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ABSTRACT
XCSF is the extension of XCS in which classifier predic-
tion is computed as a linear combination of classifier inputs
and a weight vector associated to each classifier. XCSF can
exploit classifiers’ computable prediction to evolve accurate
piecewise linear approximations of functions. In this paper,
we take XCSF one step further and show how XCSF can
be easily extended to allow polynomial approximations. We
test the extended version of XCSF on various approxima-
tion problems and show that quadratic/cubic approxima-
tions can be used to significantly improve XCSF’s general-
ization capabilities.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based
Machine Learning, Learning Classifier Systems; G.1.2
[Approximation]: Linear approximation, Least squares
approximation

General Terms
Algorithms, Performance

Keywords
LCS, XCS, Function Approximation, Least Squares

1. INTRODUCTION
XCSF [15] extends the typical concept of learning classifier

systems through the introduction of a computable classifier
prediction. In XCSF classifier prediction is not memorized
into a parameter but computed as a linear combination of
the current input and a weight vector associated to each
classifier. Wilson [15] applied XCSF to simple function ap-
proximation problems showing that computable prediction
can be used to evolve accurate piecewise linear approxima-
tions of a target function. In this paper we extend pre-
vious results and show that XCSF can be easily extended
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to include polynomial approximations. For this purpose,
we consider the version of XCSF with linear least squares
update recently introduced in [10] (i) to speed up the con-
vergence of classifier weights and (ii) to improve the gen-
eralization capabilities of XCSF. We show how XCSF can
be easily extended for generic polynomial approximations
by adding a simple preprocessing step to the usual XCSF’s
weight update procedure [15]. To extend XCSF to evolve
polynomial approximations of degree k, given the current
input ~x = 〈x1 . . . xn〉, classifiers weights are updated with
respect to the input ~y obtained by enriching ~x with power
terms, that is ~y = 〈x1, x

2
1 . . . xk

1 , . . . , xn . . . xk
n〉. The update

of classifier weights is performed according to the usual pro-
cedures, that is, Widrow-Hoff [15] or linear least squares [10].
We apply XCSF with quadratic and cubic approximation to
approximate functions taken from the literature such as the
three sine and the four sine problems [9], the polynomial
1 + x + x2 + x3 from [8], and other functions from [16].
We show that the generalization mechanism of XCSF can
exploit quadratic and cubic approximations to evolve solu-
tions that are significantly more accurate and significantly
more compact.

The paper is organized as follows. We begin in Section 2
with a description of XCSF [15] and then in Section 3 we
briefly introduce linear least squares for XCSF [10] which
we use in all the experiments discussed in this paper. In
Section 4 we illustrate the general approach we follow to
extend XCSF to allow polynomial approximations. In Sec-
tion 6, we compare XCSF with linear approximation and
XCSF with quadratic and cubic approximations on several
approximation problems. The results are statistically ana-
lyzed in Section 7 showing that the improvement in accu-
racy and generalization obtained through quadratic/cubic
approximations is statistically significant. Future research
directions and additional issues related to polynomial ap-
proximation with XCSF are discussed in Section 8.

2. THE XCSF CLASSIFIER SYSTEM
XCSF extends XCS in three respects [15]: (i) classifier

conditions are extended for numerical inputs, as done for
XCSI [14]; (ii) classifiers are extended with a vector of
weights w, that are used to compute classifier’s prediction;
finally, (iii) the weights w are updated instead of the classi-
fier prediction.

Classifiers. In XCSF, classifiers consist of a condition, an
action, and four main parameters. The condition specifies
which input states the classifier matches; it is represented
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by a concatenation of interval predicates, int i = (li, ui),
where li (“lower”) and ui (“upper”) are integers, though
they might be also real. The action specifies the action for
which the payoff is predicted; when XCSF is used as a pure
function approximator (like in [15] and in this paper), there
is only one dummy action which has no actual effect. The
four parameters are: the weight vector ~w, used to compute
the classifier prediction as a function of the current input;
the prediction error ε, that estimates the error affecting clas-
sifier prediction; the fitness F that estimates the accuracy
of the classifier prediction; the numerosity num, a counter
used to represent different copies of the same classifier. The
weight vector ~w has one weight wi for each possible input,
and an additional weight w0 corresponding to a constant
input x0, that is set as a parameter of XCSF.

Performance Component. XCSF works as XCS. At each
time step t, XCSF builds a match set [M] containing the clas-
sifiers in the population [P] whose condition matches the
current sensory input st; if [M] contains less than θmna ac-
tions, covering takes place as in XCSI [14, 15]. The weight
vector w of covering classifiers is initialized with zero val-
ues (note that originally [15], the weights were initialized
with random values in [-1,1]); all the other parameters are
initialized as in XCS (see [3]).

For each action ai in [M], XCSF computes the system pre-

diction. As in XCS, in XCSF the system prediction of action
a is computed by the fitness-weighted average of all match-
ing classifiers that specify action a. In contrast with XCS,
in XCSF classifier prediction is computed as a function of
the current state st and the classifier vector weight w. Ac-
cordingly, in XCSF system prediction is a function of both
the current state s and the action a. Following a notation
similar to [3], the system prediction for action a in state st,
P (st, a), is defined as:

P (st, a) =

P

cl∈[M]|a
cl.p(st)× cl.F

P

cl∈[M]|a
cl.F

(1)

where cl is a classifier, [M]|a represents the subset of classi-
fiers in [M] with action a, cl.F is the fitness of cl ; cl.p(st) is
the prediction of cl in state st, which is computed as:

cl.p(st) = cl .w0 × x0 +
X

i>0

cl .wi × st(i)

where cl.w i is the weight wi of cl . The values of P (st, a)
form the prediction array. Next, XCSF selects an action
to perform. Note that in XCSF only one dummy action
is present which has no effect. The classifiers in [M] that
advocate the selected action are put in the current action set

[A]; the selected (dummy) action is sent to the environment
and a reward P is returned to the system.

Reinforcement Component. XCSF uses the incoming
reward P to update the parameters of classifiers in action set
[A]. The weight vector w of the classifiers in [A] is updated
using a modified delta rule [12]. For each classifier cl ∈ [A],
each weight cl.w i is adjusted by a quantity ∆wi computed
as:

∆wi =
η

|st(i)|2
(P − cl.p(st))st(i) (2)

where η is the correction rate and |st|
2 is the norm the input

vector st, (see [15] for details). The values ∆wi are used to

update the weights of classifier cl as:

cl.w i ← cl.w i + ∆wi (3)

Then the prediction error ε is updated as:

cl.ε← cl.ε + β(|P − cl.p(st)| − cl.ε)

Finally, classifier fitness is updated as in XCS.

Discovery Component. The genetic algorithm in XCSF
works as in XCSI [14]. On a regular basis depending on the
parameter θga, the genetic algorithm is applied to classifiers
in [A]. It selects two classifiers with probability proportional

to their fitness, copies them, and with probability χ performs
crossover on the copies; then, with probability µ it mutates
each allele. Crossover and mutation work as in XCSI [14,
15]. The resulting offspring are inserted into the population
and two classifiers are deleted to keep the population size
constant.

3. LINEAR LEAST SQUARE FOR XCSF
Recently, [10] analyzed generalization in XCSF and

showed that the Widrow-Hoff update used in XCSF can
converge very slowly when some conditions on the distri-
bution of the classifier inputs hold. Therefore, XCSF may
be unable to fully exploit its generalization capabilities and
evolve piecewise constant approximations (like those evolved
by XCSI [14]) instead of the expected piecewise linear ap-
proximations [15]. To limit the influence of the inputs distri-
bution on XCSF and to make generalization more effective,
[10] replaced Widrow-Hoff update with linear least squares
update. Experimental results reported in [10] show that lin-
ear least squares significantly improves the generalization
capabilities of XCSF and its robustness. In the following,
we briefly describe linear least squares in XCSF and refer
the reader to [10] for details and discussions.

Linear least squares is a well-known alternative to
Widrow-Hoff update, that has been already used in rein-
forcement learning [2, 1]. Linear least squares is more effi-
cient that Widrow-Hoff since it extracts more information
from each sample and it would be expected to converge with
fewer samples [6]. The Widrow-Hoff update used in the orig-
inal XCSF [15] can be viewed as a gradient descent aimed
at minimizing the following error function:

ξ(~w) = 1
2
e2(t) where e(t) = f(xt)− cl.p(xt) (4)

linear least squares [7] replaces this error function with,

ξ(~w) = 1
2

Pt

i=1 e2(i) where e(i) = f(xi)− cl .p(xi). (5)

Let Xt = [ ~x1, ~x2, . . . , ~xt]
T be the vector of inputs until time

t, and let ~f(t) = [f( ~x1), f( ~x2), . . . , f(~xt)] be the vector of
all the desired outputs. The weight vector ~w that minimizes
the error function in Equation 5, is computed as the solution
of the following equation:

(XT
t Xt)~w = X

T
t

~f (t). (6)

The weight vector ~w can be either determined by comput-
ing the pseudoinverse X+ of X (X+ = (XT

t Xt)
−1XT

t ), or by
applying the Singular Value Decomposition to (XT

t Xt) [11].
The least squares update requires that all the inputs used for
updating are stored. But in general we are interested in an
incremental update, for this purpose least squares is imple-
mented by keeping a vector Xn

t of the latest n visited inputs
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Algorithm 1 Update classifier cl with linear least squares

1: procedure update prediction(cl, s, P )
2: add(cl.X ,s); . Add the current s to Xt

3: add(cl.Y ,P ); . Add the current P to Yt

4: A← cl.X t × cl.X ;

5: ~b← cl.X t × cl.Y ;

6: ~w← solve(A,~b); . Compute the new ~w
7: for i ∈ {0, . . . , |s|} do . Update the classifiers’ ~w
8: cl.w i ← (1 − η)cl.w i + ηwi

9: end for
10: end procedure

and a vector fn
t of the corresponding desired output [6]. The

incremental version of least squares is performed as follows.
Given,

X
n
t = [~xt−n+1, ~xt−n+2, . . . , ~xt]

T

Y
n
t = [f(~xt−n+1), f(~xt−n+2), . . . , f(~xt)]

T

The weight vector ~w to update the current classifier weight
vector is computed as the solution of the following equation:

(Xn
t )T

X
n
t ~w = (Xn

t )T
Y

n
t (7)

then, the current weight vector is updated as,

~wt = (1 − η)~wt−1 + η ~w

This formulation of the linear least squares allows us to use a
small window, given an adequately small value of the learn-
ing rate η.

To add linear least squares to XCSF classifiers are enriched
with two new parameters, the vector X the last n inputs,
and the vector Y storing the n outputs of the elements in X;
both X and Y are FIFO queues of n elements, implemented
as circular arrays. The update of the classifiers prediction
with the linear least squares is reported as Algorithm 1 us-
ing the typical algorithmic notation used for XCS [3]. The
procedure solve encapsulate the algorithm for solving the
linear system (Equation 7) which in our implementation is
based on the Singular Value Decomposition (SVD) [11] as
implemented in the GSL/BLAS package [4].

In this paper, all the experiments are performed using
XCSF modified with the linear least squares for the weight
update discussed here; for this purpose, classifiers keep a
vector of the latest 50 visited inputs and of the correspond-
ing outputs (i.e., n = 50).

4. BEYOND LINEAR APPROXIMATION
We now extend XCSF to allow polynomial approxima-

tions. Given the current input x, in XCSF the classifier
prediction is computed as,

cl.p(~x) = w0x0 + w1x,

where ~x = 〈x0, x〉, and x0 is the usual fixed constant. We
can introduce a quadratic term in the approximation evolved
by XCSF so that,

cl.p(~x) = w0x0 + w1x + w2x
2 (8)

To learn the new set of weights we use the usual update
procedure (e.g., least squares) applied to the input vec-
tor ~y obtained by preprocessing the actual input ~x, as
~y = 〈x0, x, x2〉.

The same approach can be generalized to allow the ap-
proximation of any polynomials. Given a function f(x) of

one variable, to use XCSF to evolve an approximation f̂(x)
based on a polynomial of order k, we define

~y = 〈x0, x, x
2
, . . . , x

k〉

and apply XCSF to the newly defined input space. When
more variables are involved we have two possibilities. Either
we can use XCSF to evolve a solution built as a sum of dif-
ferent polynomials, one for each variable. In this case, given
n input variables (x1, . . . , xn), so that ~x = 〈x0, x1, . . . , xn〉,
we define

~y = 〈x0, x1, x
2
1, . . . , x

k
1 , . . . , xn, x

2
n, . . . , x

k
n〉

Either, we can use the multivariate polynomial in n variables
and define the new input ~y accordingly. In this case with
two input variables, we would have

~y = 〈x0, x1, x2, x1x2, . . . , x
k
1x

k
2〉.

When using this approach we obtain approximations in
which also mixed terms, involving multiplication of differ-
ent variables, appear. Nevertheless, as a major drawback,
with this approach the size of ~y dramatically grows as the
number of actual variables in ~x increases.

4.1 Preprocessing vs Processing
To extend XCSF with quadratic approximation we added

a preprocessing step so to enrich the classifier inputs with
powers terms. Then we used the usual update introduced for
linear prediction to evolve the coefficients of the polynomial.
There is an alternative approach that we could have taken.
Viewing classifiers in XCSF as “sort of” perceptrons with a
linear activation function, we could as well change such an
activation function to be quadratic [6]. Accordingly, we may
define classifier prediction as,

cl.p(~x) = (~w~x)2

which, in the case of one input, becomes,

cl.p(~x) = x
2
0w

2
0 + 2w0w1x0x + w

2
1x

2
.

In this case, classifier prediction needs less parameters, two
instead of three in Equation 8, but classifier prediction is
not linear with respect to the weights. To have a rough
idea, consider the gradient descent in the case of a problem
with one input. In this case, the gradient for the two weights
is

[
∂cl.p(~x)

∂w0
,
∂cl.p(~x)

∂w1
] = [2(x0w0 + xw1)x0, 2(x0w0 + xw1)x]

which is non linear. In addition, we need an update specific
for the new prediction computation which on the other hand
makes it more difficult to control the convergence ratio [6].
Accordingly, in this paper we follow the former approach
and we implement quadratic approximations through the
preprocessing of classifier inputs.

5. DESIGN OF EXPERIMENTS
All the experiments discussed in this paper involve single

step problems and are performed following the standard de-
sign used in the literature [13, 15]. In each experiment XCSF
has to learn to approximate a target function f(x); each ex-
periment consists of a number of problems that XCSF must

1829



fp(x) = 1 + x + x
2 + x

3 (9)

fs3(x) = sin(x) + sin(2x) + sin(3x) (10)

fs4(x) = sin(x) + sin(2x) + sin(3x) + sin(4x) (11)

fabs(x) = |sin(x) + |cos(x)|| (12)

(a)

Fp(x) = 1000 × fp(
x

1000
), x ∈ [−1000, 1000] (13)

Fs3(x) = 1000 × fs3(
2πx

1000
), x ∈ [0, 1000] (14)

Fs4(x) = 1000 × fs4(
2πx

1000
), x ∈ [0, 1000] (15)

Fabs(x) = 1000 × fabs(
2πx

1000
), x ∈ [0, 1000] (16)

(b)

Table 1: Functions used to test XCSF: (a) original
functions; (b) functions adapted to integers.

solve. For each problem, an example 〈x, f(x)〉 of the tar-
get function f(x) is randomly selected; x is input to XCSF

whom computes the approximated value f̂(x) as the ex-
pected payoff of the only available dummy action; the action
is virtually performed (the action has no actual effect), and
XCSF receives a reward equal to f(x). XCSF learns to ap-
proximate the target function f(x) by evolving a mapping
from the inputs to the payoff of the only available action.
Each problem is either a learning problem or a test problem.
In learning problems, the genetic algorithm is enabled while
it is turned off during test problems. The covering operator
is always enabled, but operates only if needed. Learning
problems and test problems alternate. XCSF performance
is measured as the accuracy of the evolved approximation
f̂ (x) with respect to the target function f(x). To evalu-

ate the evolved approximation f̂(x) we measure the mean

absolute error (MAE) defined as:

MAE =
1

n

X

x

|f(x)− f̂(x)|,

where n is the number of points for which f(x) is defined.
In particular we use the average MAE over the performed
experiments, dubbed MAE. All the statistics reported in
this paper are averaged over 50 experiments.

Note that, all the experiments discussed in this paper
are performed using XCSF modified with the linear least
squares; for this purpose, in all the experiments, classifiers
maintain a vector of the latest 50 visited inputs and of the
corresponding outputs, i.e., the parameter n for linear least
squares is set to 50.

6. EXPERIMENTAL RESULTS
We now compare XCSF with linear prediction to the ver-

sion of XCSF extended with quadratic and cubic predictions.
For this purpose, we have consider problems taken from the
literature [8, 9, 16] and adapted them to integers, following
the approach of [15] for the sine function. The functions we
use are reported in Table 1a: Equation 9 is from [8], Equa-
tion 10 and Equation 11 are the Koza’s Sinus Three and

Sinus Four [9], finally Equation 12 is from [16]. Table 1b
reports the functions in Table 1a adapted to integers that
we use in this section to test XCSF with quadratic and cubic
approximations.

For the experiments discussed here we always use the same
parameter settings: N = 1000; β = 0.2; α = 0.1; ν = 5;
χ = 0.8, µ = 0.04, θnma = 1, θdel = 50; θGA = 50; δ =
0.1; GA-subsumption is on with θsub = 50; while action-set
subsumption is off; the parameters for integer conditions are
m0 = 200, r0 = 100, and x0 = 1000 [14]; the learning rate
for weight update η is 0.2; each experiment consists of 50000
learning problems; as in [10], for the linear square update
we use a window of the last 50 input output pairs; for each
problem we use different values of the error threshold ε0.

6.1 Quadratic Approximation
First, we compare XCSF with linear and quadratic pre-

diction on the functions reported in Table 1b for different
values of the error threshold ε0. Table 2 reports, for each ex-
periment (i) the error threshold ε0 used, and for each version
of XCSF, (ii) the average mean absolute error with the stan-
dard deviation (column MAE±σ), (iii) the average number
of macroclassifiers in the final populations with the stan-
dard deviation (column |[P ]|±σ), and (iv) the generality of
classifiers in the final populations with the standard devia-
tion (column G([P])±σ), computed as the average number
of inputs that classifiers in the populations match.

As can be noted, when using quadratic approximation
for classifier prediction, XCSF evolves more accurate so-
lutions, in fact, the average error is usually (though not
always) smaller with quadratic prediction. In addition,
when using linear approximation in the sine three and four,
XCSF reaches an average absolute error (MAE) that is
higher than the error threshold ε0. In contrast, XCSF
with quadratic approximation reaches an average error be-
low the target error threshold ε0 on both problems. Most
interesting the evolved solutions are generally smaller when
quadratic approximation is used, in fact, the average size of
the evolved populations with quadratic approximations are
generally smaller than those evolved with linear approxima-
tions. This of course happens because the classifiers evolved
with quadratic approximation are more general, as showed
by the values of the average classifiers’ generality (column
G([P ])± σ in Table 2 and Table 3).

In Figure 1, we report the performance of XCSF for the
sine three Fs3(x) with ε0=50 with linear (Figure 1a) and
quadratic prediction (Figure 1b), compared against the tar-
get function; vertical bars in the plots indicate the variance
computed over the 50 runs. As can be noted, on the average,
XCSF with quadratic prediction evolves solutions that are
more accurate along all the problem range, in fact the error
bars have almost the same size over all the plot (Figure 1b).
When using linear prediction, XCSF is still rather accurate
though the accuracy slightly drops around the smooth sec-
tions of the target function.

As an example, we also report the most inaccurate popula-
tions (corresponding to the highest values of MAE) evolved
with linear and quadratic prediction in Figure 2a and Fig-
ure 2b respectively. In the linear case (Figure 2a) each clas-
sifier in the final population is represented by the segment it
approximates; in the quadratic case (Figure 2b) each classi-
fier in the final population is represented by the section of the
curve it approximate; note that in both figures no informa-
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Linear Quadratic
f(x) N ε0 MAE ± σ |[P ]| ± σ G([P])±σ MAE ± σ |[P ]| ± σ G([P])±σ

Fp(x) 1000 5 2.56 ± 0.28 65.68 ± 8.55 198.67 ± 126.70 2.00 ± 0.26 58.04 ± 9.52 502.20 ± 129.72
Fp(x) 1000 50 24.39 ± 3.29 64.78 ± 11.07 585.46 ± 310.89 21.15 ± 3.98 57.38 ± 13.91 811.37 ± 433.47
Fp(x) 1000 100 42.08 ± 7.79 62.14 ± 12.14 722.87 ± 346.67 53.33 ± 10.47 47.70 ± 9.05 928.30 ± 666.92
Fs3(x) 1000 5 11.86 ± 8.03 71.16 ± 7.51 30.08 ± 22.84 2.93 ± 0.73 46.06 ± 7.01 71.66 ± 27.13
Fs3(x) 1000 50 33.77 ± 7.65 48.06 ± 6.12 82.19 ± 38.86 24.31 ± 3.18 46.70 ± 7.00 176.48 ± 31.72
Fs3(x) 1000 500 292.31 ± 24.75 64.24 ± 9.69 285.17 ± 219.38 282.45 ± 29.60 57.82 ± 10.95 405.39 ± 252.26
Fs4(x) 1000 5 28.67 ± 45.55 78.44 ± 6.19 27.34 ± 21.89 5.02 ± 8.21 48.18 ± 5.95 54.13 ± 23.74
Fs4(x) 1000 50 37.83 ± 12.78 49.66 ± 6.45 63.34 ± 31.53 26.72 ± 8.75 44.80 ± 7.74 130.83 ± 28.16
Fs4(x) 1000 500 311.76 ± 18.33 46.72 ± 8.40 253.02 ± 234.78 280.81 ± 24.84 53.20 ± 11.06 332.83 ± 233.75
Fabs(x) 1000 5 4.67 ± 6.76 52.9 ± 5.22 54.17 ± 23.09 1.92 ± 0.22 35.96 ± 5.78 149.31 ± 73.57
Fabs(x) 1000 50 21.21 ± 2.22 46.8 ± 5.47 139.50 ± 30.44 17.00 ± 3.07 47.22 ± 6.57 207.70 ± 96.70
Fabs(x) 1000 100 44.03 ± 3.84 54 ± 8.28 182.24 ± 63.66 37.80 ± 4.98 53.84 ± 10.45 255.82 ± 81.61

Table 2: XCSF with linear and quadratic approximation: f(x) is the target function; N is the population size;
ε0 is the error threshold. Statistics are averages over 50 runs.

tion regarding the classifier fitness or numerosity is reported,
thus it is difficult to understand the contribution of each
classifier to the overall solution that the two populations rep-
resent. Noticeably, XCSF can successfully exploit quadratic
approximation to produce solutions which smoothly approx-
imate large sections of Fs4(x) whereas XCSF linear approx-
imation tend to be rather inaccurate around the smooth
function peaks. When the error threshold is smaller the
difference in approximation between linear and quadratic
approximation is more evident.

As a second example, we report in Figure 3 the perfor-
mance of XCSF for the sine four Fs4(x) with ε0=5 with lin-
ear (Figure 3a) and quadratic prediction (Figure 3b), com-
pared against the target function; we also report an example
of population evolved with linear and quadratic prediction
in Figure 4a and Figure 4b. When the error is smaller,
ε0, is more difficult for XCSF with linear approximation to
evolve an accurate solution, accordingly the variance around
the peaks in Figure 3a is larger than for the quadratic case
(Figure 3b). Note however, even with such a small error
threshold XCSF with linear approximation is still capable
of evolving very accurate solutions such as the one depicted
in Figure 4a. On the other hand, quadratic approxima-
tion allows XCSF to evolve an even smoother approximation
(Figure 4b).

6.2 Cubic Approximation
The approach we applied to extend XCSF for quadratic

approximation (discussed in Section 4) is rather general and
in principle it can be used to extend XCSF further, beyond
quadratic approximations. For instance, we can use it to ex-
tend XCSF with cubic approximations to compute classifier
prediction. Nevertheless, we shall consider how much advan-
tage in terms of approximation accuracy and generalization
such an extension might provide with respect to the over-
head introduced. In fact, the additional power terms added
to classifiers inputs must be stored in a vector with linear
least squares [10], or used to compute additional data struc-
ture with the recursive least squares [10], since Widrow-Hoff
update would be too slow [6]. Most important, additional
power terms introduce bias into classifier weights since clas-
sifier prediction error (and thus classifier fitness) will be in-
fluenced more by the weights corresponding to high power
terms. As an example, consider a classifier that matches
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Figure 1: Average performance of XCSF with (a)
linear and (b) quadratic approximation applied to
Fs3(x) with N = 1000 and ε0 = 50. Curves are averages
over 50 runs.
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Figure 2: Worst populations evolved by XCSF for
Fs3(x) with N = 1000 and ε0 = 50: (a) linear predic-
tion; (b) quadratic prediction.

the input value 1000, with a cubic approximation, such an
input will become 〈103, 106, 109〉 making weight w3 (corre-
sponding to input 109) way more relevant that weight w1

(corresponding to input 103).
When we apply XCSF with cubic approximation to the

problems previously considered with the same settings we
obtain the results reported in Table 3. The solutions evolved
by the version of XCSF with cubic approximation are (i)
generally more accurate than those evolved with quadratic
approximation (column MAE±σ), and they are also (ii)
generally smaller in that they contain less classifiers (column
|[P ]|±σ), which are more general in that on the average they
match more inputs (column G([P ])±σ). Figure 5 shows the
average approximation evolved by XCSF with linear (Fig-
ure 5a) and cubic (Figure 5b) approximations. Again, XCSF
can exploit the available (cubic) approximation to evolve an
extremely accurate solution.

7. STATISTICAL ANALYSIS
We apply a one-way analysis of variance or ANOVA [5]

to test whether the differences in approximation accuracy
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Figure 3: Average performance of XCSF with (a)
linear and (b) quadratic approximation applied to
Fs4(x) with N = 1000 and ε0 = 5. Curves are averages
over 50 runs.

and generalization capability observed for XCSF with lin-
ear, quadratic, and cubic approximation (Table 2, Table 3)
are statistically significant. We also apply typical post-hoc
procedures (Tukey, Scheffé, SNK, and Bonferroni) to ana-
lyze the differences among different versions of XCSF. We
apply ANOVA twice, one over the data collected for small
values of ε0 (i.e., 5 and 50), one over all the data.

Analysis for ε0=5 and ε0=50. The ANOVA test per-
formed on the data of mean absolute error shows that some
versions of XCSF perform significantly different, with a con-
fidence level of the 99.99%. All the subsequent post-hoc pro-
cedures show that the mean absolute error obtained by lin-
ear approximation is significantly different from all the other
two versions; the same holds for XCSF with quadratic and
cubic approximations. When we apply the same analysis to
the data of the population size (column |[P ]| in Table 2 and
Table 3) and to the data of classifiers generality (column
G([P ]) in Table 2 and Table 3) we obtain similar results,
that is, the difference observed for all the three versions of
XCSF is statically significant.
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Figure 4: Example of accurate approximations
evolved by XCSF for Fs4(x) with N = 1000 and ε0 = 5:
(a) linear prediction; (b) quadratic prediction.

Analysis on all the data. When we consider also higher
values of error threshold (ε0=100 and ε0=500) the difference
among the different versions becomes more blurred. As be-
fore, ANOVA shows a significant difference both in perfor-
mance (with a confidence level of 99.8%), in the size of the
final populations, |[P ]| (with a confidence level of 99.99%),
and in the classifiers’ average generality, G([P ]) (with a con-
fidence level of 99.99%). The subsequent post-hoc proce-
dures (Scheffé, Tukey, and SNK) for the mean absolute error
report two homogeneity groups: one including XCSF with
linear and quadratic approximation, one including XCSF
with quadratic and cubic approximation. This suggests that
when we consider higher error thresholds the performance of
linear and quadratic approximation (in terms of approxima-
tion accuracy) is similar; the same holds for quadratic and
cubic approximation. Therefore, with high error thresholds
is not convenient to improve the approximation class. With
respect to the size of the final solutions evolved, the ANOVA
test shows that the results for the three versions are signifi-
cantly different with a confidence level of 99.99%; the follow-
ing post-hoc procedures show that all the three versions are

Cubic

f(x) N ε0 MAE ± σ |[P ]| ± σ G([P])±σ

Fp(x) 1000 5 1.11 ± 7.76 25.90 ± 5.33 1474.29 ± 800.40

Fp(x) 1000 50 0.000 ± 0.000 27.92 ± 7.15 1438.17 ± 814.89

Fp(x) 1000 100 0.00 ± 0.03 27.38 ± 7.17 1426.41 ± 819.49

Fs3(x) 1000 5 2.62 ± 0.70 46.06 ± 6.81 122.82 ± 46.31

Fs3(x) 1000 50 18.02 ± 3.21 56.42 ± 7.81 210.66 ± 54.13

Fs3(x) 1000 500 250.05 ± 37.026 54.94 ± 8.49 423.99 ± 260.51

Fs4(x) 1000 5 2.98 ± 0.88 45.24 ± 5.49 91.72 ± 36.91

Fs4(x) 1000 50 29.78 ± 76.94 53.12 ± 6.28 164.40 ± 41.42

Fs4(x) 1000 500 247.2 ± 25.67 56.56 ± 9.05 384.58 ± 223.83

Fabs(x) 1000 5 1.54 ± 0.39 34.16 ± 6.01 163.49 ± 85.03

Fabs(x) 1000 50 20.01 ± 3.02 53.34 ± 8.94 238.96 ± 76.40

Fabs(x) 1000 100 42.82 ± 7.11 59.24 ± 9.22 294.40 ± 107.21

Table 3: XCSF with cubic approximation. Statistics
are averages over 50 runs.
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Figure 5: Average performance of XCSF with (a)
linear and (b) cubic approximation applied to Fp(x)
with N = 1000 and ε0 = 100. Curves are averages
over 50 runs.
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significantly different one from another. Finally, the same
tests applied to the data from classifiers’ generality show
that the three versions of XCSF (linear, quadratic, and cu-
bic) performs significantly different (at the 99.99%) though
the post-hoc procedures report different results: Scheffé and
Bonferroni show that the difference in classifiers’ generality
of the three systems is significantly different, in contrast,
Tukey tests report no difference among the three systems.
The difference in the results of the statistical tests for classi-
fiers’ generality is mainly due to the data distribution. While
the average absolute error and the population size are basi-
cally averages and therefore they are more or less normally
distributed, values of classifiers’ generality have a distribu-
tion that is completely problem dependent. In our expe-
rience, the distribution of classifiers’ generality has usually
one peak for each section of the problem space that allows
large generalizations (e.g., in the sine three, the distribution
of classifiers’ generality one peak for each one large slope).

8. SUMMARY
We have shown how XCSF can be easily extended beyond

linear approximation so as to allow polynomial approxima-
tions for computing classifier predictions. We have com-
pared the original XCSF with linear prediction, to the ver-
sions of XCSF extended with quadratic and cubic prediction
on different problems taken from the literature. The results
we report show that the generalization mechanism of XCSF
can effectively exploit quadratic and cubic approximations
to evolve solutions that are usually more accurate and more
compact than those evolved by the original XCSF with lin-
ear approximation. The statistical analysis of the results
shows that such improvements are statistically significant,
both in accuracy and in generalization capability. Finally,
we note that the approach we discussed here is generaliz-
able to higher order polynomials. However, our statistical
analysis suggests that increasing the degree of the polynomi-
als used to approximate classifier prediction might not lead
to statistically significant improvements unless small error
thresholds are involved.
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