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Abstract

A temporary memory for recently experienced
examples was coupled with BOOLE, a
previously developed one-step classifier system
that learns incrementally. Regimes were found in
which the performance of the combination was
superior to that of BOOLE alone, whether the
task was to maximize average performance with
respect to number of external trials, or the sum of
external plus internal trials. The results suggest
that storing and periodically reviewing a limited
number of recent examples may enhance learning
rates in otherwise strictly incremental adaptive
systems.

1. Introduction

Many artificial autonomous learning systems,
whether based on networks or classifier systems,
are incremental--that is, they may learn
something from each trial, example, or
experience when it occurs, but they do not store
raw experience for possible later study and
processing. On the other hand, a number of
important techniques from the AI domain of
concept learning [9-10] collect and store large
numbers of examples before processing them as
a batch to derive the concepts. These latter
techniques are distinctly non-incremental and
differ from those of the incremental systems, but
they can often learn faster in terms of the total
number of examples that must be processed.
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Despite this, incremental techniques are usually
regarded as more realistic for autonomous
adaptive systems, which may have limited leisure
for off-line processing and whose environments
are often noisy and non-stationary, We
wondered, however, whether there might be
ways in which small amounts of temporary
memory for recent examples could be beneficial
to incremental systems. Higher animals appear to
have temporary memory, and people sometimes
review and rehearse recent situations which had,
e.g., unexpected outcomes. In this paper we
present some very simple experiments in which
temporary memory added to an existing
incremental leaming system gave performance
superior to that of the incremental system alone.
In our view, these results may be related to the
psychological phenomenon of rehearsal [4].

In the next section we describe the multiplexer
problem--a Boolean concept learning domain in
which the experiments were carried out. In
Section 3 we describe the incremental learning
system BOOLE to which we attached the
temporary example memory. In Section 4 we
describe our first procedure for using memory
with BOOLE, and show that this procedure
greatly improves BOOLE's performance when
one measures only the number of presentations
of examples from an external source. In Section
5 we describe a second procedure and show that
this improves BOOLE's performance versus the
sum of the number of external and internal
presentations. Finally in Section 6 we present
our conclusions.
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2. The Multiplexer Problem

Our problem domain was one in which randomly
generated bit strings of length L were presented
to the system and it had to leamn to reply with the
correct value, 1 or 0, of a Boolean function F of
the bits of the string. The function F used was the
so-called Boolean multiplexer in which a subset
of the bits address one of the remaining bits, the
value of which gives the value of F for that
string. For example, in the 6-bit multiplexer,
F(011011) = 0. The first two bits are the
addressing bits. They form the number "1" in
binary, thus addressing the second of the
remaining four "data" bits, i.e., data bit 1, whose
value is 0. Similarly, F(110001) = 1, where the
last bit, data bit 3, is the one addressed by the
first two bits. A larger problem, the 11-
multiplexer, can be constructed the same way,
except that in it the first three bits address the
remaining eight bits of an 11-bit string.

The multiplexers form a family of relatively
intricate Boolean functions that have served as
task domains and have permitted comparisons in
studies of several leamming systems, including
connectionist networks, classifier systems, and
decision trees [1-3,10-11]. We chose the
multiplexers here especially because they formed
the task domain for earlier research with the
incremental classifier system BOOLE to which,
in this work, we coupled temporary memory.
The multiplexer problem's high level of difficulty
makes it a good stand-in for more realistic
problems that may also require the use of
memory.

3. BOOLE

The program BOOLE is a specialization of the
general classifier system model [8] to one-step,
or "stimulus-response”, problems in which the
system simply sees an environmental input,
produces an output, and collects a reinforcement
or payoff from the environment. The basic
system is presented in [11], to which the reader is
referred for details. The system was extended in
[3], which showed that its performance could be
significantly improved by large increases in the
intensity of reinforcement; because of this new
reinforcement scheme, the modified system was
called NEWBOOLE. For the present paper,
however, we used BOOLE in its original guise,
taking, for the 6-multiplexer experiments, exactly
the parameter settings of Figure 1 of [11], and for
the 1l-multiplexer experiments, the parameter

settings of the dotted curve of Figure 4 of that
paper.

Very briefly, BOOLE contains an initially
random population (a set) of condition-action
rules called classifiers, in which the condition
part of the classifier (a string of length L formed
from 1, 0, and the "don't care" symbol #) may
match an input string, and the action says in what
way (1 or 0) that classifier would have the
system respond. On a particular trial, the input
string will be matched by a subset [M] of the
population: in general, some matchers advocate
the response 1, the rest advocate 0. The system's
decision occurs as follows.

Associated with each classifier is a scalar value
called strength which is adjusted by the system's
reinforcement algorithm and estimates that
classifier's worth to the system. Given, as above,
a particular input string and the resulting set [M]
of matching classifiers, the system decides its
output by selecting a single classifier from [M]
using a probability distribution over the strengths
of the classifiers in that set. (That is, the
probability of being selected equals a classifier's
strength divided by the sum of the strengths of all
classifiers in [M]--a sort of "roulette wheel" but
with wheel sectors sized according to strength.)
The system output is then simply the value of the
action (1 or 0) of the selected classifier.

For the experiments in this paper, BOOLE was
reinforced according to the following regime. Let
the action set [A] consist of the classifiers in [M]
that advocated the selected output. Then, if the
output was correct, the strengths of classifiers in
[A] were incremented by the quantity 1000
divided by the number of members of [A]. If the
output was wrong, the strengths of [A] were
reduced by 80 percent of their current values. In
addition, in both cases, and prior to the above
adjustments, the strengths of [A] were reduced
by 10 percent (see [11] for further details). The
effect of reinforcement is to increase the
likelihood that previously correct classifiers
control future decisions.

Finally, BOOLE employs a periodic genetic
algorithm (GA) step (see [6] and [7] for
introductions to genetic algorithms) in which new
classifiers are produced by selecting a pair of
high-strength classifiers, copying them to form
offspring, and then recombining or mutating the
offspring strings before inserting them into the
population (two low-strength classifiers are
deleted).
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1. Run BOOLE as usual on an external example.

2. Add this ordered triple to the head of the *memory-examples™* list: <100 stimulus response>, where
100 is the example's initial weight, stimulus is the example's bit string, and response is the

correct response to that stimulus.

3. Sort *memory-examples* by decreasing order of the weight of its members.

4. 1f the length of *memory-examples* is greater than *memory-size*, remove the last member of

*memory-examples*.

5. If the length of *memory-examples* is less than *memory-size*, go to step 1. Otherwise, execute step

6 and then go to step 1.

6. Memory Cycle: Perform a-d *number-of-examples-to-run* times:
a. Select an example randomly from *memory-examples*, where each example's chance of being

selected is proportional to its weight.

b. Present the example to BOOLE and reward BOOLE using the example's answer as the correct

response.

c. Decrement the weight of the example by 1.

d. Run BOOLE's genetic algorithm step.

Figure 1: Temporary memory regime for reducing the number of external presentations.

The rate at which the GA step occurs is keyed
stochastically to the rate of input trials (e.g., one
new offspring for every two input trials, on
average.) Through the GA, the system searches
the space of potential classifiers. In general,
BOOLE evolves a population consisting
primarily of classifiers whose conditions map
straightforwardly to the terms (conjuncts) of the
disjunctive normal form of the function being
learned [11].

4. Storing Examples in Memory

In the results reported here we implemented the
temporary memory as a self-contained adjunct to
BOOLE, making no attempt to integrate the two
{a point discussed further in [5]). We represented
the memory simply as a fixed-length list of
examples.

Our intuition in adding memory was that by
maintaining a list  of examples whose
classification is known and by presenting those
examples to BOOLE between presentations of
external examples, the performance of BOOLE

with respect to the number of external
presentations could be substantially increased.
The components of our memory module were as
follows: '

*memory-examples*, a list of triples of the form
<weight stimulus response>. This list contains
the temporary memory. The three elements
associated with each example are: a weight
measuring the example's prominence in memory;
a copy of the stimulus from an extemally-
presented example; and a copy of the correct
response for that stimulus.

*memory-size¥, a variable determining the
maximum length of *memory-examples*. The
value of this variable was held constant at 40 in
the experiments reported in the next section, and
was varied from experiment to experiment in the
experiments reported in this section.

*number-of-examples-to-run*, a variable set to
the desired number of examples from memory to
present to BOOLE after each presentation of an
external example. This value varied from
experiment to experiment.
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MEMORY TRIALS PER MEMORY CYCLE
SIZE 1 4 10 30 50 100
1 external 598 325 272 624 *
total 1195 1620 2978 19302
4 external 661 384 290 582 **
total 1318 1902 3150 17910
10 external 645 388 338 604 1446
total 1280 1902 3618 18429 72922
30 external 672 392 325 314 315 510
total 1314 1840 3279 8839 14586 48049
50 external 592 417 318 267 235 257
total 1134 1885 3001 6767 9506 20935
100 external 647 416 342 283 235 222
total 1194 1679 2763 5761 6998 12389

Table 1: Trials to 90% performance for BOOLE with memory on the 6 multiplexer problem. Results are
averaged over 24 runs. Without memory BOOLE requires ~1088 external presentations to achieve a
performance level of 90%. * indicates runs that were halted at 3930 external, 197,000 internal
presentations with performance level < 80%. ** indicates runs that were halted with performance < 0%

at 200,000 total presentations.

Our first algorithm for employing memory in the
context of a run of BOOLE on a multiplexer
problem uses these variables, and is detailed in
figure 1.

The algorithm described in Figure 1 is a simple
procedure for storing examples after they have
been presented externally, and for running them
between external presentations. We used a
roulette wheel technique for selecting examples
rather than cycling through the examples in order
because  cycling  produced  diminished
performance. We hypothesize that this occurred
because examples that are similar and that are
grouped together may cause BOOLE to focus too
much on them while deleting classifiers that are
good for other classes of examples. A single
occurrence of such a cluster of examples may not
cause BOOLE to suffer, but repeated
presentation of such clusters does. Use of
probabilistic example choice reduces this effect.
Note that step 6d involves the probabilistic
running of BOOLE's GA step. A classifier is
produced in this step with the same probability
that it would be produced after the presentation
of an external example.

The size of the memory and the number of
examples to run after each external presentation
are variables that had interesting effects on the
performance of the system. Table I shows the
number of external trials and number of total
trials (external plus internal trials) for runs of
BOOLE on the 6é-multiplexer problem, with the
size of memory held constant in each row and the

number of internal presentations held constant in
each column. The value in each cell of the table
is based on the average of 24 runs, where the run
was terminated when the average performance of
BOOLE over the last 50 external examples was
greater than or equal to 90 percent correct, or
when the number of total presentations exceeded
our limit. Note that the average number of
external trials required by BOOLE to achieve
this level of performance without memory was
1088.

There are several interesting features of the data
in Table 1. The first is that the row showing
results with memory size held constant at 1
displays significant performance enhancements.
But this column represents the effect of re-
presenting the most recent external example
*number-of-examples-to-run* times. In the cell
for memory size 1 and 1 trial, we see that
BOOLE achieves 90% performance in nearly
half the number of trials required without
memory. But this is very little memory at all. In
particular, it only requires "remembering” an
example until the next external example 1s
presented. Repeating the example just given
doubles BOOLE's speed. Repeating it four or ten
times makes BOOLE three times as fast.
Repeating it thirty times is worse than repeating
it 10 times.

The results for memory size 1 with 10 trials are
comparable to those gained with NEWBOOLE.
This fact leads us to hypothesize that the gains
derived from NEWBOOLE's strategy of greatly
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MEMORY TRIALS PER MEMORY CYCLE
SIZE 1 4 10 30 50 100
1 external 4557 3242 3966 *
total 9113 16206 43618
4 external 5143 2958 3986 *
total 10282 14772 43808
10 external 5040 3684 4228 *
total 10070 18379 46407
30 external 4940 3328 3306 5580 *
total 9850 16519 36063 172080
50 external 4203 2619 2680 *x **
total 8356 12896 28984
100 external 4108 2721 2220 1191 1052 **
total 8116 13204 23416 33930 48661

TABLE 2: Trials to 90% performance for BOOLE with memory on the 11 multiplexer problem. Results
are averaged over 24 runs. Without memory BOOLE requires ~7598 external presentations to achieve a
performance level of 90%. *  indicates runs that were halted at 30,000 external, 871,000 total
presentations with performance level < 77%. ** indicates runs that were halted with performance < 90%

at 100,000 total presentations.

increasing negative reinforcement when an
example is gotten wrong can also be achieved by
repeating the example multiple times, allowing
BOOLE to get the example wrong if there is a
significant chance of doing so.

Note that, counter to what one might expect, the
results do not get better as one goes down each
column. We believe that the beneficial effects of
selecting mixed examples from a larger memory
are offset in the 6-multiplexer data by the fact
that runs terminate quite quickly. A run with
memory size 50 does not begin to use memory
until 50 examples are in memory. This means
that BOOLE with a smaller memory begins to
use memory sooner, and is therefore likely to
terminate more quickly.

The results do not get uniformly better as the
number of trials increases in rows with small
memory sizes. We hypothesize that the use of a
great many trials from a small memory degrades
BOOLE's performance because the examples
being seen by BOOLE are not representative of
the complete distribution of examples, and
BOOLE focuses too much on the examples
currently in memory when the ratio of memory
trials to memory size is large. Once memory is
size¢ 50 and up, increasing the number of trials
appears to increase performance.

Table 2 shows the algorithm's performance on
the 11-multiplexer problem. Runs were executed
a described above, except that the window over
which we measured average performance was

increased from 50 to 100 external presentations.
Note that the average number of trials required
by BOOLE without memory on this problem was
7598. The observations we have just made apply
to these results as well.

These data are not, in general, surprising. We
conclude that if one uses the traditional measure
of classifier system performance for problems
like  the  multiplexer  problem--average
performance  with  respect to  external
presentations--then one can significantly increase
BOOLE's speed in attaining high performance
levels by storing examples in memory and by
executing cycles of internal example
presentation,  reinforcement, and genetic
algorithm triggering after each presentation of an
example from the environment. The use of
memory in this way could be quite useful to
natural organisms, in situations in which the
acquisition of external example data is costly,
compared to the use of such data under a
simulated regime. Of course, a great deal of
internal processing is required in order to
produce the greatest improvements in
performance. In the next section we discuss
techniques for minimizing the processing of
examples from internal or external sources.
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5. Estimating the Value of Memory
Examples

It is not always the case that the processing of
examples from memory is inexpensive compared
to the processing of examples from the
environment. Perhaps there is little time in which
to process examples internally. Perhaps it is just
as costly to process such an example as it is to
acquire an example from the environment. Can
memory be of assistance in such cases? In
particular, if the cost of executing an example
from memory equals the cost of executing an
example from the environment, can memory be
of assistance to BOOLE?

It is clear from the data presented in Tables 1 and
2 that the algorithm in Figure 1 will degrade
BOOLE's performance when memory processing
is as expensive as processing examples from the
environment, since in every cell of Tables 1 and
2 the total number of examples processed by
BOOLE exceeds the number processed by
BOOLE without memory. In this section we
describe two memory-based algorithms that
decrease the total number of trials required by
BOOLE. The algorithm described in Figure 1
adjusted the weight of examples based on the
number of times they had been presented to
BOOLE. The algorithms introduced here adjust
the weight of the examples in memory based on
the relative strengths of the classifiers matching
the example's stimulus. These two algorithms,
BALANCE and WRONG, are calculated in the
following way. Let r denote the total strength of
the correct classifiers matching an example's
stimulus, and let w denote the total strength of
the incorrect classifiers matching the example's
stimulus. Then the weight of an example under
the BALANCE regime is:

1-(M

(riw) ) while the weight of an example

. W
under the WRONG regime is r+w)

BALANCE, the first algorithm described above,
sets the weight of an example in memory to the
degree to which the strengths of the correct and
incorrect classifiers for that example are equal.
The intuition here is that an example is valuable
to BOOLE if BOOLE has something to say about
it, if the things BOOLE says are about equally
strong, and if the things BOOLE says conflict.
Running such an example will help settle the
conflict for BOOLE, either by causing the correct

classifiers to receive additional reinforcement, or
by causing the incorrect ones to lose strength,

WRONG, the second algorithm described above,
sets the weight of an example in memory to the
ratio of the total strength of the classifiers that
matched it and were incorrect to the sum of the
strengths of all classifiers that matched it. The
intuition behind this algorithm is that an example
is valuable to BOOLE if BOOLE gets it wrong—
the more wrong, the more valuable. Examples
matched only by classifiers that classify them
incorrectly get the highest weight.

We discovered early on that the use of examples
under the BALANCE or WRONG regimes must
be sparing at best if one is to improve BOOLE's
performance on total presentations, and we
modified our algorithm for running memory
accordingly. The modified algorithm is given in
Figure 3, where the variable *memory-ratio* is
used in place of the variable *number-of:
examples-to-run*.

The difference between this algorithm and the
previous one, aside from the replacement of
techniques for computing example weight, lies in
the way the algorithm selects memory examples.
We initially expected that a roulette wheel
approach to example selection would be best.
However, while selection based on weight
worked well early in a run, late in a run a single
example sometimes dominated in memory, and is
then presented every time. This seemed to cause
BOOLE to concentrate too much on a single
example, and degraded performance. The regime
described in Figure 3 uses weight to decide
which examples to maintain in memory, but not
to decide which examples to ryn,

Tables 3 and 4 show the results of using this
algorithm on the 6-multiplexer and the
11-multiplexer, based on variation in the value of
the *memory-ratio* parameter. The data show
that for all the values of *memory-ratio* less
than 1.0 for BALANCE, and for all the values
for WRONG, the performance of BOOLE is
improved, if one's criterion is based on the
number of examples presented to BOOLE either
from the environment or from memory. The
optimal values of *memory-ratio* lie near (.25,
suggesting that if one wishes to reduce total
trials, one should maintain a list of hard
examples in memory and process one of them for
each four examples processed from the
environment.
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1. Run BOOLE as usual on an external example.
2. Compute the weight of the external example using BALANCE or WRONG.

3. Place at the head of the *memory-examples* list the ordered triple consisting of the external example's
weight, stimulus pattern, and correct response.

4. Remove from the *memory-examples* list any example with weight less than or equal to
.00000000000001.

5. Sort *memory-examples* by decreasing order of the weight of its members.

6. If the length of *memory-examples* is greater than *memory-length*, remove the last member of
*memory-examples*.

7.1f fewer than 10 examples have been presented to BOOLE, go to step 1. Otherwise, run memory
examples as described in step 8 and go to step 1.

8. Where the length of *memory-examples* is N, cycle through each example on the *memory-examples*
list using a probability level = *memory-ratio* / N.
Carry out the following procedure on each example:
A. If a random test of the probability level fails, do nothing with the example.
B. Otherwise,

a. Present the example to BOOLE and reward BOOLE using the example's
answer as the correct response.

b. Replace the example's weight with the weight computed by BALANCE or
WRONG.

¢. Run BOOLE's genetic algorithm procedure.

Figure 3. Temporary memory regime for reducing the total number of external and internal presentations.

METHOD *MEMORY-RATIO*
1 25 5 1.0
BALANCE 980 913 945 1131
WRONG 998 959 1025 1041

TABLE 3: Total trials to 90% performance for BOOLE with memory on the 6 multiplexer, averaged over
22 runs. Without memory BOOLE requires ~1088 external presentations to achieve 90% performance.

METHOD *MEMORY-RATIO*
1 25 5 1.0
BALANCE 7502 6703 6854 7877
WRONG 7337 6985 7659 6680

TABLE 4. Total trials to 90% performance for BOOLE with memory on the 11 multiplexer, averaged over
21 runs. Without memory BOOLE requires ~7598 external presentations to achieve 90% performance.
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A point of interest to us in future work is
understanding the effects of BALANCE and
WRONG on adaptive systems. These two
regimes maintain quite different lists of
examples--in fact, once the use of memory has
gotten under way, systems using BALANCE and
WRONG on the 11-multiplexer problem contain
non-intersecting memory lists. Investigation of
the conditions under which these regimes
perform poorly and well is one of our future
goals.

6. Conclusions

We have shown that the idea of adding
rudimentary memory capabilities to a stimulus-
response classifier system can improve its
performance under either of two natural
performance measurements. The most dramatic
improvements are obtained, as one might expect,
when the system is not penalized for processing
examples in memory. However, clear
improvements may be obtained as well when the
use of memory incurs a penalty equal to that for
processing examples originating in the system's
environment.

The sort of memory we have introduced here--a
simple fixed-length list of examples that have
been experienced--is not the only sort of memory
one can envision combining with adaptive
systems, and other types should be explored. We
believe that investigation of those other types,
and continued investigation of the memory
regimes detailed here, is likely to produce
interesting results.
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