
Using Convex Hulls to Represent Classifier Conditions

Pier Luca Lanzi
Dipartimento di Elettronica e Informazione
Politecnico di Milano, I-20133, Milano, Italy

Illinois Genetic Algorithm Laboratory (IlliGAL)
University of Illinois at Urbana Champaign,

Urbana, IL 61801, USA

pierluca.lanzi@polimi.it

Stewart W. Wilson
Prediction Dynamics, Concord, MA 01742, USA

Illinois Genetic Algorithm Laboratory (IlliGAL)
University of Illinois at Urbana Champaign,

Urbana, IL 61801, USA

wilson@prediction-dynamics.com

ABSTRACT
This papers presents a novel representation of classifier con-
ditions based on convex hulls. A classifier condition is rep-
resented by a sets of points in the problem space. These
points identify a convex hull that delineates a convex re-
gion in the problem space. The condition matches all the
problem instances inside such region. XCSF with convex
conditions is applied to function approximation problems
and its performance is compared to that of XCSF with in-
terval conditions. The comparison shows that XCSF with
convex hulls converges faster than XCSF with interval con-
ditions. However, convex conditions usually do not produce
more compact solutions.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms, Performance.

Keywords
LCS, XCS, Representation, Convex Hulls.

1. INTRODUCTION
Effective generalization depends both on how the system

partitions the problem space and on how the system models
the problem solution over the resulting partition. Learning
classifier systems usually partition a binary problem space
using ternary conditions and map each problem subspace
into a constant prediction value. More recent models such
as XCSF [17] partition the problem space using typical rep-
resentations (ternary [9], interval [16], and ellipsoids [1]) and
model the problem solution by means of function approxi-
mators (e.g., linear [17] and polynomial [7]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

In this paper we introduce another representation of clas-
sifier conditions, based on convex hulls, that is particularly
suited for real inputs (Section 3). A classifier condition is
represented as sets of points in the problem space. These
points correspond to a convex hull that identifies a con-
vex region in the problem space. The condition matches
all the problem instances inside such convex region. We
apply XCSF with convex conditions to function approxima-
tion problems taken from the classifier system literature [1].
First, in Section 5, we compare the performance of XCSF
with convex conditions with a fixed number of points (3,
5, 10, and 15) to that of the typical interval representation.
We show that, when few points are used, XCSF with convex
conditions tends to converge faster than XCSF with interval
conditions and produces solutions that are on the average
more accurate. In particular, the simplest convex conditions
possible, consisting of at most three points, converges faster
than all the other versions of XCSF. However, convex repre-
sentation generally evolves populations that are larger than
those evolved with interval conditions. We extend this com-
parison to convex conditions involving a variable number of
points (Section 6). The experiments we present show that,
in term of prediction error, convex conditions with a variable
number of points always provide a tradeoff between condi-
tions with few point (3 and 5) and conditions with many
points (10 and 15). However they usually converge slower
than interval conditions and, because of the typical bloating
of variable sized representations, much larger populations.
Then, in Section 7, we consider the problem of constraining
the convex hull to the domain which potentially can intro-
duce a generalization bias. We compare constrained and
unconstrained convex conditions: on the problems consid-
ered in this paper, no significant difference is found. Finally,
we show how convex conditions can be coupled with more
effective prediction [7] and better prediction update [8] to
further improve the performance of convex conditions.

1481

2. XCS WITH COMPUTED PREDICTION
Computed prediction [17] replaces the usual classifier pre-

diction with a parameter vector w and a prediction function
p(st, w), which defines how classifier prediction is computed
from the current input st and parameter vector w. In addi-
tion, the usual update of the classifier prediction is replaced
by the update of the classifier parameter vector w. The pre-
diction function p(st,w) is usually defined as stw but more
complex functions can be used [7], as well as more simple
ones. In fact, by using just one parameter (i.e., w = 〈p〉)
and the prediction function p(st,w) = p, XCSF actually
implements XCS.

At time step t, XCSF builds a match set [M] contain-
ing the classifiers in the population [P] whose condition
matches the current sensory input st; if [M] contains less
than θmna actions, covering takes place. For each action a
in [M], XCSF computes the system prediction P (st, a) as the
fitness-weighted average of all matching classifiers that spec-
ify action a. The values of P (st, a) form the prediction array.
Next, XCSF selects an action to perform. The classifiers in
[M] that advocate the selected action are put in the current
action set [A]; the selected action is sent to the environment
and a reward r is returned to the system together with the
next input state st+1 XCSF uses the incoming reward to
update the parameters of classifiers in action set [A]−1 cor-
responding to the previous time step. At time step t, the
expected payoff P is computed as r−1 + γ maxa∈A P (st, a),
where r−1 is the reward received at the previous time step.
The expected payoff P is used to update the weight vector
w of the classifier in [A]−1 using a modified delta rule with
learning rate η (see [17] for details). Then the prediction
error ǫ and the fitness are updated as usual [2]. The ge-
netic algorithm is applied as in any other XCS model [17].
The weight vectors of offspring classifiers are set to a fitness
weighted average of the parents weight vectors; all the other
parameters are initialized as usual [2].

3. CONDITIONS BASED ON
CONVEX HULLS

Given a set of points P in an n-dimensional space, the
convex hull of P , H(P), is defined as the smallest convex
region enclosing the points in P . In two dimensions, the
convex hull is found conceptually by stretching a rubber
band around the points so that all of the points lie within
the band. For instance, the eight points (P = {p1, . . . , p8})
in Figure 1a are enclosed in the convex hull depicted with
a dashed line in Figure 1b and identified by the five solid
points (H(P) = {p1, p2, p8, p7, p4}).

The idea behind the use of convex hulls to represent clas-
sifier conditions is extremely simple. We represent classifier
conditions as sets of points in the problem space; a condition
matches all the states enclosed in the convex hull that the
condition identifies. For instance, suppose that a classifier
condition is represented by the eight points in Figure 1a;
such condition will match all the points in the correspond-
ing convex hull, depicted by the dashed lines in Figure 1b;
thus, given the states s1 and s2 in Figure 1, the condition
will match s1 but not s2.

Convex hull representation is a generalization of the inter-
val representation introduced by Wilson [16]. In fact, inter-
val conditions are a special case of convex hulls, but convex
hulls allow the partitioning of the problem space into more

complex regions. Convex hulls can also represent structures
similar to those provided by the more recent ellipsoidal con-
ditions [1]. In fact, ellipsoids define convex regions that may
be approximated through polygons with an adequate num-
ber of points. In a different way, the simplest form of convex
hulls, the triangle in two dimensions, can be used to parti-
tion the problem space producing results similar to those
produced by Delaunay triangulation [3]. In the following we
describe the modifications to XCSF that the introduction of
convex hull representation requires.

Conditions. When representing classifier conditions with
a set of points, we can either use a fixed number of points
(np) for all the conditions in the population or a variable
number of points for each condition. In the former case, we
set an upper limit to the complexity of the convex region
that the condition can represent but the genetic search is
facilitated. In the latter case, the more general one, we allow
conditions that represent arbitrarily complex convex regions
but we increase the complexity of the genetic search and we
also introduce the bloating phenomena that are typical with
variable size representations [13, 14].

Matching. To match a condition against the current in-
put state s we consider the convex hull that the condition
represents, then we check whether s lies inside the convex
hull. The first step is performed only once when the clas-
sifier is generated and given np points it has a complexity
of order O(np log np). In the experiments considered here,
limited to two dimensional problem spaces, we compute con-
vex hulls by using the Graham’s scan algorithm [6] avail-
able in the Computational Geometry Algorithms Library
(CGAL) [4]. The second step can be generally performed
using algorithms for convex hull computation though in two
dimensions a simpler solution exists. Given a convex hull
of n points p1, . . . , pn taken in clockwise (or counterclock-
wise) order to test whether s lies inside the convex region
we consider all the vectors connecting pi to pi+1 and the
vector connecting pn to p1; then we test whether s lies to
the right of all the vectors (to the left if the points are in
counterclockwise order); if this is the case, then s lies inside
the convex hull determined by p1, . . . , pn; otherwise s lies
outside the convex hull. Note that since the algorithms that
compute the convex hull in two dimensions return a set of
points in clockwise order the whole match operation is just
O(np).

Covering. To generate a covering condition of np points
for an input state s, np random points are generated in the
surroundings of s. For this purpose, we use polar coordinates
with origin in s and we generate np angles, between 0 and
2π, and np radial distances between 0 and r0. As in the
interval representation, the parameter r0 controls the size of
the covering region.

Discovery Component. The genetic algorithm works as
usual. With probability χ crossover is applied and with
probability µ mutation is performed on each allele. When
conditions consist of a variable number of points, the typical
crossover and mutation for variable size representation are
applied (e.g., [13]).

Subsumption Deletion. To implement subsumption for
conditions based on convex hulls we need to test whether one
condition (C1) is more general than another condition (C2).
This test can be easily implemented as follows: first the two

1482

(a) (c) (c)

Figure 1: (a) Eight points in the Cartesian space; (b) the corresponding convex hull depicted as a dashed
line and identified by the points p1, p2, p8, p7, and p4; (c) the convex hull enclosing the points in (a).

corresponding convex hulls H1 and H2 are considered; then
the convex hull H for H1

S

H2 is computed; if H is equal
to H1, it means that C1 is more general than C2 since H1

contains H2; if H is equal to H2, it means that C2 is more
general than C1 since H1 contains H2; otherwise none of the
two conditions is more general than the other one.

4. DESIGN OF EXPERIMENTS
To apply XCSF to function approximation, we follow the

standard experimental design used in the literature [15].
Each experiment consists of a number of problems that the
system must solve. Each problem is either a learning prob-
lem or a test problem. In learning problems, the system se-
lects actions randomly from those represented in the match
set. In test problems, the system always selects the action
with highest prediction. The genetic algorithm is enabled
only during learning problems and it is turned off during
test problems. The covering operator is always enabled, but
operates only if needed. Learning problems and test prob-
lems alternate.

In function approximation problems, an example
〈(x, y), f(x, y)〉 of the target function f(x, y) is randomly
selected; x, y is input to XCSF which computes the approxi-
mated value f̂(x, y) as the expected payoff of the only avail-
able dummy action; the action is virtually performed (the
action has no actual effect), and XCSF receives a reward
equal to f(x, y). XCSF learns to approximate the target
function f(x, y) by evolving a mapping from the inputs to
the payoff of the only available action. All the statistics
reported in this paper are averaged over 20 experiments.

5. THREE DIMENSIONAL FUNCTIONS
In the first set of experiments we apply convex conditions

on the three following functions [1]:

f1(x, y) = mod(⌊3x⌋, 3)/3 + mod(⌊3y⌋, 3)/3 (1)

f2(x, y) = mod(⌊2(x + y)⌋, 4)/6 (2)

f3(x, y) = sin(2π(x + y)) (3)

where x ∈ [0, 1], y ∈ [0, 1], ⌊·⌋ is the floor function, and
“mod” is the common residue. Function f1 is an axis-parallel
step function (Figure 2a), f2 is an axis-diagonal step func-
tion (Figure 2b), and f3 is an axis-diagonal sinusoid (Fig-
ure 2c).

In the first experiment we apply convex hulls with con-
ditions of 3, 5, 10, and 15 points to approximate f1; the
parameters are set as follows: N = 6400; η = 0.5; β = 0.5;
α = 0.1; ν = 5; χ = 1.0, µ = 0.05, ǫ0 = 0.01; θdel = 20;
θGA = 20; δ = 0.1; GA-subsumption is on with θsub = 50;

while action-set subsumption is off; r0 = 1.0, and x0 = 1.
The mutation of convex conditions in this case is imple-
mented as usual, i.e., with probability µ each allele is mu-
tated using m0 = 0.2 [17]. Figure 3a compares the perfor-
mance of interval conditions with that of convex hulls using
different number of points. Figure 3a shows that convex con-
ditions converge faster only when they are limited to three
points, i.e., only when conditions can at most represent tri-
angles. As the number of points increases the convergence
becomes slower and slower: when conditions consists of 10
or 15 points, XCSF cannot converge below the required er-
ror threshold ǫ0. We performed a statistical analysis on the
curves in Figure 3a to test whether the differences in the per-
formances are statistically significant. For this purpose we
followed the approach introduced in [12] which is based on a
one-way analysis of variance or ANOVA. The analysis shows
that convex conditions with three points are significantly
faster than all the others versions at a 99.99% confidence
level. The following post-hoc procedures we applied (SNK,
Scheffé, Bonferroni, and Tukey [5]) showed that the perfor-
mance of interval conditions and convex conditions with 5
points are similar, i.e., they are not statistically different at
a 99.99% confidence level.

In terms of size of the solutions evolved, interval condi-
tions perform better than convex conditions. Figure 3b
shows that the solutions evolved by XCSF with interval con-
ditions are much smaller than those evolved by XCSF with
convex hulls. Figure 3c reports the average generalization
in the current action set measured as the average perimeter
of the convex hulls that conditions in the action set repre-
sent. As can be noted for three of the four settings (with
3, 5, and 10 points) the average generality tends to con-
verge to a value just above 1, i.e., near to the perimeter
of the nine areas that allow an accurate maximally general
representation of f1. Overall the results for the function f1

suggest that convex conditions may converge faster to an
accurate approximation, given an adequately small number
of condition points; nevertheless, when the problem space is
favorable to the interval representation, convex conditions
may perform worse in terms of generalization.

In the next experiment, we apply convex conditions to f2:
being f2 an axis diagonal step function we should expect an
improvement in the performance of convex conditions which
can easily represent oblique regions. Figure 4a compares the
prediction error of interval conditions and convex conditions
on f2. Both convex conditions with 3, 5, and 10 points show
a faster convergence than interval conditions; convex condi-
tions with 10 points are still slower than conditions of 3 and
5 but in this case they can reach a prediction error below
the target threshold ǫ0 which is not reached by convex condi-

1483

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

XY

f 1(x
,y

)

(a)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

XY

f 2(x
,y

)

(b)

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
−1

0

1

Y
X

f 3(x
,y

)

(c)

Figure 2: (a) f1, an axis parallel step function; (b) f2, an axis diagonal step function; (c) f3, an axis diagonal
sinusoidal function.

tions with 15 points. Also for f2, we performed a statistical
analysis on the curves in Figure 4a following the approach
in [12]. The analysis shows that all the versions of XCSF
reported in Figure 4a perform significantly different: again
convex hulls significantly improve the learning capabilities
of XCSF with respect to the interval conditions. In function
f2 convex conditions improve in terms of the size of the pop-
ulations evolved. Figure 4b shows that convex hulls with 3,
5, and 10 points reach a population size that is just slightly
higher than that evolved by interval conditions. Conditions
with 15 points initially tend to have populations consisting
mainly of macroclassifiers then, they converge toward much
smaller populations as evolution proceeds. Again, the av-
erage generality of the classifiers in the current action set
(Figure 4c) tends to the same value for all the four settings.

Finally, we compare interval conditions and convex con-
ditions on the diagonal sinusoidal function f3. The results
reported in Figure 5 confirm what found for the function
f2. Convex conditions with 3 and 5 points converge faster
than interval conditions to a prediction error below ǫ0; con-
ditions with 10 and 15 points converge slower but, as in
the previous experiment, at the end the prediction error is
smaller than that obtained with interval conditions. The
usual statistical analysis [12] applied to the curves in Fig-
ure 5 confirms the previous analyzes: all the XCSF versions
considered perform significantly different, i.e., convex hulls
significantly improve the learning capabilities of XCSF. In
terms of generalization, on this particular problem, convex
conditions can evolve solutions than are slightly more com-
pact than those evolved by interval conditions (Figure 5b)
both for 3, 5, and 10 points. As in the previous experiments,
with 10 and 15 points the populations initially contain mi-
croclassifiers but they become much more compact at the
end. Also in this case, the average generality of the classi-
fiers in the current action set (Figure 5c) converges to the
same value for all the four settings.

6. VARIABLE SIZE REPRESENTATION
We apply XCSF to convex conditions with a variable num-

ber of points. Conditions are represented directly as convex
hulls, instead of as set of points; covering conditions are
created by generating 10 random points around the current
input, then computing the corresponding convex hull; con-
ditions are recombined using the usual one point crossover
for variable size representations [13] while mutation works
as before.

Figure 6 compares the performance of variable size con-
vex conditions with that of fixed size ones on function f1.
Variable size conditions converge faster than conditions with
10 and 15 points but are slower than the simpler conditions
with 3 and 5 points. As anticipated in Section 3 variable
size representation introduces a bloating effect: the number
of macroclassifiers in the population tend to grow as much
as possible as in the case of symbolic conditions [10]. How-
ever, in this case the number of macroclassifiers does not
grow as much as for the case with 15 points. These results
are confirmed both for f2 and f3 (see [?] for details): XCSF
with variable size conditions converges faster than with 10
and 15 points but slower than with 3 and 5 points. There is
a bloating effect, the number of classifier in the population
is between 75% and 80% of N and, in contrast to the case
of 10 and 15 points, in this case the population does not
shrink. Also in this case, the average generality of classifiers
in the current action set tend to the same value as in the
previous experiments with fixed size conditions.

7. CONSTRAINED VS. UNCONSTRAINED
Interval conditions are usually constrained to the input

domains by applying heuristics after crossover and muta-
tion [16]. However, with convex conditions such heuristics
may pose issues. Consider the condition depicted with a
dashed line in Figure 7a, the problem space is represented
by the square gray area. The simplest heuristic to constrain
such condition consists of projecting the points outside the
domain on the domain border – as done with interval con-
ditions [16]. This implies changing the original condition to
that in Figure 7b. However, the new condition is less gen-
eral in that it matches less instances leaving out many bor-
der points. This phenomenon does not happen with interval
conditions because their shape fit the typical hyperrectan-
gular input space well. To evaluate the influence of such
phenomenon on the performance of convex conditions, we
compare constrained and unconstrained convex conditions
on the previous problems.

We apply XCSF with unconstrained convex hull to the
three functions f1, f2, and f3. In these experiments we apply
one point crossover instead of uniform crossover. Figure 8
reports the prediction error and the number of classifiers for
constrained and unconstrained convex conditions for f2. In
contrast to what we may expect, we find no difference in
performance between constrained and unconstrained con-
vex hulls in terms of prediction error. Instead, in terms of

1484

number of macroclassifiers in the population, unconstrained
convex conditions evolve larger solutions. Noticeably, all the
versions of XCSF with convex conditions converge more or
less to the same number of classifiers, 50% of N . The little
difference in the performance disappears as the number of
points increases. The same type of behavior is confirmed
for f1 and for f3 (see [11] for details). Finally, we note that
overall with one point crossover XCSF converges slightly
slower than with uniform crossover (Figure 8) and this also
happens in f1 and f3.

8. IMPROVING PERFORMANCE
In [8] it has been shown that generalization in XCSF can

be improved by speeding up the convergence of classifier pre-
diction and by using polynomials instead of linear prediction
(see also [7]). We can combine the two proposed solutions to
improve the performance of XCSF with convex conditions.
Figure 9 reports the prediction error and the number of clas-
sifiers for XCSF with recursive least squares with quadratic
approximators in f3 with the same parameters setting used
in the previous experiments. In this case, recursive least
squares and quadratic approximation improve the conver-
gence toward a slightly more accurate solution, but the so-
lutions evolved are comparable to the previous experiments.

9. CONCLUSIONS
We have introduced a new representation for classifiers

conditions that exploits points in the problem space to rep-
resent convex regions in the same space. The experimen-
tal results we report show that convex conditions can con-
verge faster than interval conditions when few points are in-
volved. The statistical analysis of the reported results show
that such an improvement is significant at a 99.99% con-
fidence level. As the number of points increases, i.e., the
size of the conditions increases, convex representation con-
verges slower. The experiments also show that convex con-
ditions with a variable number of points can actually provide
a tradeoff between the convergence speed of conditions with
few and many points. However, convex conditions tend to
evolve solutions that are on the average at least as com-
plex as those produced by interval conditions. Further in-
vestigations include application to multistep and supervised
classification tasks.

10. REFERENCES
[1] M. V. Butz. Kernel-based, ellipsoidal conditions in the

real-valued XCS classifier system. In H.-G. Beyer,
U.-M. O’Reilly, D. V. Arnold, W. Banzhaf, C. Blum,
E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb,
J. A. Foster, E. D. de Jong, H. Lipson, X. Llora,
S. Mancoridis, M. Pelikan, G. R. Raidl, T. Soule,
A. M. Tyrrell, J.-P. Watson, and E. Zitzler, editors,
GECCO 2005: Proceedings of the 2005 conference on
Genetic and evolutionary computation, volume 2,
pages 1835–1842, Washington DC, USA, 25-29 June
2005. ACM Press.

[2] M. V. Butz and S. W. Wilson. An algorithmic
description of XCS. Journal of Soft Computing,
6(3–4):144–153, 2002.

[3] M. de Berg, O. Schwarzkopf, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms

and Applications. Springer-Verlag, 2000. Second
Edition.

[4] A. Fabri, E. Fogel, B. Gartner, M. Hoffmann,
M. Karavelas, L. Kettner, S. P. M. Teillaud,
R. Veltkamp, and M. Yvinec. Computational geometry
algorithms library: User and reference manual. release
3.1, 2004. Available at http://www.cgal.org.

[5] S. A. Glantz and B. K. Slinker. Primer of Applied
Regression & Analysis of Variance. McGraw Hill,
2001. second edition.

[6] R. L. Graham. An efficient algorithm for determing
the convex hull of a finite planar set. Information
Processing Letters, 1:132–133, 1972.

[7] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. Extending XCSF beyond linear
approximation. In Genetic and Evolutionary
Computation – GECCO-2005, Washington DC, USA,
2005. ACM Press.

[8] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. Generalization in the xcsf classifier system:
Analysis, improvement, and extension. Technical
Report 2005012, Illinois Genetic Algorithms
Laboratory – University of Illinois at
Urbana-Champaign, 2005.

[9] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. XCS with Computed Prediction for the
Learning of Boolean Functions. In Proceedings of the
IEEE Congress on Evolutionary Computation –
CEC-2005, Edinburgh, UK, 2005. IEEE.

[10] P. L. Lanzi and A. Perrucci. Extending the
Representation of Classifier Conditions Part II: From
Messy Coding to S-Expressions. In W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of
the Genetic and Evolutionary Computation
Conference (GECCO 99), pages 345–352, Orlando
(FL), July 1999. Morgan Kaufmann.

[11] P. L. Lanzi and S. W. Wilson. Classifier conditions
based on convex hulls. Technical Report 2005024,
Illinois Genetic Algorithms Laboratory – University of
Illinois at Urbana-Champaign, 2005.

[12] J. H. Piater, P. R. Cohen, X. Zhang, and
M. Atighetchi. A Randomized ANOVA Procedure for
Comparing Performance Curves. In Machine Learning:
Proceedings of the Fifteenth International Conference
(ICML), pages 430–438, Madison, Wisconsin, July
1998. Morgan Kaufmann, San Mateo, CA, USA.

[13] T. Soule. Operator choice and the evolution of robust
solutions. In R. L. Riolo and B. Worzel, editors,
Genetic Programming Theory and Practice,
chapter 16, pages 257–270. Kluwer, 2003.

[14] T. Soule and R. B. Heckendorn. An analysis of the
causes of code growth in genetic programming.
Genetic Programming and Evolvable Machines,
3(3):283–309, Sept. 2002.

[15] S. W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[16] S. W. Wilson. Mining Oblique Data with XCS.
volume 1996 of Lecture notes in Computer Science,
pages 158–174. Springer-Verlag, Apr. 2001.

[17] S. W. Wilson. Classifiers that approximate functions.
Journal of Natural Computing, 1(2-3):211–234, 2002.

1485

0.00

0.05

0.10

0.15

0.20

 0 50 100 150 200 250 300 350 400 450 500

P
R

E
D

IC
T

IO
N

 E
R

R
O

R

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

ε0

(a)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

 0 50 100 150 200 250 300 350 400 450 500

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

(b)

0.00

1.00

2.00

3.00

4.00

5.00

 0 50 100 150 200 250 300 350 400 450 500

G
E

N
E

R
A

LI
T

Y

NUMBER OF LEARNING PROBLEMS (1000s)

3 PTS
5 PTS

10 PTS
15 PTS

(c)

Figure 3: XCSF with convex conditions of different
number number of points applied to f1: (a) pre-
diction error; (b) number of classifiers in the pop-
ulations; (c) average generalization in the current
action set. Curves are averages over 20 runs.

0.00

0.01

0.02

0.03

0.04

0.05

 0 50 100 150 200 250 300 350 400 450 500

P
R

E
D

IC
T

IO
N

 E
R

R
O

R

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

ε0

(a)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

 0 50 100 150 200 250 300 350 400 450 500

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

(b)

0.00

1.00

2.00

3.00

4.00

5.00

 0 50 100 150 200 250 300 350 400 450 500

G
E

N
E

R
A

LI
T

Y

NUMBER OF LEARNING PROBLEMS (1000s)

3 PTS
5 PTS

10 PTS
15 PTS

(c)

Figure 4: XCSF with convex conditions of different
number number of points applied to f2: (a) pre-
diction error; (b) number of classifiers in the pop-
ulations; (c) average generalization in the current
action set. Curves are averages over 20 runs.

1486

0.00

0.05

0.10

0.15

0.20

 0 50 100 150 200 250 300 350 400 450 500

P
R

E
D

IC
T

IO
N

 E
R

R
O

R

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

ε0

(a)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

 0 50 100 150 200 250 300 350 400 450 500

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

(b)

0.00

1.00

2.00

3.00

4.00

5.00

 0 50 100 150 200 250 300 350 400 450 500

G
E

N
E

R
A

LI
T

Y

NUMBER OF LEARNING PROBLEMS (1000s)

3 PTS
5 PTS

10 PTS
15 PTS

(c)

Figure 5: XCSF with convex conditions of different
number number of points applied to f3: (a) pre-
diction error; (b) number of classifiers in the pop-
ulations; (c) average generalization in the current
action set. Curves are averages over 20 runs.

0.00

0.05

0.10

0.15

0.20

 0 50 100 150 200 250 300 350 400 450 500

P
R

E
D

IC
T

IO
N

 E
R

R
O

R

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

VAR PTS
ε0

(a)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

 0 50 100 150 200 250 300 350 400 450 500

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

VAR PTS

(b)

Figure 6: XCSF with variable size convex condi-
tions applied to f1 compared to fixed size convex
conditions: (a) prediction error; (b) number of clas-
sifiers in the populations. Curves are averages over
20 runs.

(a)
(b)

Figure 7: (a) Unbounded convex conditions allow a
better covering of the problem space border, while
(b) constrained conditions may make such a covering
more difficult.

1487

0.00

0.01

0.02

0.03

0.04

0.05

 0 50 100 150 200 250 300 350 400 450 500

P
R

E
D

IC
T

IO
N

 E
R

R
O

R

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS UNCONSTRAINED

3 PTS
5 PTS UNCONSTRAINED

5 PTS
10 PTS UNCONSTRAINED

10 PTS
ε0

(a)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

 0 50 100 150 200 250 300 350 400 450 500

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS UNCONSTRAINED

3 PTS
5 PTS UNCONSTRAINED

5 PTS
10 PTS UNCONSTRAINED

10 PTS

(b)

Figure 8: XCSF with constrained and unconstrained
convex conditions applied to f2: (a) prediction error;
(b) number of classifiers in the populations. Curves
are averages over 20 runs.

0.00

0.05

0.10

0.15

0.20

 0 50 100 150 200 250 300 350 400 450 500
P

R
E

D
IC

T
IO

N
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

VAR PTS
ε0

(a)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

 0 50 100 150 200 250 300 350 400 450 500

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS (1000s)

INTERVAL CONDITIONS
3 PTS
5 PTS

10 PTS
15 PTS

VAR PTS

(b)

Figure 9: XCSF with convex conditions and
quadratic approximation applied to f3: (a) predic-
tion error; (b) number of classifiers in the popula-
tions. Curves are averages over 20 runs.

1488

