise.

The third and fourth assumptions in extending the model address (1) the fact that
size invariance still leaves images which vary in position on the cortex—thus it is not
quite obvious how to recognize them by simple matching and (2) the fact that off-center
images of an object differ tremendously from the centered image—thus it is not
obvious how they can be recognized at all.

A solution to the first problem is to assume the existence of a process which scans
the cortical image in time. Imagine a pair of vertically oriented ‘‘scanning bars’’ which
are initially superimposed at the middle of the bow-tie cortex of Fig. 14, but then
separate and move at constant speed yntil they reach the ends of the figure, at which
point they return instantly to the middle and repeat. As the bars move over the cortex
they read out, in parallel, the MSU reports of each successive column. From the
viewpoint of retinal space, the scanning would be equivalent to a circle which starts
at the center of vision, dilates, reaches a maximum radius, then shrinks instantly to
the center and repeats. The rate of dilation would be exponential to correspond to a
uniform rate of scanning on the cortex.

Now, imagine that the cortical scanning process feeds a multi-channel shift register,
where the number of channels equals the number of cortical rows and the length
equals the number of columns. If we now scan each of the cortexes in Fig. 14, the
distorted image of the woman’s face will eventually pass any particular point along
the shift register at which we might choose to set up an observation station. If we had
a “template” of the face, and kept watch over a section of the shift register as large
as the template, it is clear that the template would eventually match the reports in
the shift register. Thus, the woman would be recognized, independent of retinal size
and cortical position. If we wished to know the retinal size, we could get that from
the phase of the scanning process at the instant of match. (The reader will note that
we have not assumed the existence of a second scan, orthogonal to the first, for



386 S. W. WILSON

normalizing image rotation. Two scans at once would certainly be complex. Fortunately
for the model, human visual perception seems only very weakly rotation invariant.)

The scanning assumption is similar to a proposal made by Wiener (1948) to account
for size invariance. Referring to an idea of McCulloch (Pitts & McCulloch, 1947),
Wiener suggested that the different layers of the cortex, when successively excited by
a scanning process, would function upon the retinal image like a variable zoom lens,
with some further station performing a template match when the image zoomed
through the correct standard size. In the light of Hubel & Wiesel’s work, we would
find this model hard to accept today. But the scanning assumption of the present
paper is clearly a relative in some degree of the scanning proposal made by Wiener
and McCulloch. Furthermore, Wiener’s suggestion that the scanning frequency might
be related to the alpha-rhythm remains provocative.

Returning to the shift register, let us imagine that there is a standard section of it
where all templates of learned objects wait looking for their own images to go by.
Suppose, once again, that we are looking at the wheel of a car. What will occur at
the shift register’s matching area as the scan proceeds through its cycle? Early in the
cycle the cortical image of the wheel will go by. Since that image is centered and
presumably very well learned, it will be strongly matched by an appropriate template.
__Later, the image of the outline of the car will pass (it may be helpful to think of the
dilating retinal circle), but this will not be what was earlier termed the car’s ““principal
description”, since the car as a whole is not centered.

Will the car’s image be matched at all? It will be assumed that the template system
makes some response, but a weaker one than it would make to the car’s principal
description. In fact, it is proposed that the car’s off-center image is matched by a
template which would fit a variety of quite different cars as seen from that fixation
point. The underlying assumption is that we indeed have templates for off-center objects,
but they are less and less specific in their descriptions as the corresponding object is
located more and more toward the periphery. At the extreme, one has small objects,
well out in the periphery, which are matched by a rudimentary blob template.

This idea is hard to accept. If true, how for example do we recognize our own
car—as we surely do—on those occasions when we happen to see it off-center? The
suggestion is that we recognize it from a combination of a generalized off-center
template match and the context of the situation. If we were sitting in a darkened
room and unexpectedly had the car briefly flashed on a screen in such a way that our
point of fixation was the wheel, we might be quite unsure whether it was our own
automobile, or even our own make. Our main response would be to try to move the
eyes so as to achieve center and ‘‘see better”.

From another point of view, the notion that we need to understand how we are
able to recognize objects anywhere on the retina may well be a non-problem generated
by confusion with the fact that we can see sharply anywhere in the field of view, if
we move our eyes there. In reality, we do not see things at all sharply indirectly. Our
ability to recognize indirectly—when not contextually supported—may be quite
limited, as well.

Let us return to the cortical scanning of the scene with the car. At the beginning
of the scan, we said there was a strong match with the wheel template. There follows
a weaker match with an off-center generalized car template. Let us imagine the car
is seen from a distance standing before the door of a center-entrance colonial house.
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Although we are looking off-center at the car, we will still be essentially on-center
with respect to the house, since the latter is much larger. Consequently the next event
in the scan will be a strong ‘‘center-entrance colonial” match (assuming that style to
be familiar). If the house has a small detached garage next to it, this will appear in
the scan as a rather poorly differentiated blob. Should the eye now shift, say to the
garage blob, the whole hierarchy will change, with the garage now finding strong
match and the other objects becoming secondary.

In general, as the eye moves voluntarily (or even just wanders) about a scene, each
important form, regardless of its size and the presence of other forms, will eventually
be articulated and recognized. It is only necessary that at some point the form be
more-or-less centered. The above four assumptions thus lead to a model in which a
whole scene is analyzed in a simple, orderly, and psychologically plausible way. (In
the light of these considerations, it is amusing to re-view the venerable ‘“My Wife and
My Mother-In-Law” picture reproduced here as Fig. 16; it is hard to see one woman
while centered on the other.)

FiG. 16. “My Wife and My Mother-in-law’’ created by W. E. Hill and published in Puck in 1915.

For simplicity, the matching process has been described in terms of “templates”,
but it is clear that a more powerful and general recognizing and learning structure
could be involved, perhaps along the lines of the so-called production systems (Davis
& King, 1976). Briefly, a production system is a set of condition-action rules in which
when a rule’s condition is satisfied, it takes the specified action—subject perhaps to
a competition with other currently satisfied rules.

In the present context, the condition part of a rule could be a template to match
against a cortical pattern; the action part could be a specific eye movement (to see
better, say). But also, the action part could be the generation of an internal message,
and the condition part a template looking to match some such message. Thus a
potential for chained and complex behavior would arise. Learning would be the setting
up of new templates, perhaps by manipulating existing ‘‘good’ ones, all in accordance
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with experience, including a reward structure. Along this line, an adaptation of ideas
such as those of Holland (1975) to a computer or robot version of the present model
would seem especially interesting to pursue experimentally.

Other work

That the retino-cortical mapping has the mathematical form we have found has also
been concluded by Weiman & Chaikin (1979), and by Schwartz (1977). Weiman &
Chaikin principally propose a computer architecture for picture processing based on
the complex logarithmic mapping, the formal properties of which they analyse exten-
sively. They go on to present physiological and perceptual evidence that the retino-
cortical mapping embodies the same function. Schwartz directly motivates the complex
logarithm physiologically, presents evidence that it may be widely utilized in the
nervous system, and suggests developmental implications. Both papers briefly discuss
implications for perception and pattern recognition. While there are similarities
between the present paper and the papers of these authors, it is perhaps indicative
of the richness of this new field that the amount of overlap among all three is quite small.

Harmon (1960) built a pattern recognition machine which dealt with size (and
orientation) variations of letters and geometric figures by means of a dilating circular
scan. Although it did not have the logarithmic property, Harmon’s machine is clearly
a direct ancestor of the present concept.

John McCann showed me the Hubel & Wiesel data on field size and eccentricity at the time
I was investigating the exponential MSU array (Fig. 2) in connection with peripheral vision
and size-independence in pattern recognition. His idea that the discoveries of Hubel & Wiesel
might relate to various size-independent phenomena, including the visibility of low-frequency
gradients, caused me to take the MSU model much more seriously.

I am grateful for helpful conversations with Jerome Lettvin, Barbara Sakitt and Charles
Stromeyer.
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