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Abstract

This paper proposes a canonical model of a machine
learning problem. The language and structure of the
model characterize learning problems independently
from the learning system that solves them. To facilitate
this decoupling of the problem and the learner the
concept of information pathways or “channels” is
introduced. Explicitly specifying the bandwidth and
content of these channels can more completely define
the learning problem. In addition, a small vocabulary of
problem descriptors is introduced. It is hoped that these
descriptors and the learning problem model will allow
for a more precise definition of learning problems in the
future and will provide a common language of
comparison among researchers.

Motivation

Because of the current diversity of approaches to machine
Jearning it is often difficult to compare or to even accurately
reconstruct an experiment. One reason for this is that for most
learning systems it is not possible to determine where the
problem itself ends and the learner begins. This makes it
difficult to evaluate the performance of the learner and it also
makes it difficult for other researchers to reproduce the
problem and hence verify the results. There is a need for a
model of a learning problem that decouples it from the
implementation of the learner and that can be used to produce
a common language for the definition of learning problems.

Once such a model is defined it is also important to be able
to talk about it in as high a level language as is possible, a
language that still allows for the description of significant
differences between problems. Currently such descriptions

are ad hoc and not well defined. One reason for this is that the
descriptors are often dependent on the learning system and are
not built explicitly for the description of the problem.

Components Of The Rosetta Model

The Rosetta model is an abstract description of a general
learning problem. As the name “Rosetta” implies it is hoped
that such a model can be used as a translation point among a
variety of problems. To illustrate the application of the model,
four different, previously described, learning problems are
used as examples. They are Wilson’s (1985) Animat, the letter
sequence prediction task of Robertson and Riolo (1988), the
boolean multiplexer task from Wilson (1987), and the Pole
Balancing task described by Sutton, Barto, and Anderson
(1984).

The problems can be stated briefly as follows:

Animat: A simple organism must find its way
through a predefined environment of trees and pieces
of food. Reward is given to the organism when trees
are avoided and food is found. The organism’s
sensory channel is limited to its immediate
neighborhood.

Letter Sequence Prediction: A predefined sequence
of letters is presented one letter at a time. Reward is
based on the ability to predict the next letter.

Boole: Eleven-bit binary strings are generated
where three bits encode a lookup position in the
remaining eight bits. Performance is based on the
percentage of correct lookups that the system can
perform on randomly generated strings.

Pole Balancer: A vertical pole is attached by a pivot
to a movable cart. The physical state of the pole is
available, forces can be applied to the cart, and the
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system is evaluated by the amount of time until the
pole falls over.

These brief statements informally separate out the learning
problems from the systems in which they were embedded.
However, we would like to go further. The first step in the
Rosetta model is to think of the relation between learner and
learning problem in terms of the diagram of figure 1. There,
the learner is seen interacting with a problem environment
through stimulus, action, and payoff channels. These, plus the
learning objective, form the components that the model uses
to define a learning problem. Figure 2 schematically shows
how the components could be filled in for the four example
learning problems.

Problem
Environ—
ment
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The “problem environment” is like a transition table that
defines the problem’s outputs (stimuli, payoffs) in terms of its
inputs (learner actions) and the current environment state.
Less formally, the environment contains all of the information
about “running” the problem, including state information
(e.g., location in the Animat’s Woods), determination of the
outgoing stimulus (e.g., a description of the Animat’s local
surroundings), and processing of action inputs that either
affect the state or require payoff (e.g., when food is found).

Because the problem environment is essentially
omniscient, it is important to separately define just what it
“tells” the learner, and how the learner can act on it. A
complete definition of communication channels is thus an
important part of the learning model although it is treated
lightly in many current problem descriptions. The fact is that
defining the channel bandwidth can make a problem either
hard or easy, independent of the problem environment. For
example we could define a machine learning problem whose
problem environment was very large, say a Woods
environment on a very large two dimensional surface. If,
however, all of this information and an appropriate evaluator
were given to the learner the determination of the solution
would be greatly simplified. On the other hand the woods
problem can become very difficult if only local neighborhood
information is allowed to flow out of the problem
environment.

The stimulus channel is in most cases a restrictor of
information flow from problem environment to learner. Its
information quanta are often limited views of the total
environment (e.g., a single letter in the letter sequence task).
The action channel carries information to the problem
environment that can have two possible consequences. It can
either change the state of the problem environment (as a
change in position would for the Woods domain) or it can be
evaluated to determine whether a payoff quantum should be
placed on the payoff channel. In most cases information on
the action channel will be evaluated but the payoff channel is
not always activated. The bandwidths of the action and payoff
channels are also important to the problem definition. For
example consider a problem that is defined to have a payoff
channel that is active after every action quantum is received.
This would correspond to a problem that evaluates every step
taken by a learning system. This problem would be much

Components of a Learning Problem

Problem Problem Stimulus Action Payoff Learning
Name Environment Channel Channel Channel Objective
Animat Woods Current One Step | On Contact | Get Food
View Moves With Food | Expeditiously
Letter Sequence | Letter Sequence | Current Name a On Correct | High Percent
Predictor Letter Letter Prediction | Correct
Boole Binary Strings Random lor0 On Correct | High Percent
String lor0 Correct
Pole Balancer Pole Physics Pole State Applied When Pole | Long Time
Force Falls Over | Till Fall

figure 2.
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easier than a similar problem that sent payoff quanta only after
many stimulus quanta. An example can be seen in the pole
balancing problem where it becomes a relatively simple
problem if feedback is given after every small movement
made by the learner. Certainly the learning problem is much
harder when payoff is made only after the pole falls over.

It may be interesting to notice that in a paper proposing to
define a canonical learning problem no attempt at a definition
of learning itself has been proposed. The reason for this is
that, in the model, the definition of success or failure of
“learning” is defined by the problem. This definition of
success or failure comprises the learning objective component
of the Rosetta model. The learning objective can be viewed as
the goal or solution to the defined learming problem, or it can
be some measure of solution coupled with other measures.

Problem Descriptors

The previous section showed how the Rosetta model separates
a learning problem from an overall system in which it may
happen to reside, and analyses the problem into five
components. In this section we introduce four descriptors
whose values further define the nature of a problem and are
useful in comparing one problem with another. The descriptor
values are derivable from the values of the five components.
The descriptors are: payoff frequency, history dependence of
the optimal action, intra—step mapping, and noise. Figure 3
shows the descriptor values for our example problems.

One characteristic of learning problems that has been
implicitly assumed so far is that stimulus information is
presented in some discrete way. One can think of this
activation of the stimulus channel and the subsequent
activations of the action and payoff channels as a single time
“step”. In the Rosetta model a time step is defined as the

sequence consisting of activations of the stimulus channel, the
action channel and then perhaps the payoff channel. This
concept of a time step is important because it allows one to
distinguish between actions that occur at different times. It
also gives us a formal model for determining how previous
channel activations affect current activations.

The descriptor called payoff frequency is now easy to
define. If the leamer receives payoff or reinforcement on
every time step, then the payoff frequency is noted as “every
step”. If not, the payoff is infrequent to the degree that time
steps on which payoff occurs are rare. In general, problems
are harder if payoff frequency is low, since it is difficult to
determine the worth of actions that did not receive payoff (the
temporal credit assignment problem).

Our second descriptor depends on the notion of “optimal
action”. By this we mean the best action that could be taken
with respect to the learning objective, given the current state
of the problem environment. Once this concept isdefined itis
possible to notice the dependence of this action on previous
stimuli. For example, the optimal action in a letter sequence
task can depend on the stimuli from previous time steps as
well as the letter currently in the stimulus channel. In the
sequence “whyhwhyh...”, prediction of the letter to follow “h”
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depends on whether “w” or “y” occurred on the previous step.

In the Rosetta model, the descriptor “history dependence
of the optimal action” has the value “no” if the optimal action
can be determined strictly from knowledge of the present
stimulus. If, on the other hand, previous stimuli are required,
the value is “yes”. A more precise valuation would state the
number of steps back in time that are necessary to determine
the optimal action. Obviously, the greater the history
dependence, the more the learner needs in some manner to
remember prior events.

Applying Descriptors to Learning Problems

Problem Payoff History Dependence Intra—Step Noise
Name Frequency of Optimal Action Mapping
Animat Infrequent Yes " Discontinuous No
Leuer Sequence . .
Predictorque Every Step Yes Discontinuous No
Boole Every step No Discontinuous No
Pole Balancer Infrequent No Continuous No

figure 3.
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Our third descriptor concemns the nature of the mapping
from stimulus to optimal action within a time step. Without
loss of generality, we can consider this mapping always to be
from one binary string to another. However, the mapping can
be either many—to—few or many-to—-many. The first case is
characteristic of classification problems in which large
numbers of possible inputs are placed in a relatively small
number of categories. We term this “discontinuous” because
the input can change gradually without change in the output
until suddenly anew, in general very different, output is called
for. The second case is characteristic of sensory—motor
problems in which for every possible input there is a relatively
distinct optimal output. In this case the term “continuous” is
appropriate since a small input change calls in general for a
small output change. The two types of mappings present quite
different problems and imply different learning approaches.

Last we can classify problems in terms of noise. Since by
definition the problem environment contains all that is
required to evaluate and define the problem we can not
introduce noise at that point or we will have changed the
problem.  Instead noise can be introduced on the
communication channels. There is perhaps no good example
where corrupting the action channel would be relevant to real
world learning systems; however, corruption of the
information found in the stimulus channel and the payoff
channel is of considerable interest. Corruption of the stimulus
channel would, for example, correspond to the woods problem
domain being covered in a dense fog bank where stimulus
information was almost correct but could be sometimes
corrupted.  Corruption of the payoff channel would
correspond to a preoccupied teacher where payoff was

sometimes given when it should not have been and withheld
sometimes when it should have been distributed.

Summary

This paper has introduced a model of learning problems and a
limited vocabulary with which to describe some of their
higher level attributes. The main contribution of the model is
its ability to separate the leamer from the problem itself by
explicitly defining the communication paths between these
two entities. If this model is used in the future it should aid the
researcher in more completely defining a learning problem so
that other researchers can accurately understand and use it.
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