This will be an introduction to learning classifier systems. But I will
focus mostly on XCS, which contains many of the ideas that

are currently being pursued in the field. I will try to explain XCS so
that everyone gets a good idea how it works. I will assume no prior
knowledge of classifier systems or XCS. Toward the end I will
indicate some important directions for future research.

Holland’s basic classifier system framework certainly remains
inspiring. But I believe certain key aspects must be changed

in order for the framework to be successful. Some of the changes are
embodied in XCS, which appears to work better than previous
classifier systems. I think people at a tutorial would like to learn
about things that work better, so I will focus on XCS. &

However, it is important to know about the traditional system. I
would recommend Holland’s chapter in the 1986 Machine Learning
book, as well as the chapter in Dave Goldberg’s first book. I would
also recommend papers by Lashon Booker, Larry Bull, Stephanie
Forrest, John Holmes, Tim Kovacs, Rick Riolo, and Rob Smith,
among others. Plus my own papers prior to 1995. At the end,

if people are interested, I will discuss the relationship between XCS
and earlier classifier systems. [BREAK]

I will do this tutorial in a sort of question-answer format, posing
and then answering what would seem to be the next major question.
But, if you have another question as I go along, and it is urgent
enough, please interrupt and ask it. I will also deliberately pause for
questions. &

Okay, What is XCS? First of all, it is a learning machine—a learning
program within a computer. Here, learning means behavior that
improves with time, via interaction with the environment.



Many learning programs start with a prior: information about the
problems that will be faced. Such information is often called
“domain knowledge”. If the program still goes on to improve its
behavior, this is not exactly cheating. But there can be confusion
between what is given in advance and what is actually learned.

To understand learning per se, and eventually to create really
powerful learning machines, I think it’s important to start with
minimum a priori information, so that as much of the machine’s
knowledge as possible results from adaptation to the environment.
Then whatever we do have to put in we will know is probably
essential and cannot be left out.

Another aspect of XCS is that its learning is “on-line”. This means
that it has to learn as it goes along. It does not have the luxury of
collecting a lot of experience in some sort of temporary storage
and then processing it at leisure for the implications. Instead, XCS
must extract the implication of each experience as it occurs,
because the raw data cannot be saved.

This criterion is at odds with the way humans sometimes learn,
since we sometimes sit down and study large amounts of collected
data free of pressure for immediate performance. However, it seems
likely that the simpler the animal, the less this is possible, and that
they learn primarily “on-line”. Since simple animals can still be
amazingly competent, it seems essential to understand how our
machines can also learn on-line.

A third aspect of XCS is that as it learns it attempts to capture
regularities of the environment. This means to detect and lump
together situations that call for the same behavior—even though
the situations may appear different. A machine with even a small
number of sensors will encounter an enormous number of sensory
states in any reasonably complicated environment.



A sensory state means a particular vector of values on the sensors.
In order to avoid an explosive demand on memory, the learning
machine must be able to group states having the same implication
for its behavior. This is the problem of generalization. XCS is able
to generalize quite powerfully, if the environment allows it. &

What does XCS learn? Always, it learns to get reinforcements.

More precisely, it learns to act so as to maximize a summation of
current and future reinforcements. As the diagram indicates, XCS
receives inputs—sensory state vectors—from the environment and
emits actions that affect the environment and may result in payoffs.

The payoff is always a scalar. A payoff associated with need
satisfaction could be represented by a large positive number. A
payoff associated with pain could be represented by a large negative
number, etc.

This is the framework of reinforcement learning, which seems

to be the right framework for developing learning machines that can
function autonomously. Often, we don’t know what

a machine should do in order to achieve a goal that we set for it. We
do not “see” the environment the way its sensors do, and we cannot
predict how its effectors will affect the environment.

But we do often know the end results that we want and can attach
reinforcement values to them. We can say, “I want the machine
to find as much dust as possible, so I will give it a small payoff every
time it finds some”, etc. This is usually much easier than telling
it—as a teacher might—just what to do to find dust. &



All right, what are XCS’s inputs and outputs? We are going

to simplify a lot. Much of the work with classifier systems has been
done with binary input vectors and discrete actions. Thus what I
called the sensory input vector is a string of bits. To make it a little
more organic, you can think of each bit as the result of thresholding
the continuous-valued output of some sensor. Despite the resulting
loss of information, binary sensor values are adequate in many
behavioral situations.

There is nothing in principle that prevents XCS from using
continuous sensor values directly, i.e., using real input vectors. Or
vectors of integers. I will describe approaches to these later on.

Outputs are also discrete, though not necessarily two-valued.

In some problems, XCS will learn to give a yes-no decision, and the
outputs will therefore be 1 and 0. In other problems, the outputs
will be actions in a physical (or simulated physical) environment,
such as: move a predetermined distance forward, or turn left
through a predetermined angle.

For discrete actions to be effective, their size should be large enough
so that strings of such actions actually accomplish something in a
useful time, but small enough so that fine maneuvers can

be carried out if necessary. A better solution would be actions that
evolve to have the optimum value, such as “head 34 degrees left”. A
promising approach has recently been proposed, which I will
describe later. &

Now I’'m going to start talking about what’s inside XCS. First, I will
describe the system after it has learned something. I’ll show how,
given some input, it arrives at a decision.



XCS’s knowledge is contained in a large set of condition-action rules
called classifiers. Each classifier consists of a condition part, an
action part, and a prediction part. The classifier “says”: if my
condition matches the sensory input and my action is taken by the
system, I predict that the payoff will be as follows.

The example classifier says: if the first two bits of the input are 0
and 1 and the fourth bit is also 1, I predict a payoff of 943.2 if the
system takes action 1. (The # symbol means I don’t care what the
value of this component is.) This rule matches a total of eight
possible input vectors, so it is making a statement that applies to all
eight of those inputs. It is expressing a generalization in the sense
discussed at the beginning. It is saying that the environment seems
to have a regularity such that if three of the input bits are set as just
described and the action is action 1, the payoff will be 943.2
regardless of the settings of the other three bits.

Whether this classifier is correct is another matter. We

can certainly doubt that the payoff will be exactly 943.2 for all eight
matching input vectors. In fact, 943.2 may be an average over a
widely different set of actual payoffs for those eight cases. Thus,
while the classifier asserts a generalization, the generalization’s
accuracy may be high or it may be low. So the classifier may be very
useful to the system as a predictor, or it may be of little use.

There are many classifiers within the system at any one time,
perhaps several hundred in the types of problems often studied. If
you examine one of the classifiers, you will find that it makes a
payoff prediction, as above, with respect to some subset of the input
space, in combination with one of the possible actions. After XCS
has learned for a while, it will contain classifiers that

cover all parts of the input and action space that it has experienced,
plus—often—much more that it has not experienced.



There is an important difference between XCS and learning systems
based on artificial neural networks. In XCS, the knowledge about
subsets of the problem space is encapsulated in individual
classifiers. That is, given an input, information about payoff for
that input (in combination with a particular action)

will be contained in just a few individual classifiers, maybe just one.
Conversely, given a classifier, it makes an assertion with respect to a
definite subspace of the input, and says nothing about other parts of
the input space.

In contrast, the nature of network-based systems is

that payoff information, for any input, is distributed over the whole
network, and is in general extracted from the network by adding up
contributions from all parts of it. This is the nature of the
connectionist (PDP) or “neural network” approach originated by
workers like Rumelhart and others.

It is formally possible to relate XCS’s rule-based approach to the
neural network approach. But they seem distinct enough to merit
pursuing separately on their own terms, at least until the potentials
of both are more understood. XCS is one of very few rule-based
approaches that are truly adaptive. I will say more about the
differences between XCS and neural networks later. &

Now I will begin to explain how XCS works, by restricting attention
to the so-called performance cycle, i.e., what happens when XCS
simply makes a decision in the presence of an input. Learning steps
will be left out for the moment.

For simplicity, we will assume that XCS is in a “one-step” problem
environment. In a one-step problem, a single input is put

to the system, it chooses an action, and a reward is returned. Then
another one-step problem occurs, with no connection to the

first. This allows us, for the moment, to avoid the complication of a
sequential problem in which many steps may occur before there is a
reward.



Here is what you need of XCS for the performance cycle. Assume
that a population of classifiers [P] is already present in XCS (I'll get
to its origin shortly).

In the diagram, XCS receives an input 0011. The input is compared
with the conditions of all the classifiers in the system’s current
population [P]. Classifiers that match are placed in the match set
[M]. The other classifiers play no further role in this problem.
The contents of the match set embody the totality of XCS’s current
knowledge about what to do with this input. Formation of the
match set is a sort of recognition step. The classifiers in [M] can be
said to recognize this input.

Notice that of the four classifiers in [M], two have action 01 and two
have action 11. Consider the two with action 01. Their predictions
are quite different: 43 and 27. Which prediction should XCS use for
action 01?7 Perhaps it should combine them somehow?

We need a notion of the reliability of a classifier’s prediction. If we
had that, we could choose the more reliable prediction. Or we could
blend the predictions in accordance with the reliabilities. In fact,
XCS blends them. Notice that there are two parameters associated
with each classifier besides its prediction: € and F'. € is an estimate
of the error in the prediction, and F', fitness, is an inverse function
of e.

I will describe the calculation of € and F shortly. For now, just
notice that F' is large when € is small. XCS uses F' as the measure of
classifier reliability, so that reliability in effect goes up as error goes
down. Or up as the classifier’s accuracy goes up.



The net prediction for action 01 is simply calculated by taking a
weighted average of the two individual predictions, where the
weights are the respective values of F'. I don’t show an equation for
that, but you know this is just the F’s times the p’s, divided by
the sum of the F’s. The result is placed in action 01’s position in the
Prediction Array. It is what is called the system prediction for that
action.

The system prediction is a quantity distinct from the prediction of
any individual classifier. Notice that here the system prediction,
42.5, is very close to the prediction of the more accurate classifier,
as it should be.

The system prediction for action 11 is similarly calculated.
No system predictions for actions 00 and 10 are computed, since [M]
contains no classifiers with those actions.

How should XCS now decide between actions 01 and 117 Well, you
say, obviously it should choose action 01. Yes, it should, if its aim is
to get the highest reward it can. Suppose it does do that. Then
action 01 is sent to the environment—meaning the system tells its
effectors to do the thing assigned to action 01. And the
environment returns some reward value.

Finally, the two classifiers that advocated action 01 are placed in the
action set [A]. So endeth the performance cycle. Let’s now begin to
ask about learning. &

We assumed that [P] was already full of classifiers. Let’s still assume
that, but inquire just how the classifiers acquire their predictions.
Consider the action set [A] from the problem just discussed. Each
of its classifiers made a prediction about what reward to expect, and
now we have in hand an actual reward. Let’s adjust the predictions
accordingly.



The update expression says “replace the current p; by p; plus a
times the difference between the current reward and p;”. The value
of a is often about 0.2, so this step reduces the difference between p;
and R by 20%. If R is always the same and the update occurs
infinitely many times, p; will become equal to R. p; will predict the
reward exactly.

The interesting aspect of this update procedure, though,

is that it achieves a “recency-weighted” estimate of R. It is a sort of
exponential moving average of R, such that recent values of R have
a greater weight. This is expressed in the equation shown. Recency
weighting allows XCS to track an environment in which the reward
values for given inputs are slowly changing. Faster tracking results
from larger values of a. However, a should not be too large, or the
noise-suppression advantages of averaging will be lost.

Okay, this is how predictions of classifiers in [A] are updated. But
the classifiers in [A] were those which gave the highest system
prediction. How do other classifiers in the match set get updated?
Will they ever be in [A]? The answer is: they must sometimes be.
IL.e., XCS must sometimes choose apparently sub-optimal actions,
in order to be sure it has sufficiently updated all classifiers. It must
do that to be sure that the apparently optimal classifiers are in fact
optimal!

This is an example of the famous—or infamous—explore/exploit
dilemma. The system would like to choose the best action all

the time in order to maximize its return. But it can’t determine the
best action without sampling other actions. So there is no way it
can ever be certain that its return is maximal. There are many ap-
proaches to the explore/exploit dilemma, and none is perfect. For
this talk, let’s assume that—some fixed percentage of the time—the
system chooses a random action from those in the prediction array.
I will call this “exploration”. The rest of the time it will pick the
apparently best, highest predicting action. This will be called “ex-
ploitation”. &



Okay, those are the predictions. Where do the classifiers themselves
come from? We usually start with an empty population. So

there is nothing to match the first input. To get started, and for any
unmatched input afterwards, XCS creates a classifier

by “covering”. This occurs as shown. The created rule matches the
input, has a random action, and is assigned a low initial prediction.

Notice that the new rule has a certain number of #’s in random
positions. They give the rule an initial generality that will allow it
to be tested in several distinct input situations.

Covering is only necessary initially and the number of classifiers so
created is very small compared with the size of the input space. The
vast majority of new rules are derived from existing rules. &

How are new rules derived? First we need to examine a classifier’s
other two principal parameters, the error and fitness. They are also
updated whenever a classifier is in the action set. The error update
is like that for prediction, except the quantity being averaged is not
R, but the absolute difference between R and the current
prediction p;. This is a simple measure of the classifier’s current
error.

Now look at the equation for accuracy. It and the next one are very
important in XCS. The classifier’s accuracy, k;, is a negative power-
function of its current error estimate. The power, n, is quite large,
usually 5. Accuracy is thus very steeply inverse to error. However,
k; is not allowed to have an infinity. Any classifier with error less
than or equal to €y has a high but finite value for accuracy, as shown.

The next step is to compute k;/, termed relative accuracy. It

is just k; divided by the sum of the accuracies of all classifiers in the
current action set. This is important, because what we really want
to know is how the classifiers in [A] compare in terms of accuracy,
and not their absolute accuracies per se.

10



Finally, the classifier’s fitness F} is computed by updating its
current F; using the value of k;7. Thus the fitness of a classifier

is an estimate of its accuracy with respect to the accuracies of other
classifiers in the action sets in which it occurs.

Now, let’s make some new classifiers! With some probability—mnot
always—we run a genetic algorithm in the action set. In XCS, the
GA’s population consists of just the classifiers in the current action
set, not the population [P] as a whole. The steps are as shown. Two
classifiers are selected with probability proportional to their
fitnesses and copied. The copies will be the offspring.

Often, the offspring are crossed, for example as shown, where

the vertical line is a randomly selected crossover point. You can see
that the result of exchanging parts at the crossover point is

the pair of classifiers on the right. As a last step, mutation occurs at
individual positions with a low probability like 0.02. Then the
resulting classifiers are inserted into the population.

Notice what is happening here. In the first place, the more accurate
classifiers in [A] tend to reproduce. And, through crossover, their
parts are often recombined. In this example, the results of crossing
are one classifier that is more general than both parents, and
another classifier that is more specific than both. This is not always
the case, but the process tends on balance to search along the
generality-specificity dimension, using pieces of existing
higher-accuracy classifiers.

A classifier that is more specific can never be less accurate, as a
moment’s reflection will show. Since the GA often produces a more
specific offspring, it is clear that the population will tend, over time,
toward having classifiers with greater accuracy, i.e., greater ability
to predict the consequences of actions. &

11



Here is the previous overall diagram, adding the updating and GA
components. The updates occur on every action set. The GA
occurs less often, at a rate set to allow sufficient updating for the
fitness values to be reasonably stable. &

Let’s not forget the parents. What happens to them? They stay in
[P], where in effect they enter into competition with their offspring.
But this means that the population has enlarged by two. We do not
want an indefinitely increasing population, so two classifiers must
be deleted from [P].

There are a number of ways to do it, gracefully. Deletion in fact
provides an opportunity to keep the system’s resources balanced.
Here, balance means that approximately the same number

of classifiers are devoted to each action set “niche”. This is achieved
by letting the probability that classifier C; will be deleted from [P]
be proportional to the average size of the action sets in which it
occurs.

Each classifier keeps an estimate of the number of classifiers in its
action sets. The probability of deletion is made proportional to this
estimate. Then classifiers in action sets that are larger than average
will tend to be deleted more often, and the sizes will come down.
Members of small action sets will be less likely to be deleted. As a
result, action sets will tend to be about the same size. Methods for
preferentially eliminating very low fitness classifiers can be added to
this balancing. One can also factor in the age or experience of a
classifier, so that inexperienced classifiers are not prematurely
deleted. [BREAK] &

Let’s look at some results on a classical one-step problem, the
Boolean multiplexer. This problem is used a lot because it is
difficult and non-linear, and because the multiplexers form a family
of functions from which complexity estimates may be derived. Ill
use the Boolean 6-multiplexer as the primary example.

12



Let’s first define the function. The “6” means the input vector is

six bits long. It goes into the function box and out comes an answer,
1 or 0. In the example shown, the correct answer is 0. We can get it
two ways. You can get the right answer by thinking of the first two
bits as an address into the remaining four bits. Thus the address

bits, 10, address data bit 2 as shown by the arrow, and that is the
answer. The other way is to process the input through the Boolean
formula. For this input, none of the terms is true, so the result is 0.

The formula in bold says that there is a multiplexer function for
integer values of k greater than 0. So k = 2 gives the 6-multiplexer.
k = 3 gives the 11-multiplexer. k = 4 gives the 20-multiplexer,
whose formula is shown. Problems as large as the 70-multiplexer,
an enormous problem, have been solved. &

These are results for the 6-multiplexer. In this experiment, random
inputs were presented. If XCS’s decision was correct, the reward
was 1000; if incorrect, 0. Learning problems alternated with test
problems. In a learning problem, XCS functioned as described, but
in the action selection step, it chose a random action. Thus

every learning problem was done in exploration. Updates, GA, and
everything else occurred as described. On test problems, XCS
always chose the action—the decision—with the maximum
prediction. Also, updates and the GA did not occur—that is, no
learning occurred on test problems.

The upper curve plots the fraction of correct test decisions,
averaged over the preceding 50 test problems. It reaches 1.0 within
2,000 problems. The dashed curve shows the fall in the system
error. This is the absolute difference between the reward and the
system prediction for the action chosen on test, divided by 1000. I
need to take a moment to explain the third curve.

13



I said that offspring classifiers are added to the population. Well,
not exactly. Given a new offspring, the population is first searched
to see if a classifier with the same condition and action is already
present. If so, the existing classifier’s numerosity parameter is
incremented by one, and the new offspring is discarded. If not, the
new offspring is added with its own numerosity set to 1.

As a result of this creation of so-called macroclassifiers, each
member of the population is unique. Said another way, what would
otherwise be n structurally identical classifiers are represented in
the population by a single macroclassifier. Macroclassifiers

make the system faster, plus they make it easier to “see the system’s
knowledge”. But, where appropriate, all system operations take
place as though the macroclassifier consisted of its constituent
“micro”-classifiers; i.e., they take the numerosity into account.

The third curve shows the population size in macroclassifiers.
You can see that it initially rises rapidly from zero but then begins a
gradual fall to 77 by 5,000 problems. What this indicates is that
XCS is finding general classifiers to replace specific ones, so that the
whole problem space can be handled by fewer classifiers. Let’s look
inside after 5,000 problems and see the classifiers that have actually
been evolved. &

This is a listing of the population in descending order of numerosity.
Notice first that the error estimates of all classifiers except the
bottom two are zero. Thus accurate classifiers have

been found. But note the first sixteen classifiers. Their address bits
are specified, together with precisely the bit indexed by the address
bits.

These classifiers are not only accurate, but are maximally general,
in the sense that if you change any specified bit to #, the classifier
will become inaccurate. Thus XCS has evolved classifiers that are
both accurate and maximally general. The 16 classifiers correspond
directly to the terms of the Boolean formula.

14



In fact, they constitute an optimal cover of the problem space, in
the sense of being minimal in number while still covering every
instance. A hypothesis has been made that XCS always drives
toward an optimal cover.

Well, what about the other classifiers in the list? They are present
because the system’s search of the classifier space, of its model,
continues on. New classifiers, not maximally general and sometimes
inaccurate, are still present. However, note the developing

abrupt fall in numerosity between numbers 15 and 16. Eventually it
will be very sharp with even fewer classifiers beyond 15 and at lower
numerosities and fitnesses. These residual classifiers already have
no effect on performance, since performance is 100% at this point.

I should note in passing that the classifiers’ actual fitnesses were
multiplied by 1000 for this list. The actual errors were divided by
1000. To me, these normalizations are helpful. I hope they aren’t
too confusing to you. &

Finally, it is fun to try to observe the creation, or at least the arrival,
of one of these accurate maximally general classifiers. This slide
shows some action sets for the particular input 101001 and action
0, when that input happened to arrive at problem numbers given on
the left. On problem 247, the action set has three matching
classifiers, including the completely general one, and all have huge
errors. At problem 1135, all of these are gone, and the classifier we
want has appeared, with zero error and a fitness already dominating
the others. It’s number 9.

At 1333, our favorite dominates a much smaller action set and its
numerosity is growing. At 2410 it has just one companion, with
fitness zero. And at 2725 it is joined by a couple of more-specific
versions of itself. They are equally accurate but have much lower
numerosities and fitnesses. Why is that?

15



We now should address the question of why XCS drives not only
toward accurate classifiers, but ones that are also maximally
general, as seen in the previous population listing. If fitness is based
on accuracy, shouldn’t XCS drive toward more specific classifiers,
not more general ones? The answer is at the heart of XCS’s ability
to detect and represent the regularities in its environment—i.e., to
generalize. &

I’ve written the explanation out since it is so important. Let’s go
over it in conjunction with the two example classifiers shown.
“Consider...”

The essence is that reproductive success in XCS depends not only
on fitness, but on reproductive opportunity. A more general
classifier will occur in more action sets, and therefore have more
reproductive opportunities. By reproducing more, it will attain a
greater numerosity. The greater numerosity will mean that more of
the fitness update, which always sums to a constant, one, will be
“steered” toward it and less toward its less general competitors.
Gradually, if all are equally accurate, the more general classifier will
drive the others out of the population. I.e., they will disappear.

The system will keep searching for yet more general versions
of an accurate classifier until the point is reached where adding a #
anywhere results in a loss of accuracy. Then the process will stop:
any more general classifier will have little chance of survival.

This generalization mechanism is responsible for the gradual
ascendancy of the 16 highest numerosity classifiers shown in the
6-multiplexer listing. XCS has in effect detected and represented
the terms of the Boolean formula. For the multiplexer problem,
these are the environmental regularities. [BREAK] &

16



Scale-up is an essential property of a learning system. As problems
get larger, we want the system’s memory or learning effort to grow
much less rapidly than the size of the problem domain. In general,
problem domains grow exponentially with the number of variables
describing them. The worst case would be a system that must also
grow exponentially. This would be a system that treated each input
state individually, say using a gigantic table.

Intuitively, if the problem domain contains regularities,

we would like the learning system to grow only as fast as the number
of regularities. The multiplexer family of functions permits a test of
XCS’s capability in this regard. The three graphs show results for
the 6-, 11-, and 20-multiplexers. Let us look at learning

effort, as measured by the number of inputs required to reach 100%
performance.

For the three tasks, the 100% point is reached at approximately

2,000, 10,000, and 50,000 problems, respectively. Thus each differs
from the previous by a factor of five. Examination of the Boolean
formulas shows that the number of terms doubles in going from one
task to the next, i.e., a factor of two. At the same time, the input
domain size goes from 2% to 21! to 220, i.e., it grows exponentially. In
fact, the 20-multiplexer domain is so large that XCS has seen only
about 5% of it by the time XCS reaches 100% performance. &

We can use these results to get a rough estimate of XCS’s learning
complexity. Each larger multiplexer was about five times harder
than the previous one. When cases differ by a constant factor, a
power function relationship is suggested. You can write D (for
difficulty) equal to a constant c times g to some power p. If you take
g as the number of maximal generalizations—equal to four times
the number of terms in the formula—then choosing p = 2.3 and

c = 3.2 gives a curve that fits the three multiplexer cases. Thus D is
polynomial in g.

17



What is D with respect to [, the string length? Notice that [
approaches 2* for large k. At the same time, g = 4 - 2%, so that I
is proportional to g. This means that D is also polynomial in I. The
same polynomial relationship has recently been found to hold for
the 37- and 70-multiplexers as well.

A tentative conclusion is that XCS’s learning effort—in effect,

its learning complexity—is much more closely tied to the number of
regularities or generalizations in the input domain, than it is to the
size of the domain itself. This is a very desirable property, if true.
Several popular network-based or network-like learning techniques
do not have the property. For instance, tile-coding, nearest
neighbor, and standard neural networks. [BREAK] &

Let us go on to sequential or multi-step problems. They have the
new complication that reward does not necessarily arrive on every
step. Sometimes there is no reward on a step, so what should the
system do, or learn?

Theoretical treatment of this issue is by now quite vast, and forms
much of the subject called reinforcement learning. I will show one
basic approach through a fairly simple example and some appeal to
intuition.

Consider this portion of a grid-world. The system wants to

be able to reach food, F, from any starting point, and it cannot pass
through cells containing an O. One widely used reinforcement
learning approach, called Q-learning, is to learn a value function of
the states and actions. Then, in a state, the system chooses the
action with the highest value.

18



How would this work out? Suppose we are in the state, or cell, just
below the F. If we move North, we will get an external, a real, re-
ward. So it makes sense to make the value function, say, 1, for that
action in that state. What if we are one step away from that state,
say under the O, and we move to the East? Well, we could then go
North and get the reward, so maybe the East move should be valued
the same, 1. That does not seem satisfactory, since the state under
the O is two steps from the F. Let us instead value the East move
at v times the value of the best move in the state under the F, i.e., v
times 1, where ~ is a constant somewhat less than 1, like 0.9.

Now let’s go back to the state under the F, and consider a move to
the West. How should it be valued? Using the rule just mentioned,
we should value it at v times the value of the best move from the
resulting state, thus v times v, or v2. That’s nice, because it reflects
the fact that the minimal path if you start by moving West is three
steps long. Continuing this way, we can fill in the action-values for
every move in every state, and they will all reflect similarly the
minimal distance to food.

Notice that we can fill in all the action-values based only on local
updates. At any one time, we only need to remember the values
of the current and succeeding states. By trying the moves and doing
the updates, the action-values will gradually become reliable.

What has been proved for Q-learning is that if the environment is
Markov and the updates are done sufficiently often, the action-
value estimates will converge to values such that taking the action
with the maximum value in every state will always result in the
shortest path to the goal. If external reward occurs in more than
one state, a similar, more general result holds stating that the above
procedure will result in action-values such that following their
maxima will result in an optimal flow of (discounted) future reward.

19



Now, to put this in XCS terms, the expression below shows the
procedure for updating predictions p; in multi-step problems. The
prediction is updated based on the maximum system prediction in
the succeeding state plus any external reward, 7;,,,, in the current
state. While this procedure is based on the Q-learning model,

it is new because it applies to predictions made by rules, which may
be general in some degree, and not on predictions tied to individual
states. Like all reinforcement learning procedures involving
generalization, there are no proofs that the procedure results in an
optimal policy. But empirically it works well. &

Here, quickly, is the full XCS diagram, with the multi-step parts
added in. You see max, discount, summation, and time

delay boxes required for the update expression on the last slide. For
computational reasons, the update is actually done retrospectively,
but the effect is identical to that expression. [BREAK] &

Now I will go quickly over some multi-step results. While XCS has
by now been tried in quite a number of environments, the one here,
called Woods2, is good to talk about because it has a surprising
number of regularities that XCS captures in its generalizations.

The system, an animat, represented by an asterisk, is placed
randomly in an open cell of Woods2 and then, under control of
XCS, moves until it bumps into food. There are two kinds of
food, which look different to the animat, and there are two kinds of
impenetrable rocks, which also look different. The actual coding
of the sensory input vector is shown at the right. The sense vector is
24 bits long.

20



The left-hand graph shows performance, in average steps to food,
versus the number of explore problems so far. An explore problem
is a problem in which the animat starts at a random position, moves
randomly, updating and doing the GA as it goes, all as previously
described, and finally arrives at a food. Performance measures the
number of steps to food on interleaved test problems, in which
the animat always chooses the best move. You see that performance
rather quickly comes down to the optimum. The three curves are
for three different XCS regimes.

The graph on the right shows population size in terms of
macroclassifiers. The message is that for the dashed regime, the
number of classifiers condenses, via generalization, to a value less
than 100. Since there are 560 distinct state-action pairs in Woods2,
this indicates XCS’s ability to detect and represent regularities in
Woods2. &

In particular, this slide shows two of the generalizations found. Ac-
tually this data is from Woods1, which has just 2 bits per object in-
stead of 3, but the results are similar. The first classifier matches in
all positions marked “3”. It says, in effect, I don’t care about any-
thing else, but if there is a blank cell to the West, then the action-
value of moving North is 504. Since 504 equals 1000 times ~? in this
case, the classifier in effect predicts a distance to food of three
steps. XCS has discovered this truth about the states marked 3 and
expressed it in a single classifier. Similarly, the other classifier ex-
presses a regularity about all states with a non-blank object to the
West. [BREAK] &

So far I have described environments that produce binary inputs.
What if the input variables are not binary? Suppose they are real
or integer valued. It turns out XCS can be adapted rather easily to
these cases. I will describe one scheme.

21



The classifier condition is changed from the 1,0,# notation to a
concatenation of interval predicates, as shown. The interval

for a given variable is denoted by an upper and a lower limit for that
variable. A match occurs if every input component is between the
corresponding limits. The classifier condition thus consists of 2n
numbers, where n is the number of input variables.

Crossover may occur either between or within the predicates.
Mutation changes an allele by a bounded random amount, as
shown. Covering produces a classifier with a condition having
interval predicates that match the components of the current input.

L3

This non-binary scheme is very suitable for data mining problems
in which inputs are expressed as strings of integers or reals. Here
you see the classic Wisconsin Breast Cancer dataset. It is available,
along with many others, from UC Irvine. The instances look a little
odd at first. But each consists of a number identifying that clinical
case, followed by nine numbers which are attribute values between 1
and 10, and finally the case’s outcome, 2 for benign and 4 for
malignant. The meanings of the nine attributes are shown. The 699
total cases are divided into 458 benign and 241 malignant.

XCS, modified for integer inputs, is called XCSI. At the bottom
of the slide you see results of a 10-fold cross-validation test after ten
instances of XCSI learned from the dataset. 10-fold cross-validation
is a standard method of evaluating the performance of a learning
system on a given dataset. It attempts to estimate the performance
of the system on further examples drawn from the same universe of
examples.

22



Basically, you let XCSI learn from 90% of the dataset and test it
on the remaining 10%. Then you have it learn again on another 90%
and test it on the remaining 10%. You do this ten times and average
the test results. As you can see, the test results were somewhat
varied, with an average of about 95.5%. This and higher values
produced after further work with XCSI are very competitive with
the best results from other learning systems, such as decision trees
or neural networks. It appears that XCSI-like systems are excellent
tools for this kind of problem. &

XCSI not only shows high performance, but it readily allows human
users to “see the knowledge” that it has learned and that it uses to
make decisions. This is because the system consists of discrete
classifiers and is not a network. Knowledge consists of
generalizations that are as broad, while still being accurate, as the
domain permits. In terms of XCSI, this means evolving the
population until maximally general classifier have been found. The
graph shows this process with the Wisconsin dataset.

Look carefully at the upper left-hand corner. You see the
performance curve quickly reach 100%, so most of the graph is
spent after performance is perfect. The rising curve is generality—
the percentage of don’t-cares in the population. The falling curve
shows the population size. The size falls a lot after 100%
performance is reached and is still falling at two million problems.
Increasingly general classifiers are still being found. They are still
accurate, of course, since performance remains at 100%.

23



If you examine the population at two million problems you find clas-
sifiers like the four shown at the bottom. It is easy to translate the
actual classifier notation to English language statements—in fact, a
program does it. These classifiers were drawn from the highest
numerosity classifiers, which tend to be those with the best general-
izations, as we saw earlier with the multiplexer. In fact, there is an-
other program that culls the population and finds a very small sub-
set that nonetheless covers all dataset instances. For the Wisconsin
dataset, the subset is 23 classifiers, of which just 10 cover 90% of
the instances. Thus XCSI is a data-miner offering both high perfor-
mance and high visibility of knowledge. [BREAK] &

XCSI extends classifier syntax to include inputs with integer or
real components. However, a condition is really a predicate—i.e. a
truth function—and the syntax so far considered is just one
subclass of possible predicates. For example, suppose, as seen in
the slide, you needed a condition that was true for * > y. Then the
so-called conjunctive syntax of standard classifiers would be
awkward. You would need many classifiers, not just one, to capture
this relation.

However, there is no reason you can’t have classifiers with any
required condition syntax! In fact, using conditions consisting of
Lisp S-expressions of appropriate elementary functions, the system
can evolve an almost unlimited variety of predicates. This means
that essentially any generalization or regularity in the environment
can be represented.

24



Initial experiments have borne out the power of S-expression
conditions. As in genetic programming, however, there

can be a “bloat” problem which reduces the transparency of evolved
classifiers. More research is needed so that you can have both
performance and transparency and completely general syntax.
This line of research—toward classifier systems that can efficiently
capture any required generalizations—is very important, in my
opinion. [BREAK] &

Up to now, I’ve talked about so-called “Markov” environments.
The way we use the term, an environment is Markov if knowing the
current input is sufficient to allow a system to choose the optimal
action. Standard condition-action classifiers in XCS basically
assume that the environment is Markov.

Unfortunately, it turns out that most environments do not have the
Markov property—they are non-Markov. The best action to take
at a given point may depend on both the current input and some
number of prior inputs. Here is a simple example of a non-Markov
environment, due to Andew McCallum. The arrows indicate two
states that look identical to a system that can only see the adjacent
cells. Yet the optimal actions are different. The two states are said
to be “aliased” —another piece of terminology.

What additional information does the system need in order to take
the right actions in these two states? Well, if it could see
better—i.e. see a little deeper into the environment—it could tell
the states apart and therefore take different actions appropriately.
This would be a sensor-based solution. However, let us assume we
can’t change the system’s hardware. What would we then do?

25



The options basically all use some form of temporary memory to
disambiguate the two states. The history window option simply
remembers some number of previous inputs. The classifier
condition would be extended to, say, attempt to match both

the current input and the prior one. This would be sufficient in this
example to distinguish the two states. The initial non-Markov
problem would in effect be converted to a Markov one, if you regard
the present and prior inputs as forming the “current input”.

You can see, however, that history window approaches

are inefficient unless you know precisely how much window length is
required. For if the window is too long, the system has to remember
more than necessary, and the number of required classifiers grows
rapidly. On the other hand, if the window length is too small, the
problem will remain unsolved, though performance may improve
somewhat.

Another approach—actually the one used by McCallum—is to
remember all past states and statistically look for correlations
between them and the right move. That is, try to identify events in
the past that can tell you what move to make now. This method can
be more efficient than the history window, but it can still require an
explosive amount of temporary memory on which to base sufficient
statistics.

Finally, the concept that has been tried with XCS
is—appropriately—more Darwinian. It is to evolve internal
symbols, or signals, that the system can use to tell the aliased states
apart. This amounts to the creation of adaptive internal state. It is
a simplified version of Holland’s original message list concept. &

26



Consider a classifier whose condition concatenates an
environmental condition, as usual, with an internal condition. And
let the action be a combination of an external action and an internal
action. Also, let the system have an internal register R. The
internal action modifies R. For the classifier to match, its
environmental condition must match the input, and its internal
condition must match R. The system’s internal state consists of the
current contents of R.

Now, consider a non-Markov problem like McCallum’s maze. One
can imagine, at least, that R might get set to, say, 0 when the
system enters the left-hand aliased state. And, conveniently, that R
would get set to 1 when the system enters the right-hand state.
If this happened, a classifier matching the input, looking for 0 in R,
and advocating the action, “move south-east”, would reliably
receive a high payoff. Similarly, a different classifier that matched
the input, looked for a 1 in R, and advocated moving south-west
would also be reliably reinforced. These two classifiers, plus those
required to set the register properly, would be sufficient to disam-
biguate the aliased states.

The hypothesis is that, given this addition to classifier syntax, and
without keeping histories, the system will simply evolve exactly the
classifiers needed! It seems that this is indeed the case, or at least
that it is true enough to merit considerable further investigation. In
the next few slides I will show several non-Markov environments in
which high performance has been reached by this method. &

27



Here is Woods101 again. The graph shows steps to goal—i.e.
performance—in two regimes, learning and test. During learning,
up to 6500 problems, the system alternates between explore
problems and exploit problems. Then, at 6500 problems, the
regime is switched to test and all problems are pure exploit. Notice
that performance goes to optimal or very nearly so. The graph
averages 10 runs. When the populations for individual runs are
examined, classifiers that set and read the register appropriately
are indeed found.

In both regimes, the graph plots performance on exploit problems.
Interestingly, it is not until all exploration is turned off that the
exploit performance goes to optimal. Before that it is not far from
optimal. But the presence of explore problems—which explore
changes in the register settings—is enough to mess up the
intervening exploit problems somewhat.

I should mention that exploration during learning consisted only
of trying different external actions randomly. Internal actions were
selected deterministically. This meant they were only explored by
the action of the genetic algorithm. To get the system to solve
non-Markov environments, it was necessary to restrict exploration
of internal actions in this way. The implications are interesting, but
I have to leave them out because of time. &

28



Woods101.5 is more complicated. It has four aliased states, in
which the input forms the cross pattern at right. With four states,
one would expect a 2-bit internal register to be sufficient. The
results for that case are shown in the upper curve. When the test
phase is switched on, performance improves and flattens, but the
level is not optimal. However, when the register size is increased to

4 bits, optimal performance is reached, as shown. Two bits may

not work because the coding is too “tight”. I.e., the right classifiers
have to be found for four separate locales. Once they are found for
three, the last one’s coding must, independently, be picked just
right or it will be confused with one of the other places. However, with
4 bits of register, there are 16 possible codings, and finding a consistent
set would be easier. &

Finally, Woods102 is a maze with two separate 4-member groups
of aliased states, as shown. So a 4-bit register would theoretically be
sufficient. Again, however, optimal performance was only reached
when the register size was increased to 8 bits. Even so, this is

a pretty tricky non-Markov maze, and getting a solution still seems
rather amazing. Adaptive internal state appears to work, and
further investigation is important, in my opinion. [BREAK]| &

Learning classifier systems have a number of exciting future
directions that I haven’t discussed. I will briefly mention six.

First, it appears possible to generalize the classifier architecture in
an interesting way that could give more powerful generalizations in
some problems. It would also allow for continuous actions instead of
discrete ones. Notice that in the classifier shown, the prediction is
not a fixed scalar, but a function of the input and the action. This is
the essential notion of a generalized classifier.

29



Even with traditional classifiers, you can think of the population
as forming a mapping from inputs and actions to predictions. With
traditional classifiers having scalar predictions, the mapping can
never be better than piecewise constant. But the environment itself
may well call for a smoother representation. That is possible with
generalized classifiers if, for instance, p(x, a) is a linear function.
This results in the evolution of a piecewise-linear approximation of
the payoff function, more accurate than any piecewise-constant one.

How can you get continuous actions from this? It’s a bit involved,
but the essence is, given a match set, maximize each classifier’s
payoff with respect to a. Then pick the best maximizing action.
Any action value within the action restriction r(a) is possible.
This frees a system of generalized classifiers from the constraint of a
finite set of discrete actions. It works because the payoff is a
continuous function.

The next direction is that of anticipatory classifier systems. Here
the big difference is that the system predicts, not a payoff (although
it might do that too), but the next state. Why is this interesting?
Because if your classifiers can predict next states, it should be
possible to plan, i.e., to follow out a sequence of actions to see
the consequences without actually taking those actions. There is by
now quite a bit of good work on anticipatory classifier systems. Two
main variants exist. In one, the entire next state is predicted

by each classifier. I.e., the prediction is a vector predicting the next
input (if that action is taken). In the other variant, each component

of the next state is predicted by a separate classifier system, and the re-

sults combined. This would seem less efficient, but in fact the single-
component predictor may have higher generalizing power so the indi-
vidual classifier systems are smaller.

30



A third direction is continuation of the non-Markov research so as
to create a hierarchical classifier system. In such a system some
actions would be elementary ones, but others would be calls to se-
quences of classifiers that would perform sequences of actions. This
would implement the idea of behavioral hierarchies in a classifier
system. Obviously, most actual behavior is in fact hierarchical. All
of this appears to be within the scope of classifier systems. Control
would be along the lines of the register idea. The register setting
would symbolize an intention, or the name of a subroutine or
behavioral module. It is easy to imagine very sophisticated systems
like this. With enough work, we could make them a reality.
[BREAK] &

Yet another direction is research on the fundamental theory of
XCS. This has been started in recent papers, including some in this
conference. We now understand much better how accurate
classifiers are evolved and why they tend to be maximally general.
This work is leading toward definite ideas about the learning
complexity of XCS. The basic hypothesis is, as discussed earlier,
that XCS learns in times that depend on the complexity of the prob-
lem itself —the complexity of the target function. The times do not
depend on the size of the problem space, as they do for many well-
known learning paradigms. Confirming this hypothesis is very im-
portant to the future of classifier systems, in my opinion.

The fifth direction is toward basic nuts and bolts improvements in
the internal mechanisms of XCS. It appears that the accuracy
measure can be improved. Tournament selection and uniform
crossover appear to be good ideas, for justifiable reasons. Problems
for XCS on long paths need attention, and some ideas have been
proposed.

31



Finally, it is important to continue research aimed at comparing
accuracy-based systems such as XCS with the traditional
strength-based classifier systems. Obviously I have tilted toward
the former in this presentation. But there is good work being done
on the virtues of strength-based systems. &

Now, let me make this summary, which suggests some key
differences between XCS and other reinforcement learning systems.

The big difference is that XCS is rule-based, not network-based or
radial-basis-function based. Under that heading it seems important
that XCS’s structure, the classifiers, is created as needed; this
differentiates it from things like back-prop networks in which
sufficient structure must be present in advance. In things like radial
basis function and nearest neighbor approaches, structure can

be created as needed, but that structure tends to be fixed and is not
further adapted, as are XCS’s classifiers.

Second, from comparisons—for instance on the multiplexer—the
learning speed of XCS is at least as fast as for network approaches. I
think this is because a classifier is already a non-linear structure, so
that non-linear problems are more quickly adapted to.

Third, from the multiplexer results, it is likely that the learning
complexity is significantly better than for networks. Many kinds of
networks are known not to scale up well. They grow with the
problem space, not the complexity of the problem function. The
same is true of radial basis function approaches.

Fourth, classifiers have this neat ability to keep lots of statistics
about themselves, such as their error, etc. It is very awkward to do
this with networks—you end up needing a separate network for
each type of statistic! I think that as we explore, we will find many
more statistics that are useful in classifier systems.

32



Fifth, since classifiers are rules, the knowledge they embody is
reasonably “transparent”. In contrast to systems like networks
where knowledge is distributed over the elements, knowledge in
XCS is represented relatively clearly and compactly. This ability to
“see the knowledge” turns out very important as XCS is applied
to data inference and other areas where understandability to human
users is vital.

Sixth, the fact that classifiers are rules, and can be manipulated like
rules, may turn out very important when we want our systems to do
things like reason.

Finally, XCS has a powerful generalization capability. This is
probably the deepest aspect of XCS. It permits the scale-up and
transparency just noted. Can it be extended to any problem
domain? I think so, if the classifier condition syntax is chosen to
reflect the structure of the domain.

Thanks for this opportunity to speak to you.

33



