
This will be an introdu
tion to learning 
lassi�er systems. But I willfo
us mostly on XCS, whi
h 
ontains many of the ideas thatare 
urrently being pursued in the �eld. I will try to explain XCS sothat everyone gets a good idea how it works. I will assume no priorknowledge of 
lassi�er systems or XCS. Toward the end I willindi
ate some important dire
tions for future resear
h.Holland's basi
 
lassi�er system framework 
ertainly remainsinspiring. But I believe 
ertain key aspe
ts must be 
hangedin order for the framework to be su

essful. Some of the 
hanges areembodied in XCS, whi
h appears to work better than previous
lassi�er systems. I think people at a tutorial would like to learnabout things that work better, so I will fo
us on XCS. |However, it is important to know about the traditional system. Iwould re
ommend Holland's 
hapter in the 1986 Ma
hine Learningbook, as well as the 
hapter in Dave Goldberg's �rst book. I wouldalso re
ommend papers by Lashon Booker, Larry Bull, StephanieForrest, John Holmes, Tim Kova
s, Ri
k Riolo, and Rob Smith,among others. Plus my own papers prior to 1995. At the end,if people are interested, I will dis
uss the relationship between XCSand earlier 
lassi�er systems. [BREAK℄I will do this tutorial in a sort of question-answer format, posingand then answering what would seem to be the next major question.But, if you have another question as I go along, and it is urgentenough, please interrupt and ask it. I will also deliberately pause forquestions. |Okay, What is XCS? First of all, it is a learning ma
hine|a learningprogram within a 
omputer. Here, learning means behavior thatimproves with time, via intera
tion with the environment.
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Many learning programs start with a priori information about theproblems that will be fa
ed. Su
h information is often 
alled\domain knowledge". If the program still goes on to improve itsbehavior, this is not exa
tly 
heating. But there 
an be 
onfusionbetween what is given in advan
e and what is a
tually learned.To understand learning per se, and eventually to 
reate reallypowerful learning ma
hines, I think it's important to start withminimum a priori information, so that as mu
h of the ma
hine'sknowledge as possible results from adaptation to the environment.Then whatever we do have to put in we will know is probablyessential and 
annot be left out.Another aspe
t of XCS is that its learning is \on-line". This meansthat it has to learn as it goes along. It does not have the luxury of
olle
ting a lot of experien
e in some sort of temporary storageand then pro
essing it at leisure for the impli
ations. Instead, XCSmust extra
t the impli
ation of ea
h experien
e as it o

urs,be
ause the raw data 
annot be saved.This 
riterion is at odds with the way humans sometimes learn,sin
e we sometimes sit down and study large amounts of 
olle
teddata free of pressure for immediate performan
e. However, it seemslikely that the simpler the animal, the less this is possible, and thatthey learn primarily \on-line". Sin
e simple animals 
an still beamazingly 
ompetent, it seems essential to understand how ourma
hines 
an also learn on-line.A third aspe
t of XCS is that as it learns it attempts to 
aptureregularities of the environment. This means to dete
t and lumptogether situations that 
all for the same behavior|even thoughthe situations may appear di�erent. A ma
hine with even a smallnumber of sensors will en
ounter an enormous number of sensorystates in any reasonably 
ompli
ated environment.
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A sensory state means a parti
ular ve
tor of values on the sensors.In order to avoid an explosive demand on memory, the learningma
hine must be able to group states having the same impli
ationfor its behavior. This is the problem of generalization. XCS is ableto generalize quite powerfully, if the environment allows it. |What does XCS learn? Always, it learns to get reinfor
ements.More pre
isely, it learns to a
t so as to maximize a summation of
urrent and future reinfor
ements. As the diagram indi
ates, XCSre
eives inputs|sensory state ve
tors|from the environment andemits a
tions that a�e
t the environment and may result in payo�s.The payo� is always a s
alar. A payo� asso
iated with needsatisfa
tion 
ould be represented by a large positive number. Apayo� asso
iated with pain 
ould be represented by a large negativenumber, et
.This is the framework of reinfor
ement learning, whi
h seemsto be the right framework for developing learning ma
hines that 
anfun
tion autonomously. Often, we don't know whata ma
hine should do in order to a
hieve a goal that we set for it. Wedo not \see" the environment the way its sensors do, and we 
annotpredi
t how its e�e
tors will a�e
t the environment.But we do often know the end results that we want and 
an atta
hreinfor
ement values to them. We 
an say, \I want the ma
hineto �nd as mu
h dust as possible, so I will give it a small payo� everytime it �nds some", et
. This is usually mu
h easier than tellingit|as a tea
her might|just what to do to �nd dust. |
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All right, what are XCS's inputs and outputs? We are goingto simplify a lot. Mu
h of the work with 
lassi�er systems has beendone with binary input ve
tors and dis
rete a
tions. Thus what I
alled the sensory input ve
tor is a string of bits. To make it a littlemore organi
, you 
an think of ea
h bit as the result of thresholdingthe 
ontinuous-valued output of some sensor. Despite the resultingloss of information, binary sensor values are adequate in manybehavioral situations.There is nothing in prin
iple that prevents XCS from using
ontinuous sensor values dire
tly, i.e., using real input ve
tors. Orve
tors of integers. I will des
ribe approa
hes to these later on.Outputs are also dis
rete, though not ne
essarily two-valued.In some problems, XCS will learn to give a yes-no de
ision, and theoutputs will therefore be 1 and 0. In other problems, the outputswill be a
tions in a physi
al (or simulated physi
al) environment,su
h as: move a predetermined distan
e forward, or turn leftthrough a predetermined angle.For dis
rete a
tions to be e�e
tive, their size should be large enoughso that strings of su
h a
tions a
tually a

omplish something in auseful time, but small enough so that �ne maneuvers 
anbe 
arried out if ne
essary. A better solution would be a
tions thatevolve to have the optimum value, su
h as \head 34 degrees left". Apromising approa
h has re
ently been proposed, whi
h I willdes
ribe later. |Now I'm going to start talking about what's inside XCS. First, I willdes
ribe the system after it has learned something. I'll show how,given some input, it arrives at a de
ision.
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XCS's knowledge is 
ontained in a large set of 
ondition-a
tion rules
alled 
lassi�ers. Ea
h 
lassi�er 
onsists of a 
ondition part, ana
tion part, and a predi
tion part. The 
lassi�er \says": if my
ondition mat
hes the sensory input and my a
tion is taken by thesystem, I predi
t that the payo� will be as follows.The example 
lassi�er says: if the �rst two bits of the input are 0and 1 and the fourth bit is also 1, I predi
t a payo� of 943.2 if thesystem takes a
tion 1. (The # symbol means I don't 
are what thevalue of this 
omponent is.) This rule mat
hes a total of eightpossible input ve
tors, so it is making a statement that applies to alleight of those inputs. It is expressing a generalization in the sensedis
ussed at the beginning. It is saying that the environment seemsto have a regularity su
h that if three of the input bits are set as justdes
ribed and the a
tion is a
tion 1, the payo� will be 943.2regardless of the settings of the other three bits.Whether this 
lassi�er is 
orre
t is another matter. We
an 
ertainly doubt that the payo� will be exa
tly 943.2 for all eightmat
hing input ve
tors. In fa
t, 943.2 may be an average over awidely di�erent set of a
tual payo�s for those eight 
ases. Thus,while the 
lassi�er asserts a generalization, the generalization'sa

ura
ymay be high or it may be low. So the 
lassi�er may be veryuseful to the system as a predi
tor, or it may be of little use.There are many 
lassi�ers within the system at any one time,perhaps several hundred in the types of problems often studied. Ifyou examine one of the 
lassi�ers, you will �nd that it makes apayo� predi
tion, as above, with respe
t to some subset of the inputspa
e, in 
ombination with one of the possible a
tions. After XCShas learned for a while, it will 
ontain 
lassi�ers that
over all parts of the input and a
tion spa
e that it has experien
ed,plus|often|mu
h more that it has not experien
ed.
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There is an important di�eren
e between XCS and learning systemsbased on arti�
ial neural networks. In XCS, the knowledge aboutsubsets of the problem spa
e is en
apsulated in individual
lassi�ers. That is, given an input, information about payo� forthat input (in 
ombination with a parti
ular a
tion)will be 
ontained in just a few individual 
lassi�ers, maybe just one.Conversely, given a 
lassi�er, it makes an assertion with respe
t to ade�nite subspa
e of the input, and says nothing about other parts ofthe input spa
e.In 
ontrast, the nature of network-based systems isthat payo� information, for any input, is distributed over the wholenetwork, and is in general extra
ted from the network by adding up
ontributions from all parts of it. This is the nature of the
onne
tionist (PDP) or \neural network" approa
h originated byworkers like Rumelhart and others.It is formally possible to relate XCS's rule-based approa
h to theneural network approa
h. But they seem distin
t enough to meritpursuing separately on their own terms, at least until the potentialsof both are more understood. XCS is one of very few rule-basedapproa
hes that are truly adaptive. I will say more about thedi�eren
es between XCS and neural networks later. |Now I will begin to explain how XCS works, by restri
ting attentionto the so-
alled performan
e 
y
le, i.e., what happens when XCSsimply makes a de
ision in the presen
e of an input. Learning stepswill be left out for the moment.For simpli
ity, we will assume that XCS is in a \one-step" problemenvironment. In a one-step problem, a single input is putto the system, it 
hooses an a
tion, and a reward is returned. Thenanother one-step problem o

urs, with no 
onne
tion to the�rst. This allows us, for the moment, to avoid the 
ompli
ation of asequential problem in whi
h many steps may o

ur before there is areward. 6



Here is what you need of XCS for the performan
e 
y
le. Assumethat a population of 
lassi�ers [P℄ is already present in XCS (I'll getto its origin shortly).In the diagram, XCS re
eives an input 0011. The input is 
omparedwith the 
onditions of all the 
lassi�ers in the system's 
urrentpopulation [P℄. Classi�ers that mat
h are pla
ed in the mat
h set[M℄. The other 
lassi�ers play no further role in this problem.The 
ontents of the mat
h set embody the totality of XCS's 
urrentknowledge about what to do with this input. Formation of themat
h set is a sort of re
ognition step. The 
lassi�ers in [M℄ 
an besaid to re
ognize this input.Noti
e that of the four 
lassi�ers in [M℄, two have a
tion 01 and twohave a
tion 11. Consider the two with a
tion 01. Their predi
tionsare quite di�erent: 43 and 27. Whi
h predi
tion should XCS use fora
tion 01? Perhaps it should 
ombine them somehow?We need a notion of the reliability of a 
lassi�er's predi
tion. If wehad that, we 
ould 
hoose the more reliable predi
tion. Or we 
ouldblend the predi
tions in a

ordan
e with the reliabilities. In fa
t,XCS blends them. Noti
e that there are two parameters asso
iatedwith ea
h 
lassi�er besides its predi
tion: � and F . � is an estimateof the error in the predi
tion, and F , �tness, is an inverse fun
tionof �.I will des
ribe the 
al
ulation of � and F shortly. For now, justnoti
e that F is large when � is small. XCS uses F as the measure of
lassi�er reliability, so that reliability in e�e
t goes up as error goesdown. Or up as the 
lassi�er's a

ura
y goes up.
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The net predi
tion for a
tion 01 is simply 
al
ulated by taking aweighted average of the two individual predi
tions, where theweights are the respe
tive values of F . I don't show an equation forthat, but you know this is just the F 's times the p's, divided bythe sum of the F 's. The result is pla
ed in a
tion 01's position in thePredi
tion Array. It is what is 
alled the system predi
tion for thata
tion.The system predi
tion is a quantity distin
t from the predi
tion ofany individual 
lassi�er. Noti
e that here the system predi
tion,42.5, is very 
lose to the predi
tion of the more a

urate 
lassi�er,as it should be.The system predi
tion for a
tion 11 is similarly 
al
ulated.No system predi
tions for a
tions 00 and 10 are 
omputed, sin
e [M℄
ontains no 
lassi�ers with those a
tions.How should XCS now de
ide between a
tions 01 and 11? Well, yousay, obviously it should 
hoose a
tion 01. Yes, it should, if its aim isto get the highest reward it 
an. Suppose it does do that. Thena
tion 01 is sent to the environment|meaning the system tells itse�e
tors to do the thing assigned to a
tion 01. And theenvironment returns some reward value.Finally, the two 
lassi�ers that advo
ated a
tion 01 are pla
ed in thea
tion set [A℄. So endeth the performan
e 
y
le. Let's now begin toask about learning. |We assumed that [P℄ was already full of 
lassi�ers. Let's still assumethat, but inquire just how the 
lassi�ers a
quire their predi
tions.Consider the a
tion set [A℄ from the problem just dis
ussed. Ea
hof its 
lassi�ers made a predi
tion about what reward to expe
t, andnow we have in hand an a
tual reward. Let's adjust the predi
tionsa

ordingly.
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The update expression says \repla
e the 
urrent pj by pj plus �times the di�eren
e between the 
urrent reward and pj". The valueof � is often about 0.2, so this step redu
es the di�eren
e between pjand R by 20%. If R is always the same and the update o

ursin�nitely many times, pj will be
ome equal to R. pj will predi
t thereward exa
tly.The interesting aspe
t of this update pro
edure, though,is that it a
hieves a \re
en
y-weighted" estimate of R. It is a sort ofexponential moving average of R, su
h that re
ent values of R havea greater weight. This is expressed in the equation shown. Re
en
yweighting allows XCS to tra
k an environment in whi
h the rewardvalues for given inputs are slowly 
hanging. Faster tra
king resultsfrom larger values of �. However, � should not be too large, or thenoise-suppression advantages of averaging will be lost.Okay, this is how predi
tions of 
lassi�ers in [A℄ are updated. Butthe 
lassi�ers in [A℄ were those whi
h gave the highest systempredi
tion. How do other 
lassi�ers in the mat
h set get updated?Will they ever be in [A℄? The answer is: they must sometimes be.I.e., XCS must sometimes 
hoose apparently sub-optimal a
tions,in order to be sure it has suÆ
iently updated all 
lassi�ers. It mustdo that to be sure that the apparently optimal 
lassi�ers are in fa
toptimal!This is an example of the famous|or infamous|explore/exploitdilemma. The system would like to 
hoose the best a
tion allthe time in order to maximize its return. But it 
an't determine thebest a
tion without sampling other a
tions. So there is no way it
an ever be 
ertain that its return is maximal. There are many ap-proa
hes to the explore/exploit dilemma, and none is perfe
t. Forthis talk, let's assume that|some �xed per
entage of the time|thesystem 
hooses a random a
tion from those in the predi
tion array.I will 
all this \exploration". The rest of the time it will pi
k theapparently best, highest predi
ting a
tion. This will be 
alled \ex-ploitation". | 9



Okay, those are the predi
tions. Where do the 
lassi�ers themselves
ome from? We usually start with an empty population. Sothere is nothing to mat
h the �rst input. To get started, and for anyunmat
hed input afterwards, XCS 
reates a 
lassi�erby \
overing". This o

urs as shown. The 
reated rule mat
hes theinput, has a random a
tion, and is assigned a low initial predi
tion.Noti
e that the new rule has a 
ertain number of #'s in randompositions. They give the rule an initial generality that will allow itto be tested in several distin
t input situations.Covering is only ne
essary initially and the number of 
lassi�ers so
reated is very small 
ompared with the size of the input spa
e. Thevast majority of new rules are derived from existing rules. |How are new rules derived? First we need to examine a 
lassi�er'sother two prin
ipal parameters, the error and �tness. They are alsoupdated whenever a 
lassi�er is in the a
tion set. The error updateis like that for predi
tion, ex
ept the quantity being averaged is notR, but the absolute di�eren
e between R and the 
urrentpredi
tion pj. This is a simple measure of the 
lassi�er's 
urrenterror.Now look at the equation for a

ura
y. It and the next one are veryimportant in XCS. The 
lassi�er's a

ura
y, �j, is a negative power-fun
tion of its 
urrent error estimate. The power, n, is quite large,usually 5. A

ura
y is thus very steeply inverse to error. However,�j is not allowed to have an in�nity. Any 
lassi�er with error lessthan or equal to �0 has a high but �nite value for a

ura
y, as shown.The next step is to 
ompute �j0, termed relative a

ura
y. Itis just �j divided by the sum of the a

ura
ies of all 
lassi�ers in the
urrent a
tion set. This is important, be
ause what we really wantto know is how the 
lassi�ers in [A℄ 
ompare in terms of a

ura
y,and not their absolute a

ura
ies per se.10



Finally, the 
lassi�er's �tness Fj is 
omputed by updating its
urrent Fj using the value of �j0. Thus the �tness of a 
lassi�eris an estimate of its a

ura
y with respe
t to the a

ura
ies of other
lassi�ers in the a
tion sets in whi
h it o

urs.Now, let's make some new 
lassi�ers! With some probability|notalways|we run a geneti
 algorithm in the a
tion set. In XCS, theGA's population 
onsists of just the 
lassi�ers in the 
urrent a
tionset, not the population [P℄ as a whole. The steps are as shown. Two
lassi�ers are sele
ted with probability proportional to their�tnesses and 
opied. The 
opies will be the o�spring.Often, the o�spring are 
rossed, for example as shown, wherethe verti
al line is a randomly sele
ted 
rossover point. You 
an seethat the result of ex
hanging parts at the 
rossover point isthe pair of 
lassi�ers on the right. As a last step, mutation o

urs atindividual positions with a low probability like 0.02. Then theresulting 
lassi�ers are inserted into the population.Noti
e what is happening here. In the �rst pla
e, the more a

urate
lassi�ers in [A℄ tend to reprodu
e. And, through 
rossover, theirparts are often re
ombined. In this example, the results of 
rossingare one 
lassi�er that is more general than both parents, andanother 
lassi�er that is more spe
i�
 than both. This is not alwaysthe 
ase, but the pro
ess tends on balan
e to sear
h along thegenerality-spe
i�
ity dimension, using pie
es of existinghigher-a

ura
y 
lassi�ers.A 
lassi�er that is more spe
i�
 
an never be less a

urate, as amoment's re
e
tion will show. Sin
e the GA often produ
es a morespe
i�
 o�spring, it is 
lear that the population will tend, over time,toward having 
lassi�ers with greater a

ura
y, i.e., greater abilityto predi
t the 
onsequen
es of a
tions. |
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Here is the previous overall diagram, adding the updating and GA
omponents. The updates o

ur on every a
tion set. The GAo

urs less often, at a rate set to allow suÆ
ient updating for the�tness values to be reasonably stable. |Let's not forget the parents. What happens to them? They stay in[P℄, where in e�e
t they enter into 
ompetition with their o�spring.But this means that the population has enlarged by two. We do notwant an inde�nitely in
reasing population, so two 
lassi�ers mustbe deleted from [P℄.There are a number of ways to do it, gra
efully. Deletion in fa
tprovides an opportunity to keep the system's resour
es balan
ed.Here, balan
e means that approximately the same numberof 
lassi�ers are devoted to ea
h a
tion set \ni
he". This is a
hievedby letting the probability that 
lassi�er Cj will be deleted from [P℄be proportional to the average size of the a
tion sets in whi
h ito

urs.Ea
h 
lassi�er keeps an estimate of the number of 
lassi�ers in itsa
tion sets. The probability of deletion is made proportional to thisestimate. Then 
lassi�ers in a
tion sets that are larger than averagewill tend to be deleted more often, and the sizes will 
ome down.Members of small a
tion sets will be less likely to be deleted. As aresult, a
tion sets will tend to be about the same size. Methods forpreferentially eliminating very low �tness 
lassi�ers 
an be added tothis balan
ing. One 
an also fa
tor in the age or experien
e of a
lassi�er, so that inexperien
ed 
lassi�ers are not prematurelydeleted. [BREAK℄ |Let's look at some results on a 
lassi
al one-step problem, theBoolean multiplexer. This problem is used a lot be
ause it isdiÆ
ult and non-linear, and be
ause the multiplexers form a familyof fun
tions from whi
h 
omplexity estimates may be derived. I'lluse the Boolean 6-multiplexer as the primary example.12



Let's �rst de�ne the fun
tion. The \6" means the input ve
tor issix bits long. It goes into the fun
tion box and out 
omes an answer,1 or 0. In the example shown, the 
orre
t answer is 0. We 
an get ittwo ways. You 
an get the right answer by thinking of the �rst twobits as an address into the remaining four bits. Thus the addressbits, 10, address data bit 2 as shown by the arrow, and that is theanswer. The other way is to pro
ess the input through the Booleanformula. For this input, none of the terms is true, so the result is 0.The formula in bold says that there is a multiplexer fun
tion forinteger values of k greater than 0. So k = 2 gives the 6-multiplexer.k = 3 gives the 11-multiplexer. k = 4 gives the 20-multiplexer,whose formula is shown. Problems as large as the 70-multiplexer,an enormous problem, have been solved. |These are results for the 6-multiplexer. In this experiment, randominputs were presented. If XCS's de
ision was 
orre
t, the rewardwas 1000; if in
orre
t, 0. Learning problems alternated with testproblems. In a learning problem, XCS fun
tioned as des
ribed, butin the a
tion sele
tion step, it 
hose a random a
tion. Thusevery learning problem was done in exploration. Updates, GA, andeverything else o

urred as des
ribed. On test problems, XCSalways 
hose the a
tion|the de
ision|with the maximumpredi
tion. Also, updates and the GA did not o

ur|that is, nolearning o

urred on test problems.The upper 
urve plots the fra
tion of 
orre
t test de
isions,averaged over the pre
eding 50 test problems. It rea
hes 1.0 within2,000 problems. The dashed 
urve shows the fall in the systemerror. This is the absolute di�eren
e between the reward and thesystem predi
tion for the a
tion 
hosen on test, divided by 1000. Ineed to take a moment to explain the third 
urve.
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I said that o�spring 
lassi�ers are added to the population. Well,not exa
tly. Given a new o�spring, the population is �rst sear
hedto see if a 
lassi�er with the same 
ondition and a
tion is alreadypresent. If so, the existing 
lassi�er's numerosity parameter isin
remented by one, and the new o�spring is dis
arded. If not, thenew o�spring is added with its own numerosity set to 1.As a result of this 
reation of so-
alled ma
ro
lassi�ers, ea
hmember of the population is unique. Said another way, what wouldotherwise be n stru
turally identi
al 
lassi�ers are represented inthe population by a single ma
ro
lassi�er. Ma
ro
lassi�ersmake the system faster, plus they make it easier to \see the system'sknowledge". But, where appropriate, all system operations takepla
e as though the ma
ro
lassi�er 
onsisted of its 
onstituent\mi
ro"-
lassi�ers; i.e., they take the numerosity into a

ount.The third 
urve shows the population size in ma
ro
lassi�ers.You 
an see that it initially rises rapidly from zero but then begins agradual fall to 77 by 5,000 problems. What this indi
ates is thatXCS is �nding general 
lassi�ers to repla
e spe
i�
 ones, so that thewhole problem spa
e 
an be handled by fewer 
lassi�ers. Let's lookinside after 5,000 problems and see the 
lassi�ers that have a
tuallybeen evolved. |This is a listing of the population in des
ending order of numerosity.Noti
e �rst that the error estimates of all 
lassi�ers ex
ept thebottom two are zero. Thus a

urate 
lassi�ers havebeen found. But note the �rst sixteen 
lassi�ers. Their address bitsare spe
i�ed, together with pre
isely the bit indexed by the addressbits.These 
lassi�ers are not only a

urate, but are maximally general,in the sense that if you 
hange any spe
i�ed bit to #, the 
lassi�erwill be
ome ina

urate. Thus XCS has evolved 
lassi�ers that areboth a

urate andmaximally general. The 16 
lassi�ers 
orresponddire
tly to the terms of the Boolean formula.14



In fa
t, they 
onstitute an optimal 
over of the problem spa
e, inthe sense of being minimal in number while still 
overing everyinstan
e. A hypothesis has been made that XCS always drivestoward an optimal 
over.Well, what about the other 
lassi�ers in the list? They are presentbe
ause the system's sear
h of the 
lassi�er spa
e, of its model,
ontinues on. New 
lassi�ers, not maximally general and sometimesina

urate, are still present. However, note the developingabrupt fall in numerosity between numbers 15 and 16. Eventually itwill be very sharp with even fewer 
lassi�ers beyond 15 and at lowernumerosities and �tnesses. These residual 
lassi�ers already haveno e�e
t on performan
e, sin
e performan
e is 100% at this point.I should note in passing that the 
lassi�ers' a
tual �tnesses weremultiplied by 1000 for this list. The a
tual errors were divided by1000. To me, these normalizations are helpful. I hope they aren'ttoo 
onfusing to you. |Finally, it is fun to try to observe the 
reation, or at least the arrival,of one of these a

urate maximally general 
lassi�ers. This slideshows some a
tion sets for the parti
ular input 101001 and a
tion0, when that input happened to arrive at problem numbers given onthe left. On problem 247, the a
tion set has three mat
hing
lassi�ers, in
luding the 
ompletely general one, and all have hugeerrors. At problem 1135, all of these are gone, and the 
lassi�er wewant has appeared, with zero error and a �tness already dominatingthe others. It's number 9.At 1333, our favorite dominates a mu
h smaller a
tion set and itsnumerosity is growing. At 2410 it has just one 
ompanion, with�tness zero. And at 2725 it is joined by a 
ouple of more-spe
i�
versions of itself. They are equally a

urate but have mu
h lowernumerosities and �tnesses. Why is that?
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We now should address the question of why XCS drives not onlytoward a

urate 
lassi�ers, but ones that are also maximallygeneral, as seen in the previous population listing. If �tness is basedon a

ura
y, shouldn't XCS drive toward more spe
i�
 
lassi�ers,not more general ones? The answer is at the heart of XCS's abilityto dete
t and represent the regularities in its environment|i.e., togeneralize. |I've written the explanation out sin
e it is so important. Let's goover it in 
onjun
tion with the two example 
lassi�ers shown.\Consider..."The essen
e is that reprodu
tive su

ess in XCS depends not onlyon �tness, but on reprodu
tive opportunity. A more general
lassi�er will o

ur in more a
tion sets, and therefore have morereprodu
tive opportunities. By reprodu
ing more, it will attain agreater numerosity. The greater numerosity will mean that more ofthe �tness update, whi
h always sums to a 
onstant, one, will be\steered" toward it and less toward its less general 
ompetitors.Gradually, if all are equally a

urate, the more general 
lassi�er willdrive the others out of the population. I.e., they will disappear.The system will keep sear
hing for yet more general versionsof an a

urate 
lassi�er until the point is rea
hed where adding a #anywhere results in a loss of a

ura
y. Then the pro
ess will stop:any more general 
lassi�er will have little 
han
e of survival.This generalization me
hanism is responsible for the gradualas
endan
y of the 16 highest numerosity 
lassi�ers shown in the6-multiplexer listing. XCS has in e�e
t dete
ted and representedthe terms of the Boolean formula. For the multiplexer problem,these are the environmental regularities. [BREAK℄ |
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S
ale-up is an essential property of a learning system. As problemsget larger, we want the system's memory or learning e�ort to growmu
h less rapidly than the size of the problem domain. In general,problem domains grow exponentially with the number of variablesdes
ribing them. The worst 
ase would be a system that must alsogrow exponentially. This would be a system that treated ea
h inputstate individually, say using a giganti
 table.Intuitively, if the problem domain 
ontains regularities,we would like the learning system to grow only as fast as the numberof regularities. The multiplexer family of fun
tions permits a test ofXCS's 
apability in this regard. The three graphs show results forthe 6-, 11-, and 20-multiplexers. Let us look at learninge�ort, as measured by the number of inputs required to rea
h 100%performan
e.For the three tasks, the 100% point is rea
hed at approximately2,000, 10,000, and 50,000 problems, respe
tively. Thus ea
h di�ersfrom the previous by a fa
tor of �ve. Examination of the Booleanformulas shows that the number of terms doubles in going from onetask to the next, i.e., a fa
tor of two. At the same time, the inputdomain size goes from 26 to 211 to 220, i.e., it grows exponentially. Infa
t, the 20-multiplexer domain is so large that XCS has seen onlyabout 5% of it by the time XCS rea
hes 100% performan
e. |We 
an use these results to get a rough estimate of XCS's learning
omplexity. Ea
h larger multiplexer was about �ve times harderthan the previous one. When 
ases di�er by a 
onstant fa
tor, apower fun
tion relationship is suggested. You 
an write D (fordiÆ
ulty) equal to a 
onstant 
 times g to some power p. If you takeg as the number of maximal generalizations|equal to four timesthe number of terms in the formula|then 
hoosing p = 2:3 and
 = 3:2 gives a 
urve that �ts the three multiplexer 
ases. ThusD ispolynomial in g.
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What is D with respe
t to l, the string length? Noti
e that lapproa
hes 2k for large k. At the same time, g = 4 � 2k, so that lis proportional to g. This means that D is also polynomial in l. Thesame polynomial relationship has re
ently been found to hold forthe 37- and 70-multiplexers as well.A tentative 
on
lusion is that XCS's learning e�ort|in e�e
t,its learning 
omplexity|is mu
h more 
losely tied to the number ofregularities or generalizations in the input domain, than it is to thesize of the domain itself. This is a very desirable property, if true.Several popular network-based or network-like learning te
hniquesdo not have the property. For instan
e, tile-
oding, nearestneighbor, and standard neural networks. [BREAK℄ |Let us go on to sequential or multi-step problems. They have thenew 
ompli
ation that reward does not ne
essarily arrive on everystep. Sometimes there is no reward on a step, so what should thesystem do, or learn?Theoreti
al treatment of this issue is by now quite vast, and formsmu
h of the subje
t 
alled reinfor
ement learning. I will show onebasi
 approa
h through a fairly simple example and some appeal tointuition.Consider this portion of a grid-world. The system wants tobe able to rea
h food, F, from any starting point, and it 
annot passthrough 
ells 
ontaining an O. One widely used reinfor
ementlearning approa
h, 
alled Q-learning, is to learn a value fun
tion ofthe states and a
tions. Then, in a state, the system 
hooses thea
tion with the highest value.
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How would this work out? Suppose we are in the state, or 
ell, justbelow the F. If we move North, we will get an external, a real, re-ward. So it makes sense to make the value fun
tion, say, 1, for thata
tion in that state. What if we are one step away from that state,say under the O, and we move to the East? Well, we 
ould then goNorth and get the reward, so maybe the East move should be valuedthe same, 1. That does not seem satisfa
tory, sin
e the state underthe O is two steps from the F. Let us instead value the East moveat 
 times the value of the best move in the state under the F, i.e., 
times 1, where 
 is a 
onstant somewhat less than 1, like 0.9.Now let's go ba
k to the state under the F, and 
onsider a move tothe West. How should it be valued? Using the rule just mentioned,we should value it at 
 times the value of the best move from theresulting state, thus 
 times 
, or 
2. That's ni
e, be
ause it re
e
tsthe fa
t that the minimal path if you start by moving West is threesteps long. Continuing this way, we 
an �ll in the a
tion-values forevery move in every state, and they will all re
e
t similarly theminimal distan
e to food.Noti
e that we 
an �ll in all the a
tion-values based only on lo
alupdates. At any one time, we only need to remember the valuesof the 
urrent and su

eeding states. By trying the moves and doingthe updates, the a
tion-values will gradually be
ome reliable.What has been proved for Q-learning is that if the environment isMarkov and the updates are done suÆ
iently often, the a
tion-value estimates will 
onverge to values su
h that taking the a
tionwith the maximum value in every state will always result in theshortest path to the goal. If external reward o

urs in more thanone state, a similar, more general result holds stating that the abovepro
edure will result in a
tion-values su
h that following theirmaxima will result in an optimal 
ow of (dis
ounted) future reward.
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Now, to put this in XCS terms, the expression below shows thepro
edure for updating predi
tions pj in multi-step problems. Thepredi
tion is updated based on the maximum system predi
tion inthe su

eeding state plus any external reward, rimm, in the 
urrentstate. While this pro
edure is based on the Q-learning model,it is new be
ause it applies to predi
tions made by rules, whi
h maybe general in some degree, and not on predi
tions tied to individualstates. Like all reinfor
ement learning pro
edures involvinggeneralization, there are no proofs that the pro
edure results in anoptimal poli
y. But empiri
ally it works well. |Here, qui
kly, is the full XCS diagram, with the multi-step partsadded in. You see max, dis
ount, summation, and timedelay boxes required for the update expression on the last slide. For
omputational reasons, the update is a
tually done retrospe
tively,but the e�e
t is identi
al to that expression. [BREAK℄ |Now I will go qui
kly over some multi-step results. While XCS hasby now been tried in quite a number of environments, the one here,
alled Woods2, is good to talk about be
ause it has a surprisingnumber of regularities that XCS 
aptures in its generalizations.The system, an animat, represented by an asterisk, is pla
edrandomly in an open 
ell of Woods2 and then, under 
ontrol ofXCS, moves until it bumps into food. There are two kinds offood, whi
h look di�erent to the animat, and there are two kinds ofimpenetrable ro
ks, whi
h also look di�erent. The a
tual 
odingof the sensory input ve
tor is shown at the right. The sense ve
tor is24 bits long.

20



The left-hand graph shows performan
e, in average steps to food,versus the number of explore problems so far. An explore problemis a problem in whi
h the animat starts at a random position, movesrandomly, updating and doing the GA as it goes, all as previouslydes
ribed, and �nally arrives at a food. Performan
e measures thenumber of steps to food on interleaved test problems, in whi
hthe animat always 
hooses the best move. You see that performan
erather qui
kly 
omes down to the optimum. The three 
urves arefor three di�erent XCS regimes.The graph on the right shows population size in terms ofma
ro
lassi�ers. The message is that for the dashed regime, thenumber of 
lassi�ers 
ondenses, via generalization, to a value lessthan 100. Sin
e there are 560 distin
t state-a
tion pairs in Woods2,this indi
ates XCS's ability to dete
t and represent regularities inWoods2. |In parti
ular, this slide shows two of the generalizations found. A
-tually this data is from Woods1, whi
h has just 2 bits per obje
t in-stead of 3, but the results are similar. The �rst 
lassi�er mat
hes inall positions marked \3". It says, in e�e
t, I don't 
are about any-thing else, but if there is a blank 
ell to the West, then the a
tion-value of moving North is 504. Sin
e 504 equals 1000 times 
2 in this
ase, the 
lassi�er in e�e
t predi
ts a distan
e to food of threesteps. XCS has dis
overed this truth about the states marked 3 andexpressed it in a single 
lassi�er. Similarly, the other 
lassi�er ex-presses a regularity about all states with a non-blank obje
t to theWest. [BREAK℄ |So far I have des
ribed environments that produ
e binary inputs.What if the input variables are not binary? Suppose they are realor integer valued. It turns out XCS 
an be adapted rather easily tothese 
ases. I will des
ribe one s
heme.
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The 
lassi�er 
ondition is 
hanged from the 1,0,# notation to a
on
atenation of interval predi
ates, as shown. The intervalfor a given variable is denoted by an upper and a lower limit for thatvariable. A mat
h o

urs if every input 
omponent is between the
orresponding limits. The 
lassi�er 
ondition thus 
onsists of 2nnumbers, where n is the number of input variables.Crossover may o

ur either between or within the predi
ates.Mutation 
hanges an allele by a bounded random amount, asshown. Covering produ
es a 
lassi�er with a 
ondition havinginterval predi
ates that mat
h the 
omponents of the 
urrent input.|This non-binary s
heme is very suitable for data mining problemsin whi
h inputs are expressed as strings of integers or reals. Hereyou see the 
lassi
 Wis
onsin Breast Can
er dataset. It is available,along with many others, from UC Irvine. The instan
es look a littleodd at �rst. But ea
h 
onsists of a number identifying that 
lini
al
ase, followed by nine numbers whi
h are attribute values between 1and 10, and �nally the 
ase's out
ome, 2 for benign and 4 formalignant. The meanings of the nine attributes are shown. The 699total 
ases are divided into 458 benign and 241 malignant.XCS, modi�ed for integer inputs, is 
alled XCSI. At the bottomof the slide you see results of a 10-fold 
ross-validation test after teninstan
es of XCSI learned from the dataset. 10-fold 
ross-validationis a standard method of evaluating the performan
e of a learningsystem on a given dataset. It attempts to estimate the performan
eof the system on further examples drawn from the same universe ofexamples.
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Basi
ally, you let XCSI learn from 90% of the dataset and test iton the remaining 10%. Then you have it learn again on another 90%and test it on the remaining 10%. You do this ten times and averagethe test results. As you 
an see, the test results were somewhatvaried, with an average of about 95.5%. This and higher valuesprodu
ed after further work with XCSI are very 
ompetitive withthe best results from other learning systems, su
h as de
ision treesor neural networks. It appears that XCSI-like systems are ex
ellenttools for this kind of problem. |XCSI not only shows high performan
e, but it readily allows humanusers to \see the knowledge" that it has learned and that it uses tomake de
isions. This is be
ause the system 
onsists of dis
rete
lassi�ers and is not a network. Knowledge 
onsists ofgeneralizations that are as broad, while still being a

urate, as thedomain permits. In terms of XCSI, this means evolving thepopulation until maximally general 
lassi�er have been found. Thegraph shows this pro
ess with the Wis
onsin dataset.Look 
arefully at the upper left-hand 
orner. You see theperforman
e 
urve qui
kly rea
h 100%, so most of the graph isspent after performan
e is perfe
t. The rising 
urve is generality|the per
entage of don't-
ares in the population. The falling 
urveshows the population size. The size falls a lot after 100%performan
e is rea
hed and is still falling at two million problems.In
reasingly general 
lassi�ers are still being found. They are stilla

urate, of 
ourse, sin
e performan
e remains at 100%.
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If you examine the population at two million problems you �nd 
las-si�ers like the four shown at the bottom. It is easy to translate thea
tual 
lassi�er notation to English language statements{in fa
t, aprogram does it. These 
lassi�ers were drawn from the highestnumerosity 
lassi�ers, whi
h tend to be those with the best general-izations, as we saw earlier with the multiplexer. In fa
t, there is an-other program that 
ulls the population and �nds a very small sub-set that nonetheless 
overs all dataset instan
es. For the Wis
onsindataset, the subset is 23 
lassi�ers, of whi
h just 10 
over 90% ofthe instan
es. Thus XCSI is a data-miner o�ering both high perfor-man
e and high visibility of knowledge. [BREAK℄ |XCSI extends 
lassi�er syntax to in
lude inputs with integer orreal 
omponents. However, a 
ondition is really a predi
ate|i.e. atruth fun
tion|and the syntax so far 
onsidered is just onesub
lass of possible predi
ates. For example, suppose, as seen inthe slide, you needed a 
ondition that was true for x > y. Then theso-
alled 
onjun
tive syntax of standard 
lassi�ers would beawkward. You would need many 
lassi�ers, not just one, to 
apturethis relation.However, there is no reason you 
an't have 
lassi�ers with anyrequired 
ondition syntax! In fa
t, using 
onditions 
onsisting ofLisp S-expressions of appropriate elementary fun
tions, the system
an evolve an almost unlimited variety of predi
ates. This meansthat essentially any generalization or regularity in the environment
an be represented.

24



Initial experiments have borne out the power of S-expression
onditions. As in geneti
 programming, however, there
an be a \bloat" problem whi
h redu
es the transparen
y of evolved
lassi�ers. More resear
h is needed so that you 
an have bothperforman
e and transparen
y and 
ompletely general syntax.This line of resear
h|toward 
lassi�er systems that 
an eÆ
iently
apture any required generalizations|is very important, in myopinion. [BREAK℄ |Up to now, I've talked about so-
alled \Markov" environments.The way we use the term, an environment is Markov if knowing the
urrent input is suÆ
ient to allow a system to 
hoose the optimala
tion. Standard 
ondition-a
tion 
lassi�ers in XCS basi
allyassume that the environment is Markov.Unfortunately, it turns out that most environments do not have theMarkov property|they are non-Markov. The best a
tion to takeat a given point may depend on both the 
urrent input and somenumber of prior inputs. Here is a simple example of a non-Markovenvironment, due to Andew M
Callum. The arrows indi
ate twostates that look identi
al to a system that 
an only see the adja
ent
ells. Yet the optimal a
tions are di�erent. The two states are saidto be \aliased"|another pie
e of terminology.What additional information does the system need in order to takethe right a
tions in these two states? Well, if it 
ould seebetter|i.e. see a little deeper into the environment|it 
ould tellthe states apart and therefore take di�erent a
tions appropriately.This would be a sensor-based solution. However, let us assume we
an't 
hange the system's hardware. What would we then do?
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The options basi
ally all use some form of temporary memory todisambiguate the two states. The history window option simplyremembers some number of previous inputs. The 
lassi�er
ondition would be extended to, say, attempt to mat
h boththe 
urrent input and the prior one. This would be suÆ
ient in thisexample to distinguish the two states. The initial non-Markovproblem would in e�e
t be 
onverted to a Markov one, if you regardthe present and prior inputs as forming the \
urrent input".You 
an see, however, that history window approa
hesare ineÆ
ient unless you know pre
isely how mu
h window length isrequired. For if the window is too long, the system has to remembermore than ne
essary, and the number of required 
lassi�ers growsrapidly. On the other hand, if the window length is too small, theproblem will remain unsolved, though performan
e may improvesomewhat.Another approa
h|a
tually the one used by M
Callum|is toremember all past states and statisti
ally look for 
orrelationsbetween them and the right move. That is, try to identify events inthe past that 
an tell you what move to make now. This method 
anbe more eÆ
ient than the history window, but it 
an still require anexplosive amount of temporary memory on whi
h to base suÆ
ientstatisti
s.Finally, the 
on
ept that has been tried with XCSis|appropriately|more Darwinian. It is to evolve internalsymbols, or signals, that the system 
an use to tell the aliased statesapart. This amounts to the 
reation of adaptive internal state. It isa simpli�ed version of Holland's original message list 
on
ept. |
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Consider a 
lassi�er whose 
ondition 
on
atenates anenvironmental 
ondition, as usual, with an internal 
ondition. Andlet the a
tion be a 
ombination of an external a
tion and an internala
tion. Also, let the system have an internal register R. Theinternal a
tion modi�es R. For the 
lassi�er to mat
h, itsenvironmental 
ondition must mat
h the input, and its internal
ondition must mat
h R. The system's internal state 
onsists of the
urrent 
ontents of R.Now, 
onsider a non-Markov problem like M
Callum's maze. One
an imagine, at least, that R might get set to, say, 0 when thesystem enters the left-hand aliased state. And, 
onveniently, that Rwould get set to 1 when the system enters the right-hand state.If this happened, a 
lassi�er mat
hing the input, looking for 0 in R,and advo
ating the a
tion, \move south-east", would reliablyre
eive a high payo�. Similarly, a di�erent 
lassi�er that mat
hedthe input, looked for a 1 in R, and advo
ated moving south-westwould also be reliably reinfor
ed. These two 
lassi�ers, plus thoserequired to set the register properly, would be suÆ
ient to disam-biguate the aliased states.The hypothesis is that, given this addition to 
lassi�er syntax, andwithout keeping histories, the system will simply evolve exa
tly the
lassi�ers needed! It seems that this is indeed the 
ase, or at leastthat it is true enough to merit 
onsiderable further investigation. Inthe next few slides I will show several non-Markov environments inwhi
h high performan
e has been rea
hed by this method. |
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Here is Woods101 again. The graph shows steps to goal|i.e.performan
e|in two regimes, learning and test. During learning,up to 6500 problems, the system alternates between exploreproblems and exploit problems. Then, at 6500 problems, theregime is swit
hed to test and all problems are pure exploit. Noti
ethat performan
e goes to optimal or very nearly so. The graphaverages 10 runs. When the populations for individual runs areexamined, 
lassi�ers that set and read the register appropriatelyare indeed found.In both regimes, the graph plots performan
e on exploit problems.Interestingly, it is not until all exploration is turned o� that theexploit performan
e goes to optimal. Before that it is not far fromoptimal. But the presen
e of explore problems|whi
h explore
hanges in the register settings|is enough to mess up theintervening exploit problems somewhat.I should mention that exploration during learning 
onsisted onlyof trying di�erent external a
tions randomly. Internal a
tions weresele
ted deterministi
ally. This meant they were only explored bythe a
tion of the geneti
 algorithm. To get the system to solvenon-Markov environments, it was ne
essary to restri
t explorationof internal a
tions in this way. The impli
ations are interesting, butI have to leave them out be
ause of time. |
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Woods101.5 is more 
ompli
ated. It has four aliased states, inwhi
h the input forms the 
ross pattern at right. With four states,one would expe
t a 2-bit internal register to be suÆ
ient. Theresults for that 
ase are shown in the upper 
urve. When the testphase is swit
hed on, performan
e improves and 
attens, but thelevel is not optimal. However, when the register size is in
reased to4 bits, optimal performan
e is rea
hed, as shown. Two bits maynot work be
ause the 
oding is too \tight". I.e., the right 
lassi�ershave to be found for four separate lo
ales. On
e they are found forthree, the last one's 
oding must, independently, be pi
ked justright or it will be 
onfused with one of the other pla
es. However, with4 bits of register, there are 16 possible 
odings, and �nding a 
onsistentset would be easier. |Finally, Woods102 is a maze with two separate 4-member groupsof aliased states, as shown. So a 4-bit register would theoreti
ally besuÆ
ient. Again, however, optimal performan
e was only rea
hedwhen the register size was in
reased to 8 bits. Even so, this isa pretty tri
ky non-Markov maze, and getting a solution still seemsrather amazing. Adaptive internal state appears to work, andfurther investigation is important, in my opinion. [BREAK℄ |Learning 
lassi�er systems have a number of ex
iting futuredire
tions that I haven't dis
ussed. I will brie
y mention six.First, it appears possible to generalize the 
lassi�er ar
hite
ture inan interesting way that 
ould give more powerful generalizations insome problems. It would also allow for 
ontinuous a
tions instead ofdis
rete ones. Noti
e that in the 
lassi�er shown, the predi
tion isnot a �xed s
alar, but a fun
tion of the input and the a
tion. This isthe essential notion of a generalized 
lassi�er.
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Even with traditional 
lassi�ers, you 
an think of the populationas forming a mapping from inputs and a
tions to predi
tions. Withtraditional 
lassi�ers having s
alar predi
tions, the mapping 
annever be better than pie
ewise 
onstant. But the environment itselfmay well 
all for a smoother representation. That is possible withgeneralized 
lassi�ers if, for instan
e, p(x; a) is a linear fun
tion.This results in the evolution of a pie
ewise-linear approximation ofthe payo� fun
tion, more a

urate than any pie
ewise-
onstant one.How 
an you get 
ontinuous a
tions from this? It's a bit involved,but the essen
e is, given a mat
h set, maximize ea
h 
lassi�er'spayo� with respe
t to a. Then pi
k the best maximizing a
tion.Any a
tion value within the a
tion restri
tion r(a) is possible.This frees a system of generalized 
lassi�ers from the 
onstraint of a�nite set of dis
rete a
tions. It works be
ause the payo� is a
ontinuous fun
tion.The next dire
tion is that of anti
ipatory 
lassi�er systems. Herethe big di�eren
e is that the system predi
ts, not a payo� (althoughit might do that too), but the next state. Why is this interesting?Be
ause if your 
lassi�ers 
an predi
t next states, it should bepossible to plan, i.e., to follow out a sequen
e of a
tions to seethe 
onsequen
es without a
tually taking those a
tions. There is bynow quite a bit of good work on anti
ipatory 
lassi�er systems. Twomain variants exist. In one, the entire next state is predi
tedby ea
h 
lassi�er. I.e., the predi
tion is a ve
tor predi
ting the nextinput (if that a
tion is taken). In the other variant, ea
h 
omponentof the next state is predi
ted by a separate 
lassi�er system, and the re-sults 
ombined. This would seem less eÆ
ient, but in fa
t the single-
omponent predi
tor may have higher generalizing power so the indi-vidual 
lassi�er systems are smaller.
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A third dire
tion is 
ontinuation of the non-Markov resear
h so asto 
reate a hierar
hi
al 
lassi�er system. In su
h a system somea
tions would be elementary ones, but others would be 
alls to se-quen
es of 
lassi�ers that would perform sequen
es of a
tions. Thiswould implement the idea of behavioral hierar
hies in a 
lassi�ersystem. Obviously, most a
tual behavior is in fa
t hierar
hi
al. Allof this appears to be within the s
ope of 
lassi�er systems. Controlwould be along the lines of the register idea. The register settingwould symbolize an intention, or the name of a subroutine orbehavioral module. It is easy to imagine very sophisti
ated systemslike this. With enough work, we 
ould make them a reality.[BREAK℄ |Yet another dire
tion is resear
h on the fundamental theory ofXCS. This has been started in re
ent papers, in
luding some in this
onferen
e. We now understand mu
h better how a

urate
lassi�ers are evolved and why they tend to be maximally general.This work is leading toward de�nite ideas about the learning
omplexity of XCS. The basi
 hypothesis is, as dis
ussed earlier,that XCS learns in times that depend on the 
omplexity of the prob-lem itself|the 
omplexity of the target fun
tion. The times do notdepend on the size of the problem spa
e, as they do for many well-known learning paradigms. Con�rming this hypothesis is very im-portant to the future of 
lassi�er systems, in my opinion.The �fth dire
tion is toward basi
 nuts and bolts improvements inthe internal me
hanisms of XCS. It appears that the a

ura
ymeasure 
an be improved. Tournament sele
tion and uniform
rossover appear to be good ideas, for justi�able reasons. Problemsfor XCS on long paths need attention, and some ideas have beenproposed.
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Finally, it is important to 
ontinue resear
h aimed at 
omparinga

ura
y-based systems su
h as XCS with the traditionalstrength-based 
lassi�er systems. Obviously I have tilted towardthe former in this presentation. But there is good work being doneon the virtues of strength-based systems. |Now, let me make this summary, whi
h suggests some keydi�eren
es between XCS and other reinfor
ement learning systems.The big di�eren
e is that XCS is rule-based, not network-based orradial-basis-fun
tion based. Under that heading it seems importantthat XCS's stru
ture, the 
lassi�ers, is 
reated as needed; thisdi�erentiates it from things like ba
k-prop networks in whi
hsuÆ
ient stru
ture must be present in advan
e. In things like radialbasis fun
tion and nearest neighbor approa
hes, stru
ture 
anbe 
reated as needed, but that stru
ture tends to be �xed and is notfurther adapted, as are XCS's 
lassi�ers.Se
ond, from 
omparisons|for instan
e on the multiplexer|thelearning speed of XCS is at least as fast as for network approa
hes. Ithink this is be
ause a 
lassi�er is already a non-linear stru
ture, sothat non-linear problems are more qui
kly adapted to.Third, from the multiplexer results, it is likely that the learning
omplexity is signi�
antly better than for networks. Many kinds ofnetworks are known not to s
ale up well. They grow with theproblem spa
e, not the 
omplexity of the problem fun
tion. Thesame is true of radial basis fun
tion approa
hes.Fourth, 
lassi�ers have this neat ability to keep lots of statisti
sabout themselves, su
h as their error, et
. It is very awkward to dothis with networks|you end up needing a separate network forea
h type of statisti
! I think that as we explore, we will �nd manymore statisti
s that are useful in 
lassi�er systems.
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Fifth, sin
e 
lassi�ers are rules, the knowledge they embody isreasonably \transparent". In 
ontrast to systems like networkswhere knowledge is distributed over the elements, knowledge inXCS is represented relatively 
learly and 
ompa
tly. This ability to\see the knowledge" turns out very important as XCS is appliedto data inferen
e and other areas where understandability to humanusers is vital.Sixth, the fa
t that 
lassi�ers are rules, and 
an be manipulated likerules, may turn out very important when we want our systems to dothings like reason.Finally, XCS has a powerful generalization 
apability. This isprobably the deepest aspe
t of XCS. It permits the s
ale-up andtransparen
y just noted. Can it be extended to any problemdomain? I think so, if the 
lassi�er 
ondition syntax is 
hosen tore
e
t the stru
ture of the domain.Thanks for this opportunity to speak to you.
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