
This will be an introdution to learning lassi�er systems. But I willfous mostly on XCS, whih ontains many of the ideas thatare urrently being pursued in the �eld. I will try to explain XCS sothat everyone gets a good idea how it works. I will assume no priorknowledge of lassi�er systems or XCS. Toward the end I willindiate some important diretions for future researh.Holland's basi lassi�er system framework ertainly remainsinspiring. But I believe ertain key aspets must be hangedin order for the framework to be suessful. Some of the hanges areembodied in XCS, whih appears to work better than previouslassi�er systems. I think people at a tutorial would like to learnabout things that work better, so I will fous on XCS. |However, it is important to know about the traditional system. Iwould reommend Holland's hapter in the 1986 Mahine Learningbook, as well as the hapter in Dave Goldberg's �rst book. I wouldalso reommend papers by Lashon Booker, Larry Bull, StephanieForrest, John Holmes, Tim Kovas, Rik Riolo, and Rob Smith,among others. Plus my own papers prior to 1995. At the end,if people are interested, I will disuss the relationship between XCSand earlier lassi�er systems. [BREAK℄I will do this tutorial in a sort of question-answer format, posingand then answering what would seem to be the next major question.But, if you have another question as I go along, and it is urgentenough, please interrupt and ask it. I will also deliberately pause forquestions. |Okay, What is XCS? First of all, it is a learning mahine|a learningprogram within a omputer. Here, learning means behavior thatimproves with time, via interation with the environment.
1



Many learning programs start with a priori information about theproblems that will be faed. Suh information is often alled\domain knowledge". If the program still goes on to improve itsbehavior, this is not exatly heating. But there an be onfusionbetween what is given in advane and what is atually learned.To understand learning per se, and eventually to reate reallypowerful learning mahines, I think it's important to start withminimum a priori information, so that as muh of the mahine'sknowledge as possible results from adaptation to the environment.Then whatever we do have to put in we will know is probablyessential and annot be left out.Another aspet of XCS is that its learning is \on-line". This meansthat it has to learn as it goes along. It does not have the luxury ofolleting a lot of experiene in some sort of temporary storageand then proessing it at leisure for the impliations. Instead, XCSmust extrat the impliation of eah experiene as it ours,beause the raw data annot be saved.This riterion is at odds with the way humans sometimes learn,sine we sometimes sit down and study large amounts of olleteddata free of pressure for immediate performane. However, it seemslikely that the simpler the animal, the less this is possible, and thatthey learn primarily \on-line". Sine simple animals an still beamazingly ompetent, it seems essential to understand how ourmahines an also learn on-line.A third aspet of XCS is that as it learns it attempts to aptureregularities of the environment. This means to detet and lumptogether situations that all for the same behavior|even thoughthe situations may appear di�erent. A mahine with even a smallnumber of sensors will enounter an enormous number of sensorystates in any reasonably ompliated environment.
2



A sensory state means a partiular vetor of values on the sensors.In order to avoid an explosive demand on memory, the learningmahine must be able to group states having the same impliationfor its behavior. This is the problem of generalization. XCS is ableto generalize quite powerfully, if the environment allows it. |What does XCS learn? Always, it learns to get reinforements.More preisely, it learns to at so as to maximize a summation ofurrent and future reinforements. As the diagram indiates, XCSreeives inputs|sensory state vetors|from the environment andemits ations that a�et the environment and may result in payo�s.The payo� is always a salar. A payo� assoiated with needsatisfation ould be represented by a large positive number. Apayo� assoiated with pain ould be represented by a large negativenumber, et.This is the framework of reinforement learning, whih seemsto be the right framework for developing learning mahines that anfuntion autonomously. Often, we don't know whata mahine should do in order to ahieve a goal that we set for it. Wedo not \see" the environment the way its sensors do, and we annotpredit how its e�etors will a�et the environment.But we do often know the end results that we want and an attahreinforement values to them. We an say, \I want the mahineto �nd as muh dust as possible, so I will give it a small payo� everytime it �nds some", et. This is usually muh easier than tellingit|as a teaher might|just what to do to �nd dust. |

3



All right, what are XCS's inputs and outputs? We are goingto simplify a lot. Muh of the work with lassi�er systems has beendone with binary input vetors and disrete ations. Thus what Ialled the sensory input vetor is a string of bits. To make it a littlemore organi, you an think of eah bit as the result of thresholdingthe ontinuous-valued output of some sensor. Despite the resultingloss of information, binary sensor values are adequate in manybehavioral situations.There is nothing in priniple that prevents XCS from usingontinuous sensor values diretly, i.e., using real input vetors. Orvetors of integers. I will desribe approahes to these later on.Outputs are also disrete, though not neessarily two-valued.In some problems, XCS will learn to give a yes-no deision, and theoutputs will therefore be 1 and 0. In other problems, the outputswill be ations in a physial (or simulated physial) environment,suh as: move a predetermined distane forward, or turn leftthrough a predetermined angle.For disrete ations to be e�etive, their size should be large enoughso that strings of suh ations atually aomplish something in auseful time, but small enough so that �ne maneuvers anbe arried out if neessary. A better solution would be ations thatevolve to have the optimum value, suh as \head 34 degrees left". Apromising approah has reently been proposed, whih I willdesribe later. |Now I'm going to start talking about what's inside XCS. First, I willdesribe the system after it has learned something. I'll show how,given some input, it arrives at a deision.
4



XCS's knowledge is ontained in a large set of ondition-ation rulesalled lassi�ers. Eah lassi�er onsists of a ondition part, anation part, and a predition part. The lassi�er \says": if myondition mathes the sensory input and my ation is taken by thesystem, I predit that the payo� will be as follows.The example lassi�er says: if the �rst two bits of the input are 0and 1 and the fourth bit is also 1, I predit a payo� of 943.2 if thesystem takes ation 1. (The # symbol means I don't are what thevalue of this omponent is.) This rule mathes a total of eightpossible input vetors, so it is making a statement that applies to alleight of those inputs. It is expressing a generalization in the sensedisussed at the beginning. It is saying that the environment seemsto have a regularity suh that if three of the input bits are set as justdesribed and the ation is ation 1, the payo� will be 943.2regardless of the settings of the other three bits.Whether this lassi�er is orret is another matter. Wean ertainly doubt that the payo� will be exatly 943.2 for all eightmathing input vetors. In fat, 943.2 may be an average over awidely di�erent set of atual payo�s for those eight ases. Thus,while the lassi�er asserts a generalization, the generalization'sauraymay be high or it may be low. So the lassi�er may be veryuseful to the system as a preditor, or it may be of little use.There are many lassi�ers within the system at any one time,perhaps several hundred in the types of problems often studied. Ifyou examine one of the lassi�ers, you will �nd that it makes apayo� predition, as above, with respet to some subset of the inputspae, in ombination with one of the possible ations. After XCShas learned for a while, it will ontain lassi�ers thatover all parts of the input and ation spae that it has experiened,plus|often|muh more that it has not experiened.
5



There is an important di�erene between XCS and learning systemsbased on arti�ial neural networks. In XCS, the knowledge aboutsubsets of the problem spae is enapsulated in individuallassi�ers. That is, given an input, information about payo� forthat input (in ombination with a partiular ation)will be ontained in just a few individual lassi�ers, maybe just one.Conversely, given a lassi�er, it makes an assertion with respet to ade�nite subspae of the input, and says nothing about other parts ofthe input spae.In ontrast, the nature of network-based systems isthat payo� information, for any input, is distributed over the wholenetwork, and is in general extrated from the network by adding upontributions from all parts of it. This is the nature of theonnetionist (PDP) or \neural network" approah originated byworkers like Rumelhart and others.It is formally possible to relate XCS's rule-based approah to theneural network approah. But they seem distint enough to meritpursuing separately on their own terms, at least until the potentialsof both are more understood. XCS is one of very few rule-basedapproahes that are truly adaptive. I will say more about thedi�erenes between XCS and neural networks later. |Now I will begin to explain how XCS works, by restriting attentionto the so-alled performane yle, i.e., what happens when XCSsimply makes a deision in the presene of an input. Learning stepswill be left out for the moment.For simpliity, we will assume that XCS is in a \one-step" problemenvironment. In a one-step problem, a single input is putto the system, it hooses an ation, and a reward is returned. Thenanother one-step problem ours, with no onnetion to the�rst. This allows us, for the moment, to avoid the ompliation of asequential problem in whih many steps may our before there is areward. 6



Here is what you need of XCS for the performane yle. Assumethat a population of lassi�ers [P℄ is already present in XCS (I'll getto its origin shortly).In the diagram, XCS reeives an input 0011. The input is omparedwith the onditions of all the lassi�ers in the system's urrentpopulation [P℄. Classi�ers that math are plaed in the math set[M℄. The other lassi�ers play no further role in this problem.The ontents of the math set embody the totality of XCS's urrentknowledge about what to do with this input. Formation of themath set is a sort of reognition step. The lassi�ers in [M℄ an besaid to reognize this input.Notie that of the four lassi�ers in [M℄, two have ation 01 and twohave ation 11. Consider the two with ation 01. Their preditionsare quite di�erent: 43 and 27. Whih predition should XCS use foration 01? Perhaps it should ombine them somehow?We need a notion of the reliability of a lassi�er's predition. If wehad that, we ould hoose the more reliable predition. Or we ouldblend the preditions in aordane with the reliabilities. In fat,XCS blends them. Notie that there are two parameters assoiatedwith eah lassi�er besides its predition: � and F . � is an estimateof the error in the predition, and F , �tness, is an inverse funtionof �.I will desribe the alulation of � and F shortly. For now, justnotie that F is large when � is small. XCS uses F as the measure oflassi�er reliability, so that reliability in e�et goes up as error goesdown. Or up as the lassi�er's auray goes up.
7



The net predition for ation 01 is simply alulated by taking aweighted average of the two individual preditions, where theweights are the respetive values of F . I don't show an equation forthat, but you know this is just the F 's times the p's, divided bythe sum of the F 's. The result is plaed in ation 01's position in thePredition Array. It is what is alled the system predition for thatation.The system predition is a quantity distint from the predition ofany individual lassi�er. Notie that here the system predition,42.5, is very lose to the predition of the more aurate lassi�er,as it should be.The system predition for ation 11 is similarly alulated.No system preditions for ations 00 and 10 are omputed, sine [M℄ontains no lassi�ers with those ations.How should XCS now deide between ations 01 and 11? Well, yousay, obviously it should hoose ation 01. Yes, it should, if its aim isto get the highest reward it an. Suppose it does do that. Thenation 01 is sent to the environment|meaning the system tells itse�etors to do the thing assigned to ation 01. And theenvironment returns some reward value.Finally, the two lassi�ers that advoated ation 01 are plaed in theation set [A℄. So endeth the performane yle. Let's now begin toask about learning. |We assumed that [P℄ was already full of lassi�ers. Let's still assumethat, but inquire just how the lassi�ers aquire their preditions.Consider the ation set [A℄ from the problem just disussed. Eahof its lassi�ers made a predition about what reward to expet, andnow we have in hand an atual reward. Let's adjust the preditionsaordingly.
8



The update expression says \replae the urrent pj by pj plus �times the di�erene between the urrent reward and pj". The valueof � is often about 0.2, so this step redues the di�erene between pjand R by 20%. If R is always the same and the update oursin�nitely many times, pj will beome equal to R. pj will predit thereward exatly.The interesting aspet of this update proedure, though,is that it ahieves a \reeny-weighted" estimate of R. It is a sort ofexponential moving average of R, suh that reent values of R havea greater weight. This is expressed in the equation shown. Reenyweighting allows XCS to trak an environment in whih the rewardvalues for given inputs are slowly hanging. Faster traking resultsfrom larger values of �. However, � should not be too large, or thenoise-suppression advantages of averaging will be lost.Okay, this is how preditions of lassi�ers in [A℄ are updated. Butthe lassi�ers in [A℄ were those whih gave the highest systempredition. How do other lassi�ers in the math set get updated?Will they ever be in [A℄? The answer is: they must sometimes be.I.e., XCS must sometimes hoose apparently sub-optimal ations,in order to be sure it has suÆiently updated all lassi�ers. It mustdo that to be sure that the apparently optimal lassi�ers are in fatoptimal!This is an example of the famous|or infamous|explore/exploitdilemma. The system would like to hoose the best ation allthe time in order to maximize its return. But it an't determine thebest ation without sampling other ations. So there is no way itan ever be ertain that its return is maximal. There are many ap-proahes to the explore/exploit dilemma, and none is perfet. Forthis talk, let's assume that|some �xed perentage of the time|thesystem hooses a random ation from those in the predition array.I will all this \exploration". The rest of the time it will pik theapparently best, highest prediting ation. This will be alled \ex-ploitation". | 9



Okay, those are the preditions. Where do the lassi�ers themselvesome from? We usually start with an empty population. Sothere is nothing to math the �rst input. To get started, and for anyunmathed input afterwards, XCS reates a lassi�erby \overing". This ours as shown. The reated rule mathes theinput, has a random ation, and is assigned a low initial predition.Notie that the new rule has a ertain number of #'s in randompositions. They give the rule an initial generality that will allow itto be tested in several distint input situations.Covering is only neessary initially and the number of lassi�ers soreated is very small ompared with the size of the input spae. Thevast majority of new rules are derived from existing rules. |How are new rules derived? First we need to examine a lassi�er'sother two prinipal parameters, the error and �tness. They are alsoupdated whenever a lassi�er is in the ation set. The error updateis like that for predition, exept the quantity being averaged is notR, but the absolute di�erene between R and the urrentpredition pj. This is a simple measure of the lassi�er's urrenterror.Now look at the equation for auray. It and the next one are veryimportant in XCS. The lassi�er's auray, �j, is a negative power-funtion of its urrent error estimate. The power, n, is quite large,usually 5. Auray is thus very steeply inverse to error. However,�j is not allowed to have an in�nity. Any lassi�er with error lessthan or equal to �0 has a high but �nite value for auray, as shown.The next step is to ompute �j0, termed relative auray. Itis just �j divided by the sum of the auraies of all lassi�ers in theurrent ation set. This is important, beause what we really wantto know is how the lassi�ers in [A℄ ompare in terms of auray,and not their absolute auraies per se.10



Finally, the lassi�er's �tness Fj is omputed by updating itsurrent Fj using the value of �j0. Thus the �tness of a lassi�eris an estimate of its auray with respet to the auraies of otherlassi�ers in the ation sets in whih it ours.Now, let's make some new lassi�ers! With some probability|notalways|we run a geneti algorithm in the ation set. In XCS, theGA's population onsists of just the lassi�ers in the urrent ationset, not the population [P℄ as a whole. The steps are as shown. Twolassi�ers are seleted with probability proportional to their�tnesses and opied. The opies will be the o�spring.Often, the o�spring are rossed, for example as shown, wherethe vertial line is a randomly seleted rossover point. You an seethat the result of exhanging parts at the rossover point isthe pair of lassi�ers on the right. As a last step, mutation ours atindividual positions with a low probability like 0.02. Then theresulting lassi�ers are inserted into the population.Notie what is happening here. In the �rst plae, the more auratelassi�ers in [A℄ tend to reprodue. And, through rossover, theirparts are often reombined. In this example, the results of rossingare one lassi�er that is more general than both parents, andanother lassi�er that is more spei� than both. This is not alwaysthe ase, but the proess tends on balane to searh along thegenerality-spei�ity dimension, using piees of existinghigher-auray lassi�ers.A lassi�er that is more spei� an never be less aurate, as amoment's reetion will show. Sine the GA often produes a morespei� o�spring, it is lear that the population will tend, over time,toward having lassi�ers with greater auray, i.e., greater abilityto predit the onsequenes of ations. |
11



Here is the previous overall diagram, adding the updating and GAomponents. The updates our on every ation set. The GAours less often, at a rate set to allow suÆient updating for the�tness values to be reasonably stable. |Let's not forget the parents. What happens to them? They stay in[P℄, where in e�et they enter into ompetition with their o�spring.But this means that the population has enlarged by two. We do notwant an inde�nitely inreasing population, so two lassi�ers mustbe deleted from [P℄.There are a number of ways to do it, graefully. Deletion in fatprovides an opportunity to keep the system's resoures balaned.Here, balane means that approximately the same numberof lassi�ers are devoted to eah ation set \nihe". This is ahievedby letting the probability that lassi�er Cj will be deleted from [P℄be proportional to the average size of the ation sets in whih itours.Eah lassi�er keeps an estimate of the number of lassi�ers in itsation sets. The probability of deletion is made proportional to thisestimate. Then lassi�ers in ation sets that are larger than averagewill tend to be deleted more often, and the sizes will ome down.Members of small ation sets will be less likely to be deleted. As aresult, ation sets will tend to be about the same size. Methods forpreferentially eliminating very low �tness lassi�ers an be added tothis balaning. One an also fator in the age or experiene of alassi�er, so that inexperiened lassi�ers are not prematurelydeleted. [BREAK℄ |Let's look at some results on a lassial one-step problem, theBoolean multiplexer. This problem is used a lot beause it isdiÆult and non-linear, and beause the multiplexers form a familyof funtions from whih omplexity estimates may be derived. I'lluse the Boolean 6-multiplexer as the primary example.12



Let's �rst de�ne the funtion. The \6" means the input vetor issix bits long. It goes into the funtion box and out omes an answer,1 or 0. In the example shown, the orret answer is 0. We an get ittwo ways. You an get the right answer by thinking of the �rst twobits as an address into the remaining four bits. Thus the addressbits, 10, address data bit 2 as shown by the arrow, and that is theanswer. The other way is to proess the input through the Booleanformula. For this input, none of the terms is true, so the result is 0.The formula in bold says that there is a multiplexer funtion forinteger values of k greater than 0. So k = 2 gives the 6-multiplexer.k = 3 gives the 11-multiplexer. k = 4 gives the 20-multiplexer,whose formula is shown. Problems as large as the 70-multiplexer,an enormous problem, have been solved. |These are results for the 6-multiplexer. In this experiment, randominputs were presented. If XCS's deision was orret, the rewardwas 1000; if inorret, 0. Learning problems alternated with testproblems. In a learning problem, XCS funtioned as desribed, butin the ation seletion step, it hose a random ation. Thusevery learning problem was done in exploration. Updates, GA, andeverything else ourred as desribed. On test problems, XCSalways hose the ation|the deision|with the maximumpredition. Also, updates and the GA did not our|that is, nolearning ourred on test problems.The upper urve plots the fration of orret test deisions,averaged over the preeding 50 test problems. It reahes 1.0 within2,000 problems. The dashed urve shows the fall in the systemerror. This is the absolute di�erene between the reward and thesystem predition for the ation hosen on test, divided by 1000. Ineed to take a moment to explain the third urve.
13



I said that o�spring lassi�ers are added to the population. Well,not exatly. Given a new o�spring, the population is �rst searhedto see if a lassi�er with the same ondition and ation is alreadypresent. If so, the existing lassi�er's numerosity parameter isinremented by one, and the new o�spring is disarded. If not, thenew o�spring is added with its own numerosity set to 1.As a result of this reation of so-alled marolassi�ers, eahmember of the population is unique. Said another way, what wouldotherwise be n struturally idential lassi�ers are represented inthe population by a single marolassi�er. Marolassi�ersmake the system faster, plus they make it easier to \see the system'sknowledge". But, where appropriate, all system operations takeplae as though the marolassi�er onsisted of its onstituent\miro"-lassi�ers; i.e., they take the numerosity into aount.The third urve shows the population size in marolassi�ers.You an see that it initially rises rapidly from zero but then begins agradual fall to 77 by 5,000 problems. What this indiates is thatXCS is �nding general lassi�ers to replae spei� ones, so that thewhole problem spae an be handled by fewer lassi�ers. Let's lookinside after 5,000 problems and see the lassi�ers that have atuallybeen evolved. |This is a listing of the population in desending order of numerosity.Notie �rst that the error estimates of all lassi�ers exept thebottom two are zero. Thus aurate lassi�ers havebeen found. But note the �rst sixteen lassi�ers. Their address bitsare spei�ed, together with preisely the bit indexed by the addressbits.These lassi�ers are not only aurate, but are maximally general,in the sense that if you hange any spei�ed bit to #, the lassi�erwill beome inaurate. Thus XCS has evolved lassi�ers that areboth aurate andmaximally general. The 16 lassi�ers orresponddiretly to the terms of the Boolean formula.14



In fat, they onstitute an optimal over of the problem spae, inthe sense of being minimal in number while still overing everyinstane. A hypothesis has been made that XCS always drivestoward an optimal over.Well, what about the other lassi�ers in the list? They are presentbeause the system's searh of the lassi�er spae, of its model,ontinues on. New lassi�ers, not maximally general and sometimesinaurate, are still present. However, note the developingabrupt fall in numerosity between numbers 15 and 16. Eventually itwill be very sharp with even fewer lassi�ers beyond 15 and at lowernumerosities and �tnesses. These residual lassi�ers already haveno e�et on performane, sine performane is 100% at this point.I should note in passing that the lassi�ers' atual �tnesses weremultiplied by 1000 for this list. The atual errors were divided by1000. To me, these normalizations are helpful. I hope they aren'ttoo onfusing to you. |Finally, it is fun to try to observe the reation, or at least the arrival,of one of these aurate maximally general lassi�ers. This slideshows some ation sets for the partiular input 101001 and ation0, when that input happened to arrive at problem numbers given onthe left. On problem 247, the ation set has three mathinglassi�ers, inluding the ompletely general one, and all have hugeerrors. At problem 1135, all of these are gone, and the lassi�er wewant has appeared, with zero error and a �tness already dominatingthe others. It's number 9.At 1333, our favorite dominates a muh smaller ation set and itsnumerosity is growing. At 2410 it has just one ompanion, with�tness zero. And at 2725 it is joined by a ouple of more-spei�versions of itself. They are equally aurate but have muh lowernumerosities and �tnesses. Why is that?
15



We now should address the question of why XCS drives not onlytoward aurate lassi�ers, but ones that are also maximallygeneral, as seen in the previous population listing. If �tness is basedon auray, shouldn't XCS drive toward more spei� lassi�ers,not more general ones? The answer is at the heart of XCS's abilityto detet and represent the regularities in its environment|i.e., togeneralize. |I've written the explanation out sine it is so important. Let's goover it in onjuntion with the two example lassi�ers shown.\Consider..."The essene is that reprodutive suess in XCS depends not onlyon �tness, but on reprodutive opportunity. A more generallassi�er will our in more ation sets, and therefore have morereprodutive opportunities. By reproduing more, it will attain agreater numerosity. The greater numerosity will mean that more ofthe �tness update, whih always sums to a onstant, one, will be\steered" toward it and less toward its less general ompetitors.Gradually, if all are equally aurate, the more general lassi�er willdrive the others out of the population. I.e., they will disappear.The system will keep searhing for yet more general versionsof an aurate lassi�er until the point is reahed where adding a #anywhere results in a loss of auray. Then the proess will stop:any more general lassi�er will have little hane of survival.This generalization mehanism is responsible for the gradualasendany of the 16 highest numerosity lassi�ers shown in the6-multiplexer listing. XCS has in e�et deteted and representedthe terms of the Boolean formula. For the multiplexer problem,these are the environmental regularities. [BREAK℄ |
16



Sale-up is an essential property of a learning system. As problemsget larger, we want the system's memory or learning e�ort to growmuh less rapidly than the size of the problem domain. In general,problem domains grow exponentially with the number of variablesdesribing them. The worst ase would be a system that must alsogrow exponentially. This would be a system that treated eah inputstate individually, say using a giganti table.Intuitively, if the problem domain ontains regularities,we would like the learning system to grow only as fast as the numberof regularities. The multiplexer family of funtions permits a test ofXCS's apability in this regard. The three graphs show results forthe 6-, 11-, and 20-multiplexers. Let us look at learninge�ort, as measured by the number of inputs required to reah 100%performane.For the three tasks, the 100% point is reahed at approximately2,000, 10,000, and 50,000 problems, respetively. Thus eah di�ersfrom the previous by a fator of �ve. Examination of the Booleanformulas shows that the number of terms doubles in going from onetask to the next, i.e., a fator of two. At the same time, the inputdomain size goes from 26 to 211 to 220, i.e., it grows exponentially. Infat, the 20-multiplexer domain is so large that XCS has seen onlyabout 5% of it by the time XCS reahes 100% performane. |We an use these results to get a rough estimate of XCS's learningomplexity. Eah larger multiplexer was about �ve times harderthan the previous one. When ases di�er by a onstant fator, apower funtion relationship is suggested. You an write D (fordiÆulty) equal to a onstant  times g to some power p. If you takeg as the number of maximal generalizations|equal to four timesthe number of terms in the formula|then hoosing p = 2:3 and = 3:2 gives a urve that �ts the three multiplexer ases. ThusD ispolynomial in g.
17



What is D with respet to l, the string length? Notie that lapproahes 2k for large k. At the same time, g = 4 � 2k, so that lis proportional to g. This means that D is also polynomial in l. Thesame polynomial relationship has reently been found to hold forthe 37- and 70-multiplexers as well.A tentative onlusion is that XCS's learning e�ort|in e�et,its learning omplexity|is muh more losely tied to the number ofregularities or generalizations in the input domain, than it is to thesize of the domain itself. This is a very desirable property, if true.Several popular network-based or network-like learning tehniquesdo not have the property. For instane, tile-oding, nearestneighbor, and standard neural networks. [BREAK℄ |Let us go on to sequential or multi-step problems. They have thenew ompliation that reward does not neessarily arrive on everystep. Sometimes there is no reward on a step, so what should thesystem do, or learn?Theoretial treatment of this issue is by now quite vast, and formsmuh of the subjet alled reinforement learning. I will show onebasi approah through a fairly simple example and some appeal tointuition.Consider this portion of a grid-world. The system wants tobe able to reah food, F, from any starting point, and it annot passthrough ells ontaining an O. One widely used reinforementlearning approah, alled Q-learning, is to learn a value funtion ofthe states and ations. Then, in a state, the system hooses theation with the highest value.
18



How would this work out? Suppose we are in the state, or ell, justbelow the F. If we move North, we will get an external, a real, re-ward. So it makes sense to make the value funtion, say, 1, for thatation in that state. What if we are one step away from that state,say under the O, and we move to the East? Well, we ould then goNorth and get the reward, so maybe the East move should be valuedthe same, 1. That does not seem satisfatory, sine the state underthe O is two steps from the F. Let us instead value the East moveat  times the value of the best move in the state under the F, i.e., times 1, where  is a onstant somewhat less than 1, like 0.9.Now let's go bak to the state under the F, and onsider a move tothe West. How should it be valued? Using the rule just mentioned,we should value it at  times the value of the best move from theresulting state, thus  times , or 2. That's nie, beause it reetsthe fat that the minimal path if you start by moving West is threesteps long. Continuing this way, we an �ll in the ation-values forevery move in every state, and they will all reet similarly theminimal distane to food.Notie that we an �ll in all the ation-values based only on loalupdates. At any one time, we only need to remember the valuesof the urrent and sueeding states. By trying the moves and doingthe updates, the ation-values will gradually beome reliable.What has been proved for Q-learning is that if the environment isMarkov and the updates are done suÆiently often, the ation-value estimates will onverge to values suh that taking the ationwith the maximum value in every state will always result in theshortest path to the goal. If external reward ours in more thanone state, a similar, more general result holds stating that the aboveproedure will result in ation-values suh that following theirmaxima will result in an optimal ow of (disounted) future reward.
19



Now, to put this in XCS terms, the expression below shows theproedure for updating preditions pj in multi-step problems. Thepredition is updated based on the maximum system predition inthe sueeding state plus any external reward, rimm, in the urrentstate. While this proedure is based on the Q-learning model,it is new beause it applies to preditions made by rules, whih maybe general in some degree, and not on preditions tied to individualstates. Like all reinforement learning proedures involvinggeneralization, there are no proofs that the proedure results in anoptimal poliy. But empirially it works well. |Here, quikly, is the full XCS diagram, with the multi-step partsadded in. You see max, disount, summation, and timedelay boxes required for the update expression on the last slide. Foromputational reasons, the update is atually done retrospetively,but the e�et is idential to that expression. [BREAK℄ |Now I will go quikly over some multi-step results. While XCS hasby now been tried in quite a number of environments, the one here,alled Woods2, is good to talk about beause it has a surprisingnumber of regularities that XCS aptures in its generalizations.The system, an animat, represented by an asterisk, is plaedrandomly in an open ell of Woods2 and then, under ontrol ofXCS, moves until it bumps into food. There are two kinds offood, whih look di�erent to the animat, and there are two kinds ofimpenetrable roks, whih also look di�erent. The atual odingof the sensory input vetor is shown at the right. The sense vetor is24 bits long.

20



The left-hand graph shows performane, in average steps to food,versus the number of explore problems so far. An explore problemis a problem in whih the animat starts at a random position, movesrandomly, updating and doing the GA as it goes, all as previouslydesribed, and �nally arrives at a food. Performane measures thenumber of steps to food on interleaved test problems, in whihthe animat always hooses the best move. You see that performanerather quikly omes down to the optimum. The three urves arefor three di�erent XCS regimes.The graph on the right shows population size in terms ofmarolassi�ers. The message is that for the dashed regime, thenumber of lassi�ers ondenses, via generalization, to a value lessthan 100. Sine there are 560 distint state-ation pairs in Woods2,this indiates XCS's ability to detet and represent regularities inWoods2. |In partiular, this slide shows two of the generalizations found. A-tually this data is from Woods1, whih has just 2 bits per objet in-stead of 3, but the results are similar. The �rst lassi�er mathes inall positions marked \3". It says, in e�et, I don't are about any-thing else, but if there is a blank ell to the West, then the ation-value of moving North is 504. Sine 504 equals 1000 times 2 in thisase, the lassi�er in e�et predits a distane to food of threesteps. XCS has disovered this truth about the states marked 3 andexpressed it in a single lassi�er. Similarly, the other lassi�er ex-presses a regularity about all states with a non-blank objet to theWest. [BREAK℄ |So far I have desribed environments that produe binary inputs.What if the input variables are not binary? Suppose they are realor integer valued. It turns out XCS an be adapted rather easily tothese ases. I will desribe one sheme.
21



The lassi�er ondition is hanged from the 1,0,# notation to aonatenation of interval prediates, as shown. The intervalfor a given variable is denoted by an upper and a lower limit for thatvariable. A math ours if every input omponent is between theorresponding limits. The lassi�er ondition thus onsists of 2nnumbers, where n is the number of input variables.Crossover may our either between or within the prediates.Mutation hanges an allele by a bounded random amount, asshown. Covering produes a lassi�er with a ondition havinginterval prediates that math the omponents of the urrent input.|This non-binary sheme is very suitable for data mining problemsin whih inputs are expressed as strings of integers or reals. Hereyou see the lassi Wisonsin Breast Caner dataset. It is available,along with many others, from UC Irvine. The instanes look a littleodd at �rst. But eah onsists of a number identifying that linialase, followed by nine numbers whih are attribute values between 1and 10, and �nally the ase's outome, 2 for benign and 4 formalignant. The meanings of the nine attributes are shown. The 699total ases are divided into 458 benign and 241 malignant.XCS, modi�ed for integer inputs, is alled XCSI. At the bottomof the slide you see results of a 10-fold ross-validation test after teninstanes of XCSI learned from the dataset. 10-fold ross-validationis a standard method of evaluating the performane of a learningsystem on a given dataset. It attempts to estimate the performaneof the system on further examples drawn from the same universe ofexamples.
22



Basially, you let XCSI learn from 90% of the dataset and test iton the remaining 10%. Then you have it learn again on another 90%and test it on the remaining 10%. You do this ten times and averagethe test results. As you an see, the test results were somewhatvaried, with an average of about 95.5%. This and higher valuesprodued after further work with XCSI are very ompetitive withthe best results from other learning systems, suh as deision treesor neural networks. It appears that XCSI-like systems are exellenttools for this kind of problem. |XCSI not only shows high performane, but it readily allows humanusers to \see the knowledge" that it has learned and that it uses tomake deisions. This is beause the system onsists of disretelassi�ers and is not a network. Knowledge onsists ofgeneralizations that are as broad, while still being aurate, as thedomain permits. In terms of XCSI, this means evolving thepopulation until maximally general lassi�er have been found. Thegraph shows this proess with the Wisonsin dataset.Look arefully at the upper left-hand orner. You see theperformane urve quikly reah 100%, so most of the graph isspent after performane is perfet. The rising urve is generality|the perentage of don't-ares in the population. The falling urveshows the population size. The size falls a lot after 100%performane is reahed and is still falling at two million problems.Inreasingly general lassi�ers are still being found. They are stillaurate, of ourse, sine performane remains at 100%.

23



If you examine the population at two million problems you �nd las-si�ers like the four shown at the bottom. It is easy to translate theatual lassi�er notation to English language statements{in fat, aprogram does it. These lassi�ers were drawn from the highestnumerosity lassi�ers, whih tend to be those with the best general-izations, as we saw earlier with the multiplexer. In fat, there is an-other program that ulls the population and �nds a very small sub-set that nonetheless overs all dataset instanes. For the Wisonsindataset, the subset is 23 lassi�ers, of whih just 10 over 90% ofthe instanes. Thus XCSI is a data-miner o�ering both high perfor-mane and high visibility of knowledge. [BREAK℄ |XCSI extends lassi�er syntax to inlude inputs with integer orreal omponents. However, a ondition is really a prediate|i.e. atruth funtion|and the syntax so far onsidered is just onesublass of possible prediates. For example, suppose, as seen inthe slide, you needed a ondition that was true for x > y. Then theso-alled onjuntive syntax of standard lassi�ers would beawkward. You would need many lassi�ers, not just one, to apturethis relation.However, there is no reason you an't have lassi�ers with anyrequired ondition syntax! In fat, using onditions onsisting ofLisp S-expressions of appropriate elementary funtions, the systeman evolve an almost unlimited variety of prediates. This meansthat essentially any generalization or regularity in the environmentan be represented.

24



Initial experiments have borne out the power of S-expressiononditions. As in geneti programming, however, therean be a \bloat" problem whih redues the transpareny of evolvedlassi�ers. More researh is needed so that you an have bothperformane and transpareny and ompletely general syntax.This line of researh|toward lassi�er systems that an eÆientlyapture any required generalizations|is very important, in myopinion. [BREAK℄ |Up to now, I've talked about so-alled \Markov" environments.The way we use the term, an environment is Markov if knowing theurrent input is suÆient to allow a system to hoose the optimalation. Standard ondition-ation lassi�ers in XCS basiallyassume that the environment is Markov.Unfortunately, it turns out that most environments do not have theMarkov property|they are non-Markov. The best ation to takeat a given point may depend on both the urrent input and somenumber of prior inputs. Here is a simple example of a non-Markovenvironment, due to Andew MCallum. The arrows indiate twostates that look idential to a system that an only see the adjaentells. Yet the optimal ations are di�erent. The two states are saidto be \aliased"|another piee of terminology.What additional information does the system need in order to takethe right ations in these two states? Well, if it ould seebetter|i.e. see a little deeper into the environment|it ould tellthe states apart and therefore take di�erent ations appropriately.This would be a sensor-based solution. However, let us assume wean't hange the system's hardware. What would we then do?
25



The options basially all use some form of temporary memory todisambiguate the two states. The history window option simplyremembers some number of previous inputs. The lassi�erondition would be extended to, say, attempt to math boththe urrent input and the prior one. This would be suÆient in thisexample to distinguish the two states. The initial non-Markovproblem would in e�et be onverted to a Markov one, if you regardthe present and prior inputs as forming the \urrent input".You an see, however, that history window approahesare ineÆient unless you know preisely how muh window length isrequired. For if the window is too long, the system has to remembermore than neessary, and the number of required lassi�ers growsrapidly. On the other hand, if the window length is too small, theproblem will remain unsolved, though performane may improvesomewhat.Another approah|atually the one used by MCallum|is toremember all past states and statistially look for orrelationsbetween them and the right move. That is, try to identify events inthe past that an tell you what move to make now. This method anbe more eÆient than the history window, but it an still require anexplosive amount of temporary memory on whih to base suÆientstatistis.Finally, the onept that has been tried with XCSis|appropriately|more Darwinian. It is to evolve internalsymbols, or signals, that the system an use to tell the aliased statesapart. This amounts to the reation of adaptive internal state. It isa simpli�ed version of Holland's original message list onept. |
26



Consider a lassi�er whose ondition onatenates anenvironmental ondition, as usual, with an internal ondition. Andlet the ation be a ombination of an external ation and an internalation. Also, let the system have an internal register R. Theinternal ation modi�es R. For the lassi�er to math, itsenvironmental ondition must math the input, and its internalondition must math R. The system's internal state onsists of theurrent ontents of R.Now, onsider a non-Markov problem like MCallum's maze. Onean imagine, at least, that R might get set to, say, 0 when thesystem enters the left-hand aliased state. And, onveniently, that Rwould get set to 1 when the system enters the right-hand state.If this happened, a lassi�er mathing the input, looking for 0 in R,and advoating the ation, \move south-east", would reliablyreeive a high payo�. Similarly, a di�erent lassi�er that mathedthe input, looked for a 1 in R, and advoated moving south-westwould also be reliably reinfored. These two lassi�ers, plus thoserequired to set the register properly, would be suÆient to disam-biguate the aliased states.The hypothesis is that, given this addition to lassi�er syntax, andwithout keeping histories, the system will simply evolve exatly thelassi�ers needed! It seems that this is indeed the ase, or at leastthat it is true enough to merit onsiderable further investigation. Inthe next few slides I will show several non-Markov environments inwhih high performane has been reahed by this method. |

27



Here is Woods101 again. The graph shows steps to goal|i.e.performane|in two regimes, learning and test. During learning,up to 6500 problems, the system alternates between exploreproblems and exploit problems. Then, at 6500 problems, theregime is swithed to test and all problems are pure exploit. Notiethat performane goes to optimal or very nearly so. The graphaverages 10 runs. When the populations for individual runs areexamined, lassi�ers that set and read the register appropriatelyare indeed found.In both regimes, the graph plots performane on exploit problems.Interestingly, it is not until all exploration is turned o� that theexploit performane goes to optimal. Before that it is not far fromoptimal. But the presene of explore problems|whih explorehanges in the register settings|is enough to mess up theintervening exploit problems somewhat.I should mention that exploration during learning onsisted onlyof trying di�erent external ations randomly. Internal ations wereseleted deterministially. This meant they were only explored bythe ation of the geneti algorithm. To get the system to solvenon-Markov environments, it was neessary to restrit explorationof internal ations in this way. The impliations are interesting, butI have to leave them out beause of time. |

28



Woods101.5 is more ompliated. It has four aliased states, inwhih the input forms the ross pattern at right. With four states,one would expet a 2-bit internal register to be suÆient. Theresults for that ase are shown in the upper urve. When the testphase is swithed on, performane improves and attens, but thelevel is not optimal. However, when the register size is inreased to4 bits, optimal performane is reahed, as shown. Two bits maynot work beause the oding is too \tight". I.e., the right lassi�ershave to be found for four separate loales. One they are found forthree, the last one's oding must, independently, be piked justright or it will be onfused with one of the other plaes. However, with4 bits of register, there are 16 possible odings, and �nding a onsistentset would be easier. |Finally, Woods102 is a maze with two separate 4-member groupsof aliased states, as shown. So a 4-bit register would theoretially besuÆient. Again, however, optimal performane was only reahedwhen the register size was inreased to 8 bits. Even so, this isa pretty triky non-Markov maze, and getting a solution still seemsrather amazing. Adaptive internal state appears to work, andfurther investigation is important, in my opinion. [BREAK℄ |Learning lassi�er systems have a number of exiting futurediretions that I haven't disussed. I will briey mention six.First, it appears possible to generalize the lassi�er arhiteture inan interesting way that ould give more powerful generalizations insome problems. It would also allow for ontinuous ations instead ofdisrete ones. Notie that in the lassi�er shown, the predition isnot a �xed salar, but a funtion of the input and the ation. This isthe essential notion of a generalized lassi�er.
29



Even with traditional lassi�ers, you an think of the populationas forming a mapping from inputs and ations to preditions. Withtraditional lassi�ers having salar preditions, the mapping annever be better than pieewise onstant. But the environment itselfmay well all for a smoother representation. That is possible withgeneralized lassi�ers if, for instane, p(x; a) is a linear funtion.This results in the evolution of a pieewise-linear approximation ofthe payo� funtion, more aurate than any pieewise-onstant one.How an you get ontinuous ations from this? It's a bit involved,but the essene is, given a math set, maximize eah lassi�er'spayo� with respet to a. Then pik the best maximizing ation.Any ation value within the ation restrition r(a) is possible.This frees a system of generalized lassi�ers from the onstraint of a�nite set of disrete ations. It works beause the payo� is aontinuous funtion.The next diretion is that of antiipatory lassi�er systems. Herethe big di�erene is that the system predits, not a payo� (althoughit might do that too), but the next state. Why is this interesting?Beause if your lassi�ers an predit next states, it should bepossible to plan, i.e., to follow out a sequene of ations to seethe onsequenes without atually taking those ations. There is bynow quite a bit of good work on antiipatory lassi�er systems. Twomain variants exist. In one, the entire next state is preditedby eah lassi�er. I.e., the predition is a vetor prediting the nextinput (if that ation is taken). In the other variant, eah omponentof the next state is predited by a separate lassi�er system, and the re-sults ombined. This would seem less eÆient, but in fat the single-omponent preditor may have higher generalizing power so the indi-vidual lassi�er systems are smaller.
30



A third diretion is ontinuation of the non-Markov researh so asto reate a hierarhial lassi�er system. In suh a system someations would be elementary ones, but others would be alls to se-quenes of lassi�ers that would perform sequenes of ations. Thiswould implement the idea of behavioral hierarhies in a lassi�ersystem. Obviously, most atual behavior is in fat hierarhial. Allof this appears to be within the sope of lassi�er systems. Controlwould be along the lines of the register idea. The register settingwould symbolize an intention, or the name of a subroutine orbehavioral module. It is easy to imagine very sophistiated systemslike this. With enough work, we ould make them a reality.[BREAK℄ |Yet another diretion is researh on the fundamental theory ofXCS. This has been started in reent papers, inluding some in thisonferene. We now understand muh better how auratelassi�ers are evolved and why they tend to be maximally general.This work is leading toward de�nite ideas about the learningomplexity of XCS. The basi hypothesis is, as disussed earlier,that XCS learns in times that depend on the omplexity of the prob-lem itself|the omplexity of the target funtion. The times do notdepend on the size of the problem spae, as they do for many well-known learning paradigms. Con�rming this hypothesis is very im-portant to the future of lassi�er systems, in my opinion.The �fth diretion is toward basi nuts and bolts improvements inthe internal mehanisms of XCS. It appears that the auraymeasure an be improved. Tournament seletion and uniformrossover appear to be good ideas, for justi�able reasons. Problemsfor XCS on long paths need attention, and some ideas have beenproposed.
31



Finally, it is important to ontinue researh aimed at omparingauray-based systems suh as XCS with the traditionalstrength-based lassi�er systems. Obviously I have tilted towardthe former in this presentation. But there is good work being doneon the virtues of strength-based systems. |Now, let me make this summary, whih suggests some keydi�erenes between XCS and other reinforement learning systems.The big di�erene is that XCS is rule-based, not network-based orradial-basis-funtion based. Under that heading it seems importantthat XCS's struture, the lassi�ers, is reated as needed; thisdi�erentiates it from things like bak-prop networks in whihsuÆient struture must be present in advane. In things like radialbasis funtion and nearest neighbor approahes, struture anbe reated as needed, but that struture tends to be �xed and is notfurther adapted, as are XCS's lassi�ers.Seond, from omparisons|for instane on the multiplexer|thelearning speed of XCS is at least as fast as for network approahes. Ithink this is beause a lassi�er is already a non-linear struture, sothat non-linear problems are more quikly adapted to.Third, from the multiplexer results, it is likely that the learningomplexity is signi�antly better than for networks. Many kinds ofnetworks are known not to sale up well. They grow with theproblem spae, not the omplexity of the problem funtion. Thesame is true of radial basis funtion approahes.Fourth, lassi�ers have this neat ability to keep lots of statistisabout themselves, suh as their error, et. It is very awkward to dothis with networks|you end up needing a separate network foreah type of statisti! I think that as we explore, we will �nd manymore statistis that are useful in lassi�er systems.
32



Fifth, sine lassi�ers are rules, the knowledge they embody isreasonably \transparent". In ontrast to systems like networkswhere knowledge is distributed over the elements, knowledge inXCS is represented relatively learly and ompatly. This ability to\see the knowledge" turns out very important as XCS is appliedto data inferene and other areas where understandability to humanusers is vital.Sixth, the fat that lassi�ers are rules, and an be manipulated likerules, may turn out very important when we want our systems to dothings like reason.Finally, XCS has a powerful generalization apability. This isprobably the deepest aspet of XCS. It permits the sale-up andtranspareny just noted. Can it be extended to any problemdomain? I think so, if the lassi�er ondition syntax is hosen toreet the struture of the domain.Thanks for this opportunity to speak to you.

33


