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ABSTRACT
XCSF extends the typical concept of learning classifier sys-
tems through the introduction of computed classifier pre-
diction. Initial results show that XCSF’s computed pre-
diction can be used to evolve accurate piecewise linear ap-
proximations of simple functions. In this paper, we take
XCSF one step further and apply it to typical reinforcement
learning problems involving delayed rewards. In essence,
we use XCSF as a method of generalized (linear) reinforce-
ment learning to evolve piecewise linear approximations of
the payoff surfaces of typical multistep problems. Our re-
sults show that XCSF can easily evolve optimal and near
optimal solutions for problems introduced in the literature
to test linear reinforcement learning methods.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics Based Machine
Learning, Learning Classifier Systems; I.2.6 [Learning]: Re-
inforcement Learning, Generalization

General Terms
Algorithms, Performance

Keywords
LCS, XCS, RL, Generalization

1. INTRODUCTION
Reinforcement Learning [6] deals with the problem of

learning by interacting with an unknown environment which
returns feedback in term of numerical reward. Solu-
tions to reinforcement learning problems are represented by
action-value functions which map state-action pairs to the
expected payoff: state-action pairs identify the current sit-
uation (the state) and the possible system behavior (the
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action); the expected payoff estimates the amount of future
reward that the system should expect. Most reinforcement
learning algorithms assume that action-value functions are
represented as look-up tables containing one entry for each
possible state-action pair. However, look-up tables are in-
feasible when it comes to applications involving many states
and many actions. Accordingly, when applying reinforce-
ment learning to large problems approximation techniques
are used and look-up tables are replaced by parametrized
functions. Unfortunately, when moving to approximated
approaches, the nice convergence properties of (exact) tab-
ular algorithms do not hold anymore [1, 6]. Most impor-
tant, results reported in the reinforcement learning liter-
ature suggest that function approximation does not always
work well [1, 4], although some exceptional results have been
obtained [7].

Learning classifier systems are a different approach
to the same issue–the complexity of solutions rep-
resented as look-up tables. Learning classifier sys-
tems represent an action-value function with a set of
condition-action-prediction rules, the classifiers. Each clas-
sifier associates a (constant) payoff value (the classifier pre-
diction) to the set of states (matched by the condition) and
to one action. Thus, from a reinforcement learning perspec-
tive, learning classifier systems evolve a piecewise constant
approximation of the action-value function which represent
the problem solution.

XCSF extends the typical concept of learning classifier
systems through computed classifier prediction. In XCSF
classifier prediction is not a parameter but it is computed
as a linear combination of the current input and a weight
vector associated to each classifier. Originally, XCSF was
conceived as a pure function approximator [12]: classifiers
did not have an action and computed prediction was used to
produce piecewise linear approximations of target functions.
Wilson [12] applied XCSF to simple function approximation
problems showing that computed prediction can be used to
evolve accurate piecewise linear approximation of the tar-
get functions. Recently, Wilson applied XCSF with discrete
actions, dubbed XCS-LP, to a simple single step problem
(the frog problem [13]) involving payoff functions continu-
ous with respect to the problem space. The results reported
in [13] show that XCSF with actions and linear prediction
(XCS-LP) exhibits high performance and low error, as well
as dramatically smaller solutions compared with XCS.
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In this paper we take one step further and apply XCSF to
problems involving delayed rewards to evolve piecewise lin-
ear approximation of payoff surfaces typical of multistep re-
inforcement learning problems. In this respect, we actually
use XCSF as a method of (linear) generalized reinforcement
learning [1, 6]. We apply XCSF to a set of problems inspired
by those used in the reinforcement learning literature for
linear approximators [1]. The results we present here show
that, in similar problems, XCSF can easily reach optimal
or near optimal performance in all the problems considered,
suggesting that XCSF might be a very promising approach
to tackle complex multistep problems providing solutions
that are typical of generalized (linear) reinforcement learn-
ing methods. Note that, in this paper, we will simply re-
fer to XCS with computed prediction as XCSF to abstract
the concept of computed prediction (first introduced with
XCSF [12]) from the more specific implementation with ac-
tions and linear prediction (XCS-LP in [13]).

2. REINFORCEMENT LEARNING
Reinforcement learning is defined as the problem of an

agent that learns to perform a task through trial and error
interactions with an unknown environment which provides
feedback in terms of numerical reward [6]. The agent and
the environment interact continually. At time t the agent
senses the environment to be in state st; based on its current
sensory input st the agent selects an action at in the set A
of the possible actions; then action at is performed in the
environment. Depending on the state st, on the action at

performed, and on the effect of at in the environment, the
agent receives a scalar reward rt+1 and a new state st+1.
The agent’s goal is to maximize the amount of reward it
receives from the environment in the long run, or expected
payoff [6].

2.1 Generalized Reinforcement Learning
In reinforcement learning the agent learns how to max-

imize the incoming reward by developing an action-value
function Q(·, ·) (or a state value function V (·)) that maps
state-action pairs (or states) into the corresponding ex-
pected payoff value. Reinforcement learning methods as-
sume that action-value functions (and value functions)
are represented by look-up tables with one entry for each
state-action pair (or one entry for each state in the case of
value functions). However, look-up tables easily become in-
feasible in problems involving many states. Large look-up
tables require more memory but, most important, they re-
quire more on-line experience to converge. To cope with
the complexity of large problems the agent must be able
to generalize over its experiences, i.e., to produce a good
approximation of the optimal value function from a limited
number of experiences, using a small amount of storage.

In reinforcement learning generalization is implemented
by methods of function approximation techniques: the
action-value function is not represented as a table but as a
function parametrized with a vector θ. This means that at
time step t, the value associated to a particular state-action
pair (or to a particular state) depends on the current param-
eter vector θt. The action-value function Q(·, ·) is viewed as
a function parametrized by a vector θ that maps state-action
pairs into real numbers (i.e., the expected payoff).

2.2 Gradient-Descent Methods
These are the most widely used function approxima-

tion methods. In gradient-descent methods, the parame-
ter vector has a fixed number of real-valued components,
θt = 〈θt(1) . . . θt(n)〉, while the target action-value function
is approximated by a smooth differentiable function of θt for
all the possible state-action pairs. At time step t, parameters
θt are adjusted to minimize the mean-squared error (MSE )
between the new estimate of the action-value function and
the previous estimate. Gradient descent methods do this by
adjusting the parameter vector by a small amount in the
direction that would reduce the error on that example.

Among gradient-descent approaches, linear methods rep-
resent probably the most important case in reinforcement
learning [1, 5, 6]. With linear methods, value functions
are represented by linear functions of the vector param-
eter θt. For any state s, a vector of n features, φs =
〈φs(1), . . . , φs(n)〉 is extracted, the approximated value func-
tion for s is simply computed as θtφs, while the gradient
simply corresponds to the vector φt. Linear methods are
very computational efficient in terms both of space and time;
on the other hand, their effectiveness rely heavily on the
choice of the feature vector φs, in addition, they are limited
in that they cannot express interactions between features.
To improve linear methods, a number of approaches have
been developed in which linear approximation is enriched
with advanced representation of state features to allow the
expression of relation between input features, e.g., coarse
coding, tile coding, radial basis functions, and kanerva cod-
ing [6].

2.3 Convergence
The convergence of generalized reinforcement learning is

a complex issue, still poorly understood (see [4] for a re-
cent discussion). Most of the approximated reinforcement
learning algorithms are not known to converge and there is
no known way to extend the convergence proofs for tabu-
lar reinforcement learning to the case of function approxi-
mators. Even if function approximators proved successful
in solving challenging reinforcement learning tasks [7], yet
they have been shown to be generally unstable, even in sim-
ple problems [1]. For instance, [8] suggests (in the case of
Q-learning [6]), that the approximators induce noise on the
action-value function so that the system can overestimate
the expected payoff even when noise has zero mean.

3. THE XCSF CLASSIFIER SYSTEM
XCSF extends XCS in three respects [12]: (i) classifier

conditions are extended for numerical inputs, as done for
XCSI [11]; (ii) classifiers are extended with a weight vector
w, that is used to compute classifier’s prediction; finally,
(iii) the classifier weight vector w are updated instead of
the classifier prediction.

Classifiers. In XCSF, classifiers consist of a condition, an
action, and four main parameters. The condition specifies
which input states the classifier matches; it is represented
by a concatenation of interval predicates, inti = (li, ui),
where li (“lower”) and ui (“upper”) are integers, though
they might be also real. The action specifies the action for
which the payoff is predicted. The four parameters are: the
weight vector w, used to compute the classifier prediction as
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a function of the current input; the prediction error ε, that
estimates the error affecting classifier prediction; the fitness
F that estimates the accuracy of the classifier prediction;
the numerosity num, a counter used to represent different
copies of the same classifier. The weight vector w has one
weight wi for each possible input, and an additional weight
w0 corresponding to a constant input x0, that is set as a
parameter of XCSF.

Performance Component. XCSF works as XCS. At each
time step t, XCSF builds a match set [M] containing the clas-
sifiers in the population [P] whose condition matches the
current sensory input st; if [M] contains less than θmna ac-
tions, covering takes place as in XCSI [11, 12]. The weight
vector w of covering classifiers is initialized with zero values
(note that in [12], the weight vector is initialized with ran-
dom values in [-1,1]); all the other parameters are initialized
as in XCS [2].

For each action ai in [M], XCSF computes the system pre-
diction. As in XCS, in XCSF the system prediction of action
a is computed by the fitness-weighted average of all match-
ing classifiers that specify action a. In contrast with XCS,
in XCSF classifier prediction is computed as a function of
the current state st and the classifier vector weight w. Ac-
cordingly, in XCSF system prediction is a function of both
the current state s and the action a. Following a notation
similar to that in [2], the system prediction for action a in
state st, P (st, a), is defined as:

P (st, a) =

P

cl∈[M]|a
cl.p(st)× cl.F

P

cl∈[M]|a
cl.F

(1)

where cl is a classifier, [M]|a represents the subset of classi-
fiers in [M] with action a, cl.F is the fitness of cl ; cl.p(st) is
the prediction of cl in state st, which is computed as:

cl.p(st) = cl .w0 × x0 +
X

i>0

cl .wi × st(i)

where cl.w i is the weight wi of cl . The values of P (st, a)
form the prediction array. Next, XCSF selects an action to
perform. The classifiers in [M] that advocate the selected
action are put in the current action set [A]; the selected
action is sent to the environment and a reward r is returned
to the system together with the next input state st+1

Reinforcement Component. XCSF uses the incoming
reward to update the parameters of classifiers in action set
[A]−1 corresponding to the previous time step. Note that,
when XCSF is used for function approximation (a single step
problem) the reinforcement component acts on the current
action set. At time step t, the expected payoff P is computed
as:

P = r−1 + γ max
a∈A

P (st, a) (2)

where r−1 is the reward received at the previous time step.
The expected payoff P is used to update the weight vector
w of the classifier in [A]−1 using a modified delta rule [9].
For each classifier cl ∈ [A]−1, each weight cl.w i is adjusted
by a quantity ∆wi computed as:

∆wi =
η

|st−1(i)|2
(P − cl.p(st−1))st−1(i) (3)

where η is the correction rate and |st−1|
2 is the norm the

input vector st−1 [12]. The values ∆wi are used to update

31 2 4 5 6 n

G

Figure 1: The Corr(n) environment. The symbol
“G” denotes the goal position.

the weights of classifier cl as:

cl.w i ← cl.w i + ∆wi (4)

Then the prediction error ε is updated as:

cl.ε← cl.ε + β(|P − cl.p(st−1)| − cl.ε)

Finally, classifier fitness is updated as in XCS [2].

Discovery Component. The genetic algorithm in XCSF
works as in XCSI [11]. On a regular basis depending on the
parameter θga, the genetic algorithm is applied to classifiers
in [A]. It selects two classifiers with probability proportional
to their fitness, copies them, and with probability χ performs
crossover on the copies; then, with probability µ it mutates
each allele. Crossover and mutation work as in XCSI [11,
12]. The resulting offspring are inserted into the population
and two classifiers are deleted to keep the population size
constant.

4. DESIGN OF EXPERIMENTS
To apply XCSF to multistep problems, we follow the stan-

dard experimental design used in the literature [10]. Each
experiment consists of a number of problems that the sys-
tem must solve. Each problem is either a learning problem
or a test problem. In learning problems, the system selects
actions randomly from those represented in the match set.
In test problems, the system always selects the action with
highest prediction. The genetic algorithm is enabled only
during learning problems, and it is turned off during test
problems. The covering operator is always enabled, but op-
erates only if needed. Learning problems and test problems
alternate. The reward policy we use is the one used in the
reinforcement learning literature when studying linear ap-
proximators [1]. When XCSF solves the problem correctly,
reaching the goal position, it receives a constant reward
equal to 0; otherwise it receives a constant reward equal to
-0.5. The performance is computed as the average number
of steps needed to reach goal or food positions during the
last 100 test problems. To speed up the experiments, prob-
lems can last at most 500 steps; when this limit is reached
the problem stops even if the system did not reach the goal.
All the statistics reported in this paper are averaged over 20
experiments.

5. THE LINEAR CORRIDOR
We begin with the very simple environment depicted in

Figure 1. Corr(n) is a linear corridor with n positions la-
beled from 1 to n; the only goal is in position n; the system
input is the integer associated to the current position; there
are two possible actions: left, coded with 0, and right, coded
with 1; the system can start in any empty position; when
the system reaches position n (the goal), it receives zero re-
ward, in all the other cases it receives −0.5. Figure 2 reports
the optimal value functions in Corr(20) for the two actions
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Figure 2: Optimal action-value functions for
Corr(20) for the action (a) left and (b) right.

and different values of γ; no value is associated to the fi-
nal position since when the agent reaches final position the
problem ends and no action is available. As can be noted
from the plots (Figure 2), when γ = 1 the state-values (iden-
tified by the square dots) are placed on a straight line and
in each state there is a rough distinction between the values
of the two actions. When γ is near to one (e.g., γ = 0.9),
the state-values are placed on a smooth curve and still in
each state there is a rough distinction between the values of
the two actions. When γ is small (e.g., γ = 0.7), almost all
the state-values stay on a flat line since there is almost no
distinction between the values of the different action in the
same positions For instance, when γ = 0.7, in position 1,
the difference between the values of action left and action
right is around 10−4, three order of magnitude less than the
immediate reward (0.5). This is a general issue for func-
tion approximators in multistep problems like XCSF. If γ
is small we need accurate approximations, that is small val-
ues of the error threshold ǫ0, to distinguish actions far from
the goal; on the other hand, such small values of ǫ0 gener-
ally limit generalization capabilities near the goal position
where generalizations are possible only allowing higher error
thresholds. Accordingly, most of the literature on function
approximators for multistep problems use values of γ be-
tween 0.9 and 1.0, e.g., [1, 5].

We apply XCSF in Corr(20) with the following parame-
ters setting (see [2] for details): N = 400, β = 0.2; α = 0.1;
ν = 5; χ = 0.8, µ = 0.04, pexplr = 0.5, θdel = 50, θGA = 50,
and δ = 0.1; GA-subsumption is on with θsub = 50; while
action-set subsumption is off; the parameters for integer con-
ditions are m0 = 5, r0 = 5 [11]; the parameter x0 for XCSF
is 10, η is 0.2 [12]. We tested XCSF in Corr(20) on three
different configurations of γ and ǫ0: γ = 1.0, ǫ0 = 0.1;
γ = 0.9, ǫ0 = 0.1; γ = 0.8, ǫ0 = 0.01; Figure 3a and Fig-
ure 3b compare the optimal action-value functions (reported
as lines) with the solutions evolved by XCSF (reported as
dots) for action left (Figure 3a) and action right (Figure 3b).
In all the three cases, XCSF reaches optimal performance;
the solutions evolved (reported with dots in Figure 3a and
Figure 3b) represent the optimal action-value functions ac-
curately. In particular, when γ = 0.9, the ǫ0 is small enough
to guarantee XCSF’s optimal performance but not to guar-
antee a “perfect fit”. A similar case shows up for action
left with γ = 1.0 in position 1 (square dots in Figure 3a).
Here XCSF approximation is rather far from the optimal
action-value function, although the overall policy is optimal
for the problem. This is easily explained by noting that the
error threshold ǫ0 represents an average error over all the
states matched by each condition. When γ = 1.0 XCSF
tends to generate highly general classifiers (matching most
of the states) that are very accurate in the oblique part of
the action value function, but quite inaccurate in position
1; however, on the average error of such classifiers is below
the ǫ0 threshold. When considering the number of macro-
classifiers in the population we note that the final solutions
are very compact, ranging from an average of the 3.3% of N
(16 classifiers) when γ = 1.0, to an average of the 7% of N
(28 classifiers) when γ = 0.8. As we should expect, smaller
values of ǫ0 correspond to more specific and therefore larger
solutions.

We extend the previous experiments and apply XCSF to
Corr(40); we use the same parameter setting and two values
of γ and ǫ0: γ = 1.0 and ǫ0 = 0.1; γ = 0.9 and ǫ0 = 0.01. In
both cases the solutions evolved (not shown here) approx-
imate the optimal action-value functions accurately. Fig-
ure 4a reports XCSF’s performance while Figure 4b reports
the number of macroclassifiers in the population. The re-
sults confirms those for Corr(20): in both cases, XCSF
reaches optimal performance (Figure 4c) and the popula-
tion size is still rather compact, the 5% for γ = 1.0, the 10%
when γ = 0.9.

6. THE EMPTY ROOM
In the second set of experiments we apply XCSF to the

Room(n) environment (Figure 5), originally introduced in [1]
where it has been generically dubbed 2D gridworld. Room(n)
is an n × n grid, with a goal in position 〈n, n〉; the system
can start in any empty position; the system input consists
of a pair of integers representing the current system posi-
tion in the grid; there are four possible actions (up, down,
left, and right) coded with two bits; as in Corr(n), when
the system reaches the goal (position 〈n, n〉) it receives a
zero reward, otherwise it receives -0.5. Figure 6 shows the
optimal value function for Room(20) when γ = 0.9. It is
worth noting that while Room(n) is rather simple, it does
not allow many generalizations for other models of learning
classifier systems like XCSI, which for this problem would
evolve very specific solutions mainly consisting of four clas-
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Figure 3: XCSF in Corr(20) for the following setting
of γ and ǫ0: γ = 1.0 and ǫ0 = 0.1; γ = 0.9 and ǫ0 = 0.1;
γ = 0.8 and ǫ0 = 0.01. (a) action-value function for
action left; (b) action-value function for action right.
Statistics are averages over 20 runs.

sifiers for each position (result now shown here). Figure 6
shows even clearer what we already note in the Corr(20)
environments: as the number of steps increases, even if a
large value of γ is considered, there is a dramatic difference
between the values of positions in areas far from the goal and
positions in areas near to the goal. This has a serious influ-
ence on the generalization capability of XCSF approaches:
the error threshold ǫ0 is the same on all the problem space;
to distinguish the values of action in areas far from the goal,
we need small error thresholds; however, such small error
thresholds prevent the evolution of large generalizations in
areas near to the goal where the values of actions are largely
different. For this reason, as we suggest in the concluding
section, we believe that it would be interesting to extend
XCSF approaches with adaptive error thresholds for classi-
fiers, as done in [3].

First, we apply XCSF to Room(10) with γ = 0.9, N =
2500, and ǫ0 = 0.05; the parameters for integer conditions
are m0 = 10, r0 = 5; the parameter x0 for XCSF is 10, η is
0.2 [12]. Figure 7a reports XCSF’s performance in Room(10)
which is optimal. The evolved solutions are also compact
containing an average of 80 macroclassifiers (the 3.3% of
N). Note that XCSI in this case would generate popula-
tions of around 400 classifiers (not shown). Then, we apply
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Figure 4: XCSF in Corr(40) when γ = 1.0 and γ = 0.9:
(a) performance; (b) number of macroclassifiers in
the population (/N). Curves are averages over 20
runs.

XCSF to Room(20) which noteworthy is to our knowledge
the largest multistep problem used for XCS models so far;
in fact, Room(20) is much larger than other Markov grid en-
vironments tried, consisting of 399 distinct states, i.e., 1596
distinct state-action pairs. Figure 8 reports XCSF’s perfor-
mance in Room(20) for different values of N . For N = 2500
and N = 5000, XCSF’s performance is very near to the op-
timum and becomes fully optimal when N = 7500. With re-
spect to the size of the evolved solutions, when N = 2500 the
final populations consist on the average of 315 macroclassi-
fiers (the 12.6% of N), when N = 5000 the final populations
consist on the average of 475 macroclassifiers (the 9.5% of
N), when N = 7500 the final populations consist on the av-
erage of 563 macroclassifiers (the 7.5% of N). These results
(Figure 8) evidence a typical behavior of XCSF which in our
opinion represent an important improvement with respect to
the performance of other XCS models. XCSF appears to be
quite robust. Even if the population size is dramatically re-
duced or the error threshold raised, XCSF’s performance,
in the experiments we performed so far, did not show sud-
den breakdowns. Instead, XCSF’s performance usually de-
creases rather smoothly as the available resources (e.g., the
number of available macroclassifiers) diminish.
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7. ROOMS WITH OBSTACLES
Finally, we apply XCSF to two environments, depicted in

Figure 9, Holes10 and Side10, derived from Room(10) by
adding obstacles. As in [1], obstacles are positions in which
there is an additional cost for moving: when the system
enters an obstacle position it receives a reward of −2 (an
empty position returns a reward of −0.5).

In the first experiment we apply XCSF to Holes10 (Fig-
ure 9a) for γ = 0.9 and two values of the population size,
N = 2500 and N = 1000; all the other parameters are set as
in the previous experiments. Figure 10 compares the per-
formance of tabular Q-learning (which provides reference
to optimal performance) with that of XCSF. As can be
noted, XCSF performs optimally when N = 2500, the aver-
age number of macroclassifiers in the evolved populations is
434.5, the 17% of N ; when N is decreased to 1000, the aver-
age performance is nearly optimal, with an average solution
consisting of 200 classifiers, the 20% of N . Again, we note
that even when the computation resources are drastically
reduced XCSF’s performance does not experience sudden
breakdowns as other models, instead it smoothly decreases,
as the available resources diminish. Overall, when N = 2500
the average solution appears to be larger than the size of the
Q-table (which is 400), however, final populations contain
many newly created classifiers that may also overlap with
other ones. Thus, the size of the average evolved solution is
actually smaller that the Q-table.

In the second experiment we apply XCSF to Side10 (Fig-
ure 9b), which is derived from Room(10) by adding a region
of negative reward on one side. The size of the region and
the cost associated to the obstacle positions are such that
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Figure 7: Performance of XCSF in Room(10) with
N = 2500, γ = 0.9, and ǫ0 = 0.05.
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Figure 8: Performance of XCSF in Room(20) when
γ = 0.9, ǫ0 = 0.01, and three values of N : 2500, 5000,
7500.

the optimal policy requires the agent to move around the
obstacle border, instead of traverse it. We apply XCSF to
Side10 with γ = 0.9, the same two values of N and the same
parameter setting used in the previous problem. Figure 11
shows the performance of XCSF; the results confirm what
found for Holes10: when N = 2500, XCSF’s performance is
optimal, with solutions consisting on the average of 404.25
macroclassifiers, the 16.18% of N ; when N = 1000, XCSF’s
performance is nearly optimal, with solutions consisting on
the average of 165.58 macroclassifiers, the 16.55% of N .
Again, even if the population is highly reduced XCSF’s per-
formance smoothly degrades. As an example, in Figure 12
we report one of the policies evolved by XCSF for Side10

when N = 2500: for each position, arrows represent the di-
rection of the best action. In Figure 13 we also report an
action-value function evolved by XCSF for N = 2500 (Fig-
ure 13a) and an action-value function evolved by XCSF for
N = 1000 (Figure 13b). With a population of 1000 classi-
fiers, XCSF evolves a solution (Figure 13b) very similar to
the optimal one, evolved with a population of 2500 classi-
fiers. The only noticeable difference is found in the central
section of the obstacle region (the darker area in Figure 13a)
where, with the smaller population, XCSF tends to overes-
timate action values (as evidenced by the lighter color of the
inner obstacle region in Figure 13b).
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Figure 9: The environments (a) Holes10 and (b)
Side10. Grey positions represent obstacles.

8. CONCLUSIONS
We have applied XCSF, the extension of XCS to a com-

puted prediction, to typical multistep problems taken from
the reinforcement learning literature. In this respect, we
have used XCSF as a method of generalized reinforcement
learning, based on linear approximators such as those used
in [1, 6]. The results we have discussed here show that XCSF
can always converge to optimal or nearly optimal policies
suggesting that XCSF might be a very promising approach
to tackle complex multistep problems. Our experiments also
suggest that XCSF is more robust than other XCS models.
In fact, the reduction of the computational resources avail-
able to XCSF does not lead to sudden performance break
downs. Instead, XCSF’s performance smoothly degrades as
the resources are reduced.

Our experience with XCSF suggests that its generalization
capabilities may be further improved. As it happens in most
XCS models, the degree of generalization evolved by XCSF
depends on the error threshold ǫ0 which is actually fixed
right from the beginning and does not change throughout
the learning process. On the other hand, in many problems,
such as Room(20), XCSF might reach better generalizations
if different error thresholds could be used in different areas
of the problem space. Accordingly, we believe that a major
future research direction for XCSF consists of extending it
with adaptive error thresholds which, in our opinion, would
improve generalization.
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Figure 10: Performance of Q-learning and XCSF in
Holes10 for γ = 0.9. Curves are averages over 20 runs.
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