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ABSTRACT
This paper introduces XCSF extended with tile coding pre-
diction: each classifier implements a tile coding approxima-
tor; the genetic algorithm is used to adapt both classifier
conditions (i.e., to partition the problem) and the parame-
ters of each approximator; thus XCSF evolves an ensemble
of tile coding approximators instead of the typical mono-
lithic approximator used in reinforcement learning. The pa-
per reports a comparison between (i) XCSF with tile coding
prediction and (ii) plain tile coding. The results show that
XCSF with tile coding always reaches optimal performance,
it usually learns as fast as the best parametrized tile cod-
ing, and it can be faster than the typical tile coding setting.
In addition, the analysis of the evolved tile coding ensem-
bles shows that XCSF actually adapts local approximators
following what is currently considered the best strategy to
adapt the tile coding parameters in a given problem.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based Machine
Learning

General Terms
Algorithms, Performance.

Keywords
LCS, XCS, RL, Tile Coding.

1. INTRODUCTION
Three key factors influence the performance of reinforce-

ment learning in large problems [12, 9]: the learning algo-
rithm (e.g., Q-learning, TD(λ), etc.), the approximator used
(e.g., a linear approximator, a neural network, etc.), and also
the input mapping function φ(·) that is usually introduced
to translate the problem space into a feature space more
favorable to the approximator.
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Tile coding is one of the most known and most success-
ful approaches to tackle complex tasks with reinforcement
learning [12, 11, 9]. It couples linear approximation with a
function φ(·) that maps the problem space into a set of over-
lapping tilings; each tiling partitions the state space into a
set of nonoverlapping tiles, i.e., hyper-rectangles in the state
space. Tile coding performance heavily relies on the choice
of the parameters (i.e., the number of tilings t, the width of
the tiles w, and the tiling resolution r = w/t) that are actu-
ally problem dependent. Recently, Sherstov and Stone [10]
analyzed the effect of these parameters on the performance
of tile coding showing that there is not an optimal param-
eters setting, instead parameters should be adapted during
the learning process so as to make learning more effective
and faster.

Learning classifier systems implement a rule based ap-
proach to reinforcement learning. They represent the agent
knowledge as a population of condition-action-prediction
rules, called classifiers. Each classifier represents a part of
the overall solution: classifier conditions identify areas of
the problem space and associate a constant prediction value
to the classifier action. Recently, Wilson [14] has introduced
the concept of computed prediction: the usual classifier pre-
diction (or strength) parameter is replaced by a prediction
function p(s,w), which is used to compute classifier predic-
tion based on the current state s and on a parameter vec-
tor w associated to each classifier. In XCS with computed
prediction, namely XCSF, the prediction function p(s,w)
is usually defined as a linear combination of s and w, but
more complex functions can be used [5, 6]. Computed pre-
diction [14] is an important advance in learning classifier
systems: while classifier conditions allow the partitioning of
the problem space, computed prediction allows a more ef-
fective approximation of the target action-value function on
the problem subspaces.

In this paper we push the idea of computed prediction
further and define the classifier prediction function p(s,w)
as the tile coding over the subspace identified by the classi-
fier condition. In our approach, each classifier implements a
whole tile coding approximator, whereas in [1] one classifier
represents one tile in an overlapping tiling. Then we exploit
the genetic algorithm both for the problem space partition-
ing and for the search for the best tile coding parameters
associated to each problem subspace (e.g., the number of
tilings). The approach we propose puts together XCSF, for
problem space partitioning, and tile coding, for providing
accurate approximations.

1497



Reinforcement learning approaches usually apply one
powerful approximator (e.g., one tile coding, or one neu-
ral network) over the whole problem space (e.g., [13]). On
the other hand, XCS with computed prediction [14] evolves
an ensemble of simple piecewise linear approximators, each
one applying on a problem subspace. In contrast, the ap-
proach we introduce here applies an ensemble of very pow-
erful approximators, an ensemble of tile codings, each one
on a problem subspace. Tile coding is a powerful approxi-
mator that, given an adequate parameter setting [10], can
be applied to solve the whole problem. The use of such a
powerful approximator to compute classifier prediction po-
tentially makes the partitioning of the problem space less
relevant. Accordingly, two major questions raise. First,
given such a powerful approximator, is it still convenient
to evolve an ensemble of local approximators? Second, will
the genetic algorithm search for the best tradeoff between
the two available search options (i.e., the partitioning of the
search space vs the selection of the best tile coding param-
eters)? Or instead, will XCSF evolve one approximator for
the whole problem?

We tested XCSF with tile coding on three multistep prob-
lems taken from the reinforcement learning literature, the
2D gridworld [2], the puddle world [2], and the mountain
car [11]. We compared the performance of XCSF with tile
coding with that of plain tile coding, implemented accord-
ing to the most recent description in [10]. The results we
report show that XCSF always reaches an optimal solution
whereas tile coding may not. Moreover, XCSF usually con-
verges as fast as (not significantly slower than) tile coding
with the best setting we found over several experiments. In
addition the analysis of the evolved populations shows that
XCSF adapts the tiling parameters according to the prob-
lem space and that the evolved strategy implements what
is currently considered to be the best strategy for adapting
tile coding parameters [10].

2. REINFORCEMENT LEARNING
Reinforcement learning (RL) is defined as the problem of

an agent that learns by interacting with an unknown envi-
ronment [12]. At time t, the agent perceives the environment
to be in state st and it decides to perform action at following
its current action selection policy. As a consequence of its
action, the agent reaches a new state st+1 and receives a nu-
merical reward rt+1. The agent learns to solve a problem by
maximizing the amount of reward received from the environ-
ment. To do this the agent learns an action-value function
Q(st, at) that maps state action pairs into the amount of
expected reward.1

Reinforcement learning algorithms work on two main as-
sumptions: (i) the action-value Q(s, a) is represented by
a look-up table and (ii) the agent visits each state-action
pair an infinite number of times. These assumptions make
reinforcement learning algorithms inapplicable in problems
involving large state-action spaces. In fact, (i) memory
requirements to store look-up tables for large state-action
spaces quickly become infeasible; moreover, (ii) visiting
many times each state-action pair is dramatically time con-
suming and very often impossible. These problems raise

1Alternatively, the agent can also learn a value function
V (st) that maps the current state in the future expected
reward. However, here we focus only on action value func-
tions.

the issue of generalization, that is, how to represent the
action-value Q(s, a) compactly while being reusing collected
experience in areas of the problem space scarcely or even
never visited.

Generalization in reinforcement learning is usually imple-
mented by methods of function approximation: Q(s, a) is
represented as a function f parametrized by a vector θ which
is learned from online experience. Apart from the type of
approximator used (e.g., linear [11] or neural networks [13]),
these methods are also characterized by an input mapping
function φ(s) that translates the input space into a feature
space more favorable to the approximator. For instance,
φ(s) can be used to transform a continuous space into a
discrete space.

2.1 Tile Coding
Tile coding [11] combines linear approximation with a

function φ(s) that translates a continuous state space s into
a vector of m binary features 〈φ1(s), . . . φm(s)〉. Accord-
ingly, the value of Q(s, a) is computed as φ(s)θa, where θa

is a vector of m parameters associated to action a which are
updated with gradient descent.

Function φ(s) represents the state space as a set of t over-
lapping tilings. Each tiling partitions the state space into
a set of nonoverlapping tiles. Tiles are hyper-rectangles in
the state space. Each tile is formally defined as a collection
of intervals, one for each state variable, and it is associated
to an element of the parameter vector θ. Given the state s,
the component φi(s) of the features vector associated to the
i-th tile ti is computed as,

φi(s) =

(

0 if s /∈ ti,

1 if s ∈ ti.
(1)

The approximation of the action-value function and the up-
date of parameters associated to the tiles are performed ex-
actly as done for a generic linear approximator.

Tilings may be placed randomly, but in practice, they
cover the whole input space uniformly: if each tiling con-
sists of tiles of size w and consecutive tilings are displaced
by a resolution r, then t (t = w/r) tilings are used to repre-
sent the input space. Resolution r represents the minimum
distance allowed between two states which guarantee that
tile coding can associate different values to each state.

In tile coding, the computation of the feature vector φ(s)
(Equation 1) is the most crucial step. To perform it more ef-
ficiently hashing is used. Hashing can be generally described
as a practical and fast solution for mapping a large state in
a smaller one (e.g. to map keys into database positions). In
tile coding hashing is used to map the state space into the
features space in an efficient way; at the same time, through
the hashing the size of features space is often reduced. This
reduction increases the learning speed but it also introduces
an unpredictable bias in the learning process. Accordingly,
in this work we followed the approach of [10] and did not use
hashing; this can result in slower convergence but it provides
more reliable results and fewer biases.

Tile coding performance heavily relies on the choice of
the parameters, i.e., the number of tilings, the width of the
tiles, and the resolution, that are actually problem depen-
dent. Recently, Sherstov and Stone [10] analyzed the effect
of the different parameters on the performance of tile coding.
In [10], they show that the resolution affects the complex-
ity of action-value function to be approximated whereas the
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choice of different number of tilings and width, leading to the
same resolution, affects the learning speed; a higher number
of tilings leads to faster learning at the beginning, but it
might be disruptive at the end. Most important, they show
that there is not an optimal parameters setting: instead,
parameters should be adapted during the learning process.
Accordingly, they introduce an adaptive tile coding algo-
rithm that (i) estimates how quickly the tiles weights are
changing, and (ii) it encourages broad generalization (by in-
creasing the number of tilings) when approximated function
is rapidly changing; while (iii) it discourages generalization
when the function values are near convergence.

3. THE XCSF CLASSIFIER SYSTEM
Computed prediction [14] replaces the usual classifier pre-

diction with a parameter vector w and a prediction function
p(st, w), which defines how classifier prediction is computed
from the current input st and parameter vector w. In addi-
tion, the usual update of the classifier prediction is replaced
by the update of the classifier parameter vector w. The pre-
diction function p(st,w) is usually defined as stw but more
complex functions can be used [5, 6].

At time step t, XCSF builds a match set [M] containing
the classifiers in the population [P] whose condition matches
the current sensory input st; if [M] contains less than θmna

actions, covering takes place. For each action a in [M],
XCSF computes the system prediction P (st, a) as the fitness-
weighted average of p(st,wk) for all the classifiers clk in [M]
that specify action a. The values of P (st, a) form the predic-
tion array. Next, XCSF selects an action to perform. The
classifiers in [M] that advocate the selected action are put
in the current action set [A]; the selected action is sent to
the environment and a reward r is returned to the system
together with the next input state st+1.

XCSF uses the incoming reward to update the parame-
ters of classifiers in action set [A]−1 corresponding to the
previous time step. At time step t, the expected payoff P
is computed as r−1 + γ maxa∈A P (st, a), where r−1 is the
reward received at the previous time step. The expected
payoff P is used to update the weight vector w of the clas-
sifier in [A]−1 using a modified delta rule with learning rate
η (see [14] for details). Then the prediction error ǫ and the
fitness are updated as usual [3].

The genetic algorithm works as in XCS [14]. The weight
vectors of offspring classifiers are set to a fitness weighted av-
erage of the parents weight vectors; all the other parameters
are initialized as usual [3].

4. XCSF CLASSIFIERS WITH
TILE CODING PREDICTION

To extend XCSF with tile coding prediction, classifiers are
enriched with two new parameters, the tiling resolution r
and the number of tilings t (the most influential parameters
in tile coding [10]); the weight vector w of each classifier now
contains the parameters associated to each tile. Moreover,
the usual linear prediction function is replaced by the tile
coding approximator. Finally, the usual prediction update
is replaced by the tile coding update. The initial values of r
and t are set according to two constants rs and ts; weights
w are initialized to zero, as usual.

Classifier prediction in XCSF with tile coding is computed
as follows. Initially, the typical tile coding mapping function
φ(C, r, t, s) is applied. Given the input domain defined by
condition C, the resolution r, and the number of tilings t,
function φ(C, r, t, s) returns a binary vector associated to
state s. This binary vector is then combined with w to
compute the prediction for state s (see [11, 10] for details).

In XCSF with tile coding prediction, classifiers have two
additional parameters, the resolution r and the number of
tilings t. Each of these parameters can be constant or it
can be adapted through the genetic algorithm. This leads
us to four versions of XCSF with tile coding. In the sim-
plest version, XCSF-C, the genetic algorithm acts only on
the conditions, as in XCSF [14]; thus all the tile coding pa-
rameters (the number of tilings t and the resolution r) are
fixed. In the second version, XCSF-TC, the genetic algo-
rithm acts both on the conditions and on the number of
tilings t which can be mutated; thus only the resolution r is
fixed. In XCSF-RC, the genetic algorithm acts both on the
conditions and on the resolution r; thus only the number
of tilings t is fixed. Finally, in XCSF-RTC the genetic al-
gorithm acts on all the parameters, i.e., the conditions, the
number of tilings t, and the resolution r.

The genetic algorithm works as in XCSF except for muta-
tion which may also act on the two new classifier parameters
r and t. These can be mutated with probability µ; when
mutation is applied on one of the parameters, this can be
halved or doubled with probability 0.5. Offspring classifiers
are initialized as follows: the resolution and the number of
tilings are set as the averages of the two parents; the weight
vector is initialized as the fitness weighted average of the
parents weights. The subsumption works as in XCSF.

The implementation of XCSF with tile coding prediction
analyzed in this paper is based on the most recent paper on
tile coding [10], where an algorithmic description is avail-
able. Following the approach in [10] our implementation
does not use hashing to avoid any possible bias due to the
problem space reduction that hashing introduces [10, 12].
Note however that the same results have been also obtained
using the implementation discussed in [11], which is avail-
able online; also in this case, hashing was disabled.

5. DESIGN OF EXPERIMENTS
In this paper, we follow the standard experimental design

used in the literature. Each experiment consists of a num-
ber of problems that the system must solve. Each problem
is either a learning problem or a test problem. In learning
problems, XCSF selects actions randomly from those rep-
resented in the match set. In test problems, XCSF always
selects the action with the highest prediction. The genetic
algorithm is enabled only during learning, and it is turned
off during test. The covering operator is always enabled,
but operates only if needed. Learning problems and test
problems alternate. The performance is computed as the
average number of steps needed to reach the goal during the
last 100 test problems. To speed up the experiments, prob-
lems can last at most 1000 steps; when this limit is reached
the problem stops even if the system did not reach the goal.
All the statistics reported in this paper are averaged over 20
experiments.
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Statistical Analysis. To analyze the results reported in
this paper, we followed the procedure introduced in [8] for
the comparison of performance curves. For each experiment,
for every setting we tested, we considered all the perfor-
mance curves; we sampled the curves and considered only
one point every 100 problems; we applied an analysis of
variance (ANOVA) [4] on the resulting data to test whether
there was some statistically significant difference; finally, we
applied four post hoc tests [4], Tukey HSD, Scheffé, Bon-
ferroni, and Student-Neumann-Keuls, to find which settings
performed significantly different.

6. EXPERIMENTS
We tested the four versions of XCSF with tile coding

(XCSF-C, XCSF-TC, XCSF-RC, and XCSF-RTC) on three
multistep environments: the 2D gridworld [2], the puddle
world [2], and the mountain car [11].

6.1 The 2D Gridworld
This is a two dimensional environment (firstly introduced

in [2]) in which the current state is defined by a pair of real
coordinates 〈x, y〉 in [0, 1]2, the goal is in position 〈1, 1〉, and
there are four possible actions (left, right, up, and down);
each action corresponds to a step of size s in the correspond-
ing direction; in all the experiments presented here we set
s as 0.05; actions that would take the system outside the
domain [0, 1]2 take the system to the nearest position of the
grid border. The system can start anywhere but in the goal
position and it reaches the goal position when both coor-
dinates are equal or greater than one. When the system
reaches the goal it receives 0, otherwise it receives -0.5.

Adapting Conditions. First, we tested the version of
XCSF with tile coding in which only conditions are evolved.
The parameters of XCSF-C were set as in the experiments
with linear approximators discussed in [7]: N = 5000;
ǫ0 = 0.1; β = 0.2; α = 0.1; γ = 0.95; ν = 5; χ = 0.8,
µ = 0.04, pexplr = 0.1, θdel = 50, θGA = 50, and δ = 0.1;
GA-subsumption and action-set subsumption are off; m0 =
0.25, r0 = 0.25 [14]; for tile coding prediction, the resolution
r is 0.05 and the number of tilings t is 16.

Figure 1 compares the performance of XCSF-C (solid
dots) with that of standard tile coding (empty dots) for
t ∈ {4, 16} and r ∈ {0.05, 0.00125}. As the plot shows,
both tile coding and XCSF-C reach optimal performance;
the adaptation of classifier conditions alone does not lead
to any advantage: XCSF-C always converges a little slower
than tile coding. All the three versions of XCSF-C evolved
populations containing an average of 750 classifiers. We ap-
plied a statistical analysis on the curves reported in Fig-
ure 1 to test whether the differences between XCSF-C and
tile coding are statistically significant [8]. The analysis of
variance of the six curves and the subsequent post-hoc tests
show that the difference between XCSF-C and tile coding
is not significant with a 99.99% confidence when t = 16,
r = 0.05, and t = 4, r = 0.05; while there is around a 74%
chance that XCSF-C and tile coding perform significantly
difference when t = 16 and r = 0.00125. These results are
not surprising: when the resolution r and the number of
tiling t are fixed, each classifier implements the same tile
coding in a different position, but overall the tailoring of
the space actually does not provide any advantage.
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Figure 1: XCSF-C and tile coding (TC) in the 2D
gridworld when r is 0.05 or 0.00125 and t is 4 or 16.
Curves are averages over 20 runs.

Adapting Conditions and t. In the second experiment,
we allowed XCSF to adapt both the classifier conditions
and the number of tilings t. The number of tilings in new
classifiers is set to ts. All the XCSF parameters were set as
in the previous experiment.

Figure 2 compares the performance of XCSF-TC with that
of tile coding with 16 and 256 tilings when resolution r is
(a) 0.05 and (b) 0.00125. When r is large (i.e., the ap-
proximation is less accurate) there is almost no difference in
the performance of XCSF-TC, which adapts the number of
tilings, and the performance of tile coding with 16 and 256
tilings (Figure 2a). More precisely, the statistical analysis
of the three curves in Figure 2a shows that XCSF-TC is sig-
nificantly slower than tile coding with 256 tilings (the best
setting we found), but it is not significantly slower than tile
coding with 16 tilings. When r is small, (i.e., the approxima-
tion is more accurate) XCSF-TC is significantly slower than
tile coding with t = 256 but it is significantly faster than tile
coding with t = 16 (Figure 2b). This is consistent with the
analysis in [10]: when the approximation is less accurate,
not surprisingly, the number of tilings used does not influ-
ence the convergence. The statistical analysis shows that
all the differences in Figure 2b are significant, though the
difference between XCSF-TC and tile coding with t = 256
only with a confidence level around the 92%. In terms of
populations, XCSF-TC evolved populations containing an
average of 1000 classifiers.

We also analyzed the evolution of the classifier tilings.
Figure 3 reports the average number of tilings in the evolved
classifiers for different values of ts and different resolutions.
In all the cases, the average number of classifier tilings ini-
tially increases and then slowly decreases toward a stable
value. This evolved behavior implements the best perform-
ing strategy for adaptive tile coding discussed in [10] where it
is suggested that: in the beginning to speed up the learning
the number of tilings should increase; later, as the learning
goes on the number of tilings should slowly decrease to avoid
performance degradation.

Adapting Conditions and r. In the third experiment,
we allowed XCSF to adapt both the classifier conditions
and the classifier resolution. In this case, the number of
classifier tilings is a constant, while the classifier tiling res-
olution is initially set to rs. Figure 4 compares XCSF-RC,
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Figure 2: XCSF-TC and tile coding (TC) in the 2d
gridworld when (a) r = 0.05 and (b) r = 0.025. Curves
are averages over 20 runs.

when (a) t = 16 and (b) t = 64. When t = 16, XCSF-RC
is slightly (though not significantly) slower than tile coding
with r = 0.05, which is actually the best speed/accuracy
trade-off we found in our experiments. However, when tile
coding is applied with r = 0.025 the smaller resolution,
and the consequent higher accuracy required, slows down
the learning and XCSF-RC performs significantly faster
than tile coding. When t = 64, the results are similar:
XCSF-RC is slightly slower than tile coding with r = 0.05
and this difference is statistically significant at the 95%;
overall XCSF-RC is as fast as tile coding when r = 0.025
(the statistical analysis reports that the difference between
the two curves is not significant) though XCSF-RC seems
much faster in the early stage. In this case, the evolved
populations contained around 850 classifiers.

Figure 5 reports the average classifier resolution for differ-
ent values of rs and different values of t. In all the cases, the
average classifier resolution initially increases, i.e., initially
XCSF-RC prefers less accurate solutions which on the other
hand converge faster. Then, the average classifier resolu-
tion decreases, i.e., XCSF-RC moves toward more accurate
solutions. Also in this case, the behavior of XCSF-RC is
coherent with the analysis in [10]. Finally, Figure 6 reports
the spatial distribution of the average tiling resolution of the
classifiers evolved by XCSF-RC. Far from the goal, where
the differences in the payoff levels are smaller and the pay-
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Figure 3: XCSF-TC in the 2d gridworld: average
number of tilings in classifiers when ts ∈ {1, 16, 256}
and rs ∈ {0.05, 0.025}. Curves are averages over 20
runs.

off surface is flatter, the overlap area between tiling can be
small so that larger resolutions can be used; accordingly,
XCSF evolves classifiers with larger values of r. Near the
goal, where payoff surface is steeper, the overlap area be-
tween tiling must be larger so that resolution must be small;
in fact, XCSF evolves classifiers with smaller values of r.

Adapting Everything All Together. In the final exper-
iment, we allowed XCSF to adapt everything (conditions,
resolution, and number of tilings) at the same time. Ini-
tially, the tile coding prediction of classifiers is initialized
with ts tilings and a resolution of rs; the genetic algorithm
acts both on the conditions and on the parameters r and t.

Figure 7a compares the performance of XCSF-RTC, with
ts = 16 and rs = 0.025, against that of tile coding with
(i) t = 16, r = 0.025, and (ii) t = 256, r = 0.05. As can
be noted XCSF-RTC is slightly (although not significantly)
slower than (i) which is the best setting we found to solve
the problem over several experiments; in fact, all the four
post-hoc tests shows XCSF-RTC and (ii) have similar per-
formance. However, XCSF-RTC is faster than (i), which is
a rather typical setting for tile coding and not the worst
setting possible; in this case, the difference is significant
with 99.99% confidence. Figure 7b compares the perfor-
mance of XCSF-RTC with that of XCSF-RC and XCSF-TC
where only one tile coding parameter is adapted. As can
be noted, XCSF-RTC is slightly, though not significantly,
faster than XCSF-RC and XCSF-TC. In terms of evolved
solutions XCSF-RTC provides a tradeoff between XCSF-RC
and XCSF-TC evolving an average of 950 classifiers.

Overall, the results for XCSF-RTC suggest that the adap-
tation of both the tile coding parameters, the number of
tilings t, and the tiling resolution r, does not introduce addi-
tional overhead to the learning process. In fact, XCSF-RTC
is as fast as XCSF-TC which adapts only the number of
tilings, and significantly faster than XCSF-RC, which adapts
only the tilings resolution. Most important, the performance
of XCSF-RTC appears to provide an interesting trade-off
between the performance of tile coding with the best possi-
ble settings, and the performance of tile coding with rather
typical settings.
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Figure 4: XCSF-RC and tile coding in the 2D grid-
world with (a) 16 tilings and (b) 64 tilings. Curves
are averages over 20 runs.

6.2 The Puddle World
We repeated the same set of experiments in a 2D gridworld

enriched with two overlapping obstacles, or puddles [2].
These are areas in which there is an additional cost for mov-
ing (Figure 8). When the system is in a puddle, it receives
an additional negative reward of -2; where the two puddles
overlap, the negative rewards add up, i.e., actions have a
total additional cost of -4.

Figure 9a compares the performance of XCSF-RTC, with
ts = 16 and rs = 0.025, against that of tile coding with (i)
t = 16, r = 0.025, and (ii) t = 256, r = 0.05; the param-
eters of XCSF-RTC are set as in the previous experiments
in the 2d gridworld. The plot does not report the optimal
performance since for this environment there is not a sim-
ple expression of the average number of steps required to
reach the goal. XCSF-RTC appears to be faster than both
versions of tile coding; the statistical analysis shows that
XCSF-RTC performs significantly better than (ii) but not
significantly better than (i). Figure 9b compares the perfor-
mance of XCSF-RTC with that of XCSF-RC and XCSF-TC
which adapt only one tile coding parameter. The three ver-
sions of XCSF perform almost the same and the slight dif-
ferences reported are not statistically significant according
to the analysis we performed.
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6.3 The Mountain Car
Finally, we applied XCSF-RTC with tile coding predic-

tion to the mountain car problem [11] in which a car must
be driven out of a one dimensional valley rocking back and
forth; the reward is -1 everywhere except out of the val-
ley, where it is 0; the input space consists of two variables:
the position x ∈ [−1.2, 0.5] and velocity v ∈ [−0.07, 0.07];
the two available actions are a fixed magnitude acceleration
backward and forward. The XCSF-RTC parameters were
set as follows: N = 1000; ǫ0 = 0.25; β = 0.2; α = 0.1;
γ = 0.95; ν = 5; χ = 0.8, µ = 0.04, pexplr = 0.1, θdel = 50,
θGA = 50, pexplr = 0.1, and δ = 0.1; GA-subsumption
and action-set subsumption are off; m0 = 0.25, r0 = 0.25;
the initial tiling resolution rs is set to the 1% of the input
ranges2 and the initial number of tilings ts is 16.

Figure 10a compares the performance of XCSF-RTC, with
ts = 16 and rs = 1.0%, against that of tile coding with
(i) t = 16, r = 1.0%, and (ii) t = 256, r = 0.5%. As
can be noted XCSF-RTC is initially slightly faster than
(ii) which is the best setting we found over several ex-
periments. XCSF-RTC is also faster than (i), which is
a rather typical setting for tile coding in this problem,

2Since position and velocity have different domains, in this
case we defined the resolution as a percentage of the domain
instead of a constant value as usual.
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XCSF-TC and XCSF-RC. Curves are averages over
20 runs.

although not the worst one. The statistical analysis re-
veals that the difference between XCSF-RTC and (ii) is
not statistically significant, while the difference between
XCSF-RTC and (i) is significant with a 99.99% confidence.
Figure 10b compares the performance of XCSF-RTC with
XCSF-RC and XCSF-TC. As can be noted, XCSF-RTC
is slightly faster than XCSF-RC and XCSF-TC. The sta-
tistical analysis confirms the results obtained with the 2d
gridworld and with the puddle world: the difference be-
tween XCSF-RTC and XCSF-TC is not significant (the four
post hoc tests groups the two methods together [4]) while
the difference between XCSF-RTC and XCSF-RC is signif-
icant with a 99.99% confidence. Overall, the experiments
with the mountain car confirm the previous results. The
adaptation of both the number of tilings and the resolu-
tion does not introduce additional burden to the learning
process. Again, XCSF-RTC seems to provide an interest-
ing accuracy/performance trade-off compared to tile coding
which requires an adequate parameter setting to obtain the
best possible performance.
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Figure 8: The puddle world: the light gray regions
represent the two puddles.

7. CONCLUSIONS
We have extended XCSF with classifier prediction based

on tile coding. We have applied the four versions of XCSF
with tile coding, each one with a different degree of adapta-
tion, on three problems taken from the reinforcement learn-
ing literature (the 2d gridworld, the puddle world, and the
mountain car). The results we report show that XCSF al-
ways reaches an optimal solution. The comparison with
plain tile coding shows that XCSF can converge as fast as
the best tile coding while adapting the tilings to the prob-
lem space. The comparison of the curves reported here with
those for XCSF with linear approximators in [7] shows that
XCSF with tile coding converges faster than XCSF with lin-
ear approximation. Overall, the results we presented suggest
that even when XCSF is coupled with a very powerful ap-
proximator, which potentially makes the partitioning of the
problem space less relevant, the genetic algorithm can still
find a trade-off with the two available solution options, i.e.,
the partitioning vs. the approximation.
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