
Hindawi Publishing Corporation
Journal of Artificial Evolution and Applications
Volume 2009, Article ID 736398, 25 pages
doi:10.1155/2009/736398

Review Article

Learning Classifier Systems:
A Complete Introduction, Review, and Roadmap

Ryan J. Urbanowicz and Jason H. Moore

Department of Genetics, Dartmouth College, Hanover, NH 03755, USA

Correspondence should be addressed to Jason H. Moore, jason.h.moore@dartmouth.edu

Received 24 November 2008; Accepted 23 June 2009

Recommended by Marylyn Ritchie

If complexity is your problem, learning classifier systems (LCSs) may offer a solution. These rule-based, multifaceted, machine
learning algorithms originated and have evolved in the cradle of evolutionary biology and artificial intelligence. The LCS concept
has inspired a multitude of implementations adapted to manage the different problem domains to which it has been applied
(e.g., autonomous robotics, classification, knowledge discovery, and modeling). One field that is taking increasing notice of
LCS is epidemiology, where there is a growing demand for powerful tools to facilitate etiological discovery. Unfortunately,
implementation optimization is nontrivial, and a cohesive encapsulation of implementation alternatives seems to be lacking. This
paper aims to provide an accessible foundation for researchers of different backgrounds interested in selecting or developing
their own LCS. Included is a simple yet thorough introduction, a historical review, and a roadmap of algorithmic components,
emphasizing differences in alternative LCS implementations.

Copyright © 2009 R. J. Urbanowicz and J. H. Moore. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

As our understanding of the world advances, the paradigm
of a universe reigned by linear models, and simple “cause
and effect” etiologies becomes staggeringly insufficient. Our
world and the innumerable systems that it encompasses
are each composed of interconnected parts that as a whole
exhibit one or more properties not obvious from the proper-
ties of the individual parts. These “complex systems” feature
a large number of interacting components, whose collective
activity is nonlinear. Complex systems become “adaptive”
when they possess the capacity to change and learn from
experience. Immune systems, central nervous systems, stock
markets, ecosystems, weather, and traffic are all examples
of complex adaptive systems (CASs). In the book “Hidden
Order,” John Holland specifically gives the example of New
York City, as a system that exists in a steady state of operation,
made up of “buyers, sellers, administrations, streets, bridges,
and buildings [that] are always changing. Like the standing
wave in front of a rock in a fast-moving stream, a city
is a pattern in time.” Holland conceptually outlines the
generalized problem domain of a CAS and characterizes

how this type of system might be represented by rule-based
“agents” [1]. The term “agent” is used to generally refer to a
single component of a given system. Examples might include
antibodies in an immune system, or water molecules in a
weather system. Overall, CASs may be viewed as a group
of interacting agents, where each agent’s behavior can be
represented by a collection of simple rules. Rules are typically
represented in the form of “IF condition THEN action”. In the
immune system, antibody “agents” possess hyper-variable
regions in their protein structure, which allows them to
bind to specific targets known as antigens. In this way the
immune system has a way to identify and neutralize foreign
objects such as bacteria and viruses. Using this same example,
the behavior of a specific antibody might be represented by
rules such as “IF the antigen-binding site fits the antigen
THEN bind to the antigen”, or “IF the antigen-binding site
does not fit the antigen THEN do not bind to the antigen”.
Rules such as these use information from the system’s
environment to make decisions. Knowing the problem
domain and having a basic framework for representing that
domain, we can begin to describe the LCS algorithm. At
the heart of this algorithm is the idea that, when dealing

2 Journal of Artificial Evolution and Applications

Biology Computer science

Artificial intelligence

Machine learning
Evolutionary

biology

Evolutionary
 computation

Reinforcement
learning

Supervised
learning

Evolutionary
algorithm

Learning classifier systemGenetic algorithm

Figure 1: Field tree—foundations of the LCS community.

with complex systems, seeking a single best-fit model is
less desirable than evolving a population of rules which
collectively model that system. LCSs represent the merger
of different fields of research encapsulated within a single
algorithm. Figure 1 illustrates the field hierarchy that founds
the LCS algorithmic concept. Now that the basic LCS concept
and its origin have been introduced, the remaining sections
are organized as follows: Section 2 summarizes the founding
components of the algorithm, Section 3 discusses the major
mechanisms, Section 4 provides an algorithmic walk through
of a very simple LCS, Section 5 provides a historical review,
Section 6 discusses general problem domains to which LCS
has been applied, Section 7 identifies biological applications
of the LCS algorithm, Section 8 briefly introduces some
general optimization theory, Section 9 outlines a roadmap
of algorithmic components, Section 10 gives some overall
perspective on future directions for the field, and Section 11
identifies some helpful resources.

2. A General LCS

Let us begin with a conceptual tour of LCS anatomy. As
previously mentioned, the core of an LCS is a set of rules
(called the population of classifiers). The desired outcome
of running the LCS algorithm is for those classifiers to col-
lectively model an intelligent decision maker. To obtain that
end, “LCSs employ two biological metaphors; evolution and
learning... [where] learning guides the evolutionary component
to move toward a better set of rules.” [2] These concepts are
respectively embodied by two mechanisms: the genetic algo-
rithm, and a learning mechanism appropriate for the given
problem (see Sections 3.1 and 3.2 resp.). Both mechanisms
rely on what is referred to as the “environment” of the system.
Within the context of LCS literature, the environment is
simply the source of input data for the LCS algorithm. The
information being passed from the environment is limited
only by the scope of the problem being examined. Consider
the scenario of a robot being asked to navigate a maze
environment. Here, the input data may be in the form of
sensory information roughly describing the robot’s physical

environment [3]. Alternatively, for a classification problem
such as medical diagnosis, the environment is a training set
of preclassified subjects (i.e., cases and controls) described
by multiple attributes (e.g., genetic polymorphisms). By
interacting with the environment, LCSs receive feedback in
the form of numerical reward which drives the learning
process. While many different implementations of LCS
algorithms exist, Holmes et al. [4] outline four practically
universal components: (1) a finite population of classifiers
that represents the current knowledge of the system, (2)
a performance component, which regulates interaction
between the environment and classifier population, (3) a
reinforcement component (also called credit assignment
component [5]), which distributes the reward received from
the environment to the classifiers, and (4) a discovery
component which uses different operators to discover better
rules and improve existing ones. Together, these components
represent a basic framework upon which a number of novel
alterations to the LCS algorithm have been built. Figure 2
illustrates how specific mechanisms of LCS (detailed in
Section 9) interact in the context of these major components.

3. The Driving Mechanisms

While the above four components represent an algorithmic
framework, two primary mechanisms are responsible for
driving the system. These include discovery, generally by way
of the genetic algorithm, and learning. Both mechanisms
have generated respective fields of study, but it is in the
context of LCS that we wish to understand their function and
purpose.

3.1. Discovery—The Genetic Algorithm. Discovery refers to
“rule discovery” or the introduction of rules that do not
currently exist in the population. Ideally, new rules will
be better at getting payoff (i.e., making good decisions)
than existing ones. From the start, this task has almost
always been achieved through the use of a genetic algorithm
(GA). The GA is a computational search technique which
manipulates (evolves) a population of individuals (rules)
each representing a potential solution (or piece of a solution)
to a given problem. The GA, as a major component of
the first conceptualized LCS [6], has largely surpassed LCS
in terms of celebrity and common usage. GAs [7, 8] are
founded on ideas borrowed from nature. Inspired from the
neo-Darwinist theory of natural selection, the evolution of
rules is modeled after the evolution of organisms using four
biological analogies: (1) a code is used to represent the
genotype/genome (condition), (2) a solution (or phenotype)
representation is associated with that genome (action),
(3) a phenotype selection process (survival of the fittest),
where the fittest organism (rule) has a greater chance of
reproducing and passing its “genetic” information on to the
next generation, and (4) genetic operators are utilized to
allow simple transformations of the genome in search of
fitter organisms (rules) [9, 10]. Variation in a genome (rule)
is typically generated by two genetic operators: mutation and
crossover (recombination). Crossover operators create new

Journal of Artificial Evolution and Applications 3

4
2

3 5
9

1

7

6

8

10

Reward

Action
selection

Environment

Prediction array

Credit assignment

Action
performed

Update
 par

am
ete

r(s
)

Learning strategy

Classifiern = condition : action :: parameter(s)

Classifierm

Classifiera

Classifiert–1

t–1[A]

Population [P]
Covering

Genetic
algorithm

Action set [A]

Discovery component
Performance component
Reinforcement component

Detectors

Effectors

Match set [M]

Figure 2: A Generic LCS—the values 1–10 indicate the typical steps included in a single learning iteration of the system. Thick lines indicate
the flow of information, thin lines indicate a mechanism being activated, and dashed lines indicate either steps that do not occur every
iteration, or mechanisms that might occur at different locals.

genotypes by recombining subparts of the genotypes of two
or more individuals (rules). Mutation operators randomly
modify an element in the genotype of an individual (rule).
The selection pressure which drives “better” organisms
(rules) to reproduce more often is dependent on the fitness
function. The fitness function quantifies the optimality of
a given rule, allowing that rule to be ranked against all
other rules in the population. In a simple classification
problem, one might use classification accuracy as a metric
of fitness. Running a genetic algorithm requires looping
through a series of steps for some number of iterations
(generations). Initially, the user must predefine a number of
parameters such as the population size (N) and the number
of generations, based on the user’s needs. Additionally the
GA needs to be initialized with a population of rules which
can be generated randomly to broadly cover the range of
possible solutions (the search space). The following steps will
guide the reader through a single iteration of a simple genetic
algorithm.

(1) Evaluate the fitness of all rules in the current
population.

(2) Select “parent” rules from the population (with
probability proportional to fitness).

(3) Crossover and/or mutate “parent” rules to form
“offspring” rules.

(4) Add “offspring” rules to the next generation.

(5) Remove enough rules from the next generation (with
probability of being removed inversely proportional
to fitness) to restore the number of rules to N.

As with LCSs, there are a variety of GA implementations
which may vary the details underlying the steps described

above (see Section 9.5). GA research constitutes its own field
which goes beyond the scope of this paper. For a more
detailed introduction to GAs we refer readers to Goldberg
[8, 11].

3.2. Learning. In the context of artificial intelligence, learn-
ing can be defined as, “the improvement of performance
in some environment through the acquisition of knowledge
resulting from experience in that environment” [12]. This
notion of learning via reinforcement (also referred to as
credit assignment [3]) is an essential mechanism of the
LCS architecture. Often the terms learning, reinforcement,
and credit assignment are used interchangeably within the
literature. In addition to a condition and action, each
classifier in the LCS population has one or more param-
eter values associated with it (e.g., fitness). The iterative
update of these parameter values drives the process of
LCS reinforcement. More generally speaking, the update
of parameters distributes any incoming reward (and/or
punishment) to the classifiers that are accountable for
it. This mechanism serves two purposes: (1) to identify
classifiers that are useful in obtaining future rewards and
(2) to encourage the discovery of better rules. Many of
the existing LCS implementations utilize different learning
strategies. One of the main reasons for this is that different
problem domains demand different styles of learning. For
example, learning can be categorized based on the manner
in which information is received from this environment.
Offline or “batch” learning implies that all training instances
are presented simultaneously to the learner. The end result
is a single rule set embodying a solution that does not
change with respect to time. This type of learning is often
characteristic of data mining problems. Alternatively, online

4 Journal of Artificial Evolution and Applications

or “incremental” learning implies that training instances are
presented to the learner one at a time, the end result of which
is a rule set which changes continuously with the addition of
each additional observation [12–14]. This type of learning
may have no prespecified endpoint, as the system solution
may continually modify itself with respect to a continuous
stream of input. Consider, for example, a robot which
receives a continuous stream of data about the environment
it is attempting to navigate. Over time it may need to adapt
its movements to maneuver around obstacles it has not yet
faced. Learning can also be distinguished by the type of
feedback that is made available to the learner. In this context,
two learning styles have been employed by LCSs; supervised
learning and reinforcement learning, of which the latter is
often considered to be synonymous with LCS. Supervised
learning implies that for each training instance, the learner
is supplied not only with the condition information, but
also with the “correct” action. The goal here is to infer
a solution that generalizes to unseen instances based on
training examples that possess correct input/output pairs.
Reinforcement learning (RL), on the other hand, is closer to
unsupervised learning, in that the “correct” action of a train-
ing instance is not known. However, RL problems do provide
feedback, indicating the “goodness” of an action decision
with respect to some goal. In this way, learning is achieved
through trial-and-error interactions with the environment
where occasional immediate reward is used to generate a
policy that maximizes long term reward (delayed reward).
The term ‘policy’ is used to describe a state-action map which
models the agent-environment interactions. For a detailed
introduction to RL we refer readers to Sutton and Barto
(1998) [15], Harmon (1996) [16], and Wyatt (2005) [17].
Specific LCS learning schemes will be discussed further in
Section 9.4.

4. A Minimal Classifier System

The working LCS algorithm is a relatively complex assembly
of interacting mechanisms operating in an iterative fashion.
We complete our functional introduction to LCSs with an
algorithmic walk through. For simplicity, we will explore
what might be considered one of the most basic LCS imple-
mentations, a minimal classifier system (MCS) [18]. This sys-
tem is heavily influenced by modern LCS architecture. For an
earlier perspective on simple LCS architecture see Goldberg’s
SCS [8]. MCS was developed by Larry Bull as a platform for
advancing LCS theory. While it was not designed for real-
world applications, MCS offers a convenient archetype upon
which to better understand more complex implementations.
Figure 3 outlines a single iteration of MCS. In this example
the input data takes the form of a four-digit binary number,
representing discrete observations detected from an instance
in the environment. MCS learns iteratively, sampling one
data instance at a time, learning from it, and then moving
to the next. As usual, a population of classifiers represents
the evolving solution to our given problem. Each of the (N)
classifiers in the population are made up of a condition,
an action, and an associated fitness parameter {F}. The
condition is represented by a string of characters from the

ternary alphabet 0, 1, # where # acts as a wildcard such that
the rule condition 00#1 matches both the input 0011 and
the input 0001. The action is represented by a binary string
where in this case only two actions are possible (0 or 1). The
fitness parameter gives an indication of how good a given
classifier is, which is important not only for action selection,
but for application of the GA to evolve better and better
classifiers. Before the algorithm is run, the population of
classifiers is randomly initialized, and the fitness parameters
are each set to some initial value f0. Figure 3 depicts the
MCS after having already been run for a number of iterations
made evident by the diversity of fitness scores. With the
receipt of input data, the population is scanned and any rule
whose condition matches the input string at each position
becomes a member of the current “match set” [M]. If none
of the rules in the population match the input, a covering
operator generates a rule with a matching condition and a
random action [19]. The number of wildcards incorporated
into the new rule condition is dependent on the rate (p#)
set by the user. With the addition of a new rule, an existing
rule must be removed from the population to keep (N)
constant. This is done using roulette wheel selection where
the probability of a rule being selected for replacement is
inversely proportional to its fitness, that is, 1/(Fj+1) [20, 21].
Once the match set is established, an action is selected using
a simple explore/exploit scheme [22]. This scheme alternates
between randomly selecting an action found within [M]
one round (explore), and selecting deterministically with a
prediction array the next (exploit). The prediction array is
a list of prediction values calculated for each action found in
[M]. In MCS, the prediction value is the sum of fitness values
found in the subset of [M] advocating the same action. The
subset with the highest prediction value becomes the action
set [A], and the corresponding action is performed in the
environment. Learning begins with receipt of an immediate
reward (payoff = P) from the environment in response to the
performed action. MCS uses a simple form of RL that uses
the Widrow-Hoff procedure (see Section 9.4.2) with a user
defined learning rate of β. The following equation updates
the fitness of each rule in the current [A]:

Fj ←− Fj +
((

P

|[A]|
)
− Fj

)
. (1)

The final step in MCS is the activation of a GA that
operates within the entire population (panmitic). Together
the GA and the covering operator make up the discov-
ery mechanism of MCS. The GA operates as previously
described where on each “explore” iteration, there is a
probability (g) of GA invocation. This probability is only
applied to “explore” iterations where action selection is
performed randomly. Parent rules are selected from the
population using roulette wheel selection. Offspring are
produced using a mutation rate of (μ) (with a wildcard rate
of (p#)) and a single point crossover rate of (χ). New rules
having undergone mutation inherit their parent’s fitness
values, while those that have undergone crossover inherit the
average fitness of the parents. New rules replace old ones as
previously described. MCS is iterated in this manner over a
user defined number of generations.

Journal of Artificial Evolution and Applications 5

{A}{C}

1:
0:
1:
1:
1:
0:

1:
0:
1:
0:

1:
1:

{F}

88
2

34
91
66
7

88
17
91
66

88
91

Population [N]

Covering

00#1
1##1
#010
###1
0101
11#0

…etc.

00#1
0##1
###1
001#

00#1
001#

Environment

Detectors Effectors

0011 = Input data Perform action = 1
Prediction array

Reward

Update
fitness

Random

Genetic
algorithm

Action 1 = 179
Action 0 = 83

Action
selection

Match set [M]

Action set [A]

Figure 3: MCS algorithm—an example iteration.

5. Historical Perspective

The LCS concept, now three decades old, has inspired a
wealth of research aimed at the development, comparison,
and comprehension of different LCSs. The vast majority
of this work is based on a handful of key papers [3, 19,
22–24] which can be credited with founding the major
branches of LCS. These works have become the founding
archetypes for an entire generation of LCS algorithms which
seek to improve algorithmic performance when applied
to different problem domains. As a result, many LCS
algorithms are defined by an expansion, customization, or
merger of one of the founding algorithms. Jumping into
the literature, it is important to note that the naming
convention used to refer to the LCS algorithm has undergone
a number of changes since its infancy. John Holland, who
formalized the original LCS concept [25] based around his
more well-known invention, the Genetic Algorithm (GA)
[6], referred to his proposal simply as a classifier system,
abbreviated either as (CS), or (CFS) [26]. Since that time,
LCSs have also been referred to as adaptive agents [1],
cognitive systems [3], and genetics-based machine learning
systems [2, 8]. On occasion they have quite generically
been referred to as either production systems [6, 27] or
genetic algorithms [28] which in fact describes only a part
of the greater system. The now standard designation of a
“learning classifier system” was not adopted until the late
80s [29] after Holland added a reinforcement component
to the CS architecture [30, 31]. The rest of this section
provides a synopsis of some of the most popular LCSs
to have emerged, and the contributions they made to the
field. This brief history is supplemented by Table 1 which
chronologically identifies noted LCS algorithms/platforms
and details some of the defining features of each. This
table includes the LCS style (Michigan {M}, Pittsburgh {P},

Hybrid {H}, and Anticipatory {A}), the primary fitness
basis, a summary of the learning style or credit assignment
scheme, the manner in which rules are represented, the
position in the algorithm at which the GA is invoked
(panmitic [P], match set [M], action set [A], correct set [C],
local neighborhood LN , and modified LN (MLN) and the
problem domain(s)) on which the algorithm was designed
and/or tested.

5.1. The Early Years. Holland’s earliest CS implementation,
called Cognitive System One (CS-1) [3] was essentially the
first learning classifier system, being the first to merge a credit
assignment scheme with a GA in order to evolve a population
of rules as a solution to a problem who’s environment
only offered an infrequent payoff/reward. An immediate
drawback to this and other early LCSs was the inherent com-
plexity of the implementation and the lack of comprehension
of the systems operation [8]. The CS-1 archetype, having
been developed at the University of Michigan, would later
inspire a whole generation of LCS implementations. These
“Michigan-style” LCSs are characterized by a population of
rules where the GA operates at the level of individual rules
and the solution is represented by the entire rule population.
Smith’s 1980 dissertation from the University of Pittsburgh
[23] introduced LS-1, an alternative implementation that
founded the fundamentally different “Pittsburgh-style” LCS.
Also referred to as the “Pitt-approach”, the LS-1 archetype
is characterized by a population of variable length rule-sets
(each rule-set is a potential solution) where the GA typically
operates at the level of an entire rule-set. An early advantage
of the Pitt-approach came from its credit assignment scheme,
where reward is assigned to entire rule-sets as opposed
to individual rules. This allows Pitt-style systems such as
LS-1 to circumvent the potential problem of having to

6 Journal of Artificial Evolution and Applications

share credit amongst individual rules. But, in having to
evolve multiple rule sets simultaneously, Pitt-style systems
suffer from heavy computational requirements. Additionally,
because Pitt systems learn iteratively from sets of problem
instances, they can only work offline, whereas Michigan
systems are designed to work online, but can engage offline
problems as well. Of the two styles, the Michigan approach
has drawn the most attention as it can be applied to a broader
range of problem domains and larger, more complex tasks.
As such, it has largely become what many consider to be the
standard LCS framework. All subsequent systems mentioned
in this review are of Michigan-style unless explicitly stated
otherwise. Following CS-1, Holland’s subsequent theoreti-
cal and experimental investigations [30–40] advocated the
use of the bucket brigade credit assignment scheme (see
Section 9.4.1). The bucket brigade algorithm (BBA), inspired
by Samuel [41] and formalized by Holland [38] represents
the first learning/credit assignment scheme to be widely
adopted by the LCS community [20, 42, 43]. Early work
by Booker on a CS-1 based system suggested a number of
modifications including the idea to replace the panmictically
acting GA with a niche-based one (i.e., the GA acts on
[M] instead of [P]) [42]. The reason for this modification
was to eliminate undesirable competition between unrelated
classifiers, and to encourage more useful crossovers between
classifiers of a common “environmental niche”. This in turn
would help the classifier population retain diversity and
encourage inclusion of problem subdomains in the solution.
However, it should be noted that niching has the likely
impact of making the GA more susceptible to local maxima,
a disadvantage for problems with a solution best expressed
as a single rule. In 1985, Stewart Wilson implemented an
Animat CS [44] that utilized a simplified version of the
bucket brigade, referred to later as an implicit bucket brigade
[8]. Additionally, the Animat system introduced a number
of concepts which persist in many LCSs today including
covering (via a “create” operator), the formalization of an
action set [A], an estimated time-to-payoff parameter incor-
porated into the learning scheme, and a general progression
towards a simpler CS architecture [44, 45]. In 1986 Holland
published what would become known as the standard CS
for years to come [30]. This implementation incorporated a
strength-based fitness parameter and BBA credit assignment
as described in [38]. While still considered to be quite
complex and susceptible to a number of problems [45], the
design of this hallmark LCS is to this day a benchmark for
all other implementations. The next year, Wilson introduced
BOOLE, a CS developed specifically to address the problem
of learning Boolean functions [43]. Characteristic of the
Boolean problem, classifiers are immediately rewarded in
response to performing actions. As a result BOOLE omits
sequential aspects of the CS, such as the BBA which allows
reward to be delayed over a number of time steps, instead
relying on a simpler “one-step” CS. Bonelli et. al. [46] later
extended BOOLE to a system called NEWBOOLE in order
to improve the learning rate. NEWBOOLE introduced a
“symmetrical payoff-penalty” (SPP) algorithm (reminiscent
of supervised learning) which replaced [A] with a correct
set [C], and not-correct set Not [C]. In 1989, Booker

continued his work with GOFER-1 [47] adding a fitness
function based on both payoff and nonpayoff information
(e.g., strength and specificity), and further pursued the idea
of a “niching” GA. Another novel system which spawned
its own lineage of research is Valenzuela’s fuzzy LCS which
combined fuzzy logic with the concept of a rule-based LCSs
[48]. The fuzzy LCS represents one of the first systems to
explore a rule representation beyond the simple ternary
system. For an introduction to fuzzy LCS we refer readers to
[49]. An early goal for LCSs was the capacity to learn and
represent more complex problems using “internal models”
as was originally envisioned by Holland [34, 38]. Work by
Rick Riolo addressed the issues of forming “long action
chains” and “default hierarchies” which had been identified
as problematic for the BBA [29, 50, 51]. A long action
chain refers to a series of rules which must sequentially
activate before ultimately receiving some environmental
payoff. They are challenging to evolve since “there are long
delays before rewards are received, with many unrewarded steps
between some stage setting actions and the ultimate action
those actions lead to” [52]. Long chains are important for
modeling behavior which require the execution of many
actions before the receipt of a reward. A default hierarchy is
a set of rules with increasing levels of specificity, where the
action specified by more general rules is selected by “default”
except in the case where overriding information is able to
activate a more specific rule. “Holland has long argued that
default hierarchies are an efficient, flexible, easy-to-discover
way to categorize observations and structure models of the
world” [52]. Reference [53] describes hierarchy formation
in greater detail. Over the years a number of methods have
been introduced in order to allow the structuring of internal
models. Examples would include internal message lists, non-
message-list memory mechanisms, “corporate” classifier sys-
tems, and enhanced rule syntax and semantics [52]. Internal
message lists, part of the original CS-1 [3] exist as a means
to handle all input and output communication between
the system and the environment, as well as providing a
makeshift memory for the system. While the message list
component can facilitate complex internal structures, its
presence accounts for much of the complexity in early LCS
systems. The tradeoff between complexity and comprehen-
sibility is a theme which has been revisited throughout the
course of LCS research [45, 52, 54]. Another founding system
is Riolo’s CFCS2 [55], which addressed the particularly
difficult task of performing “latent learning” or “look-ahead
planning” where “actions are based on predictions of future
states of the world, using both current information and past
experience as embodied in the agent’s internal models of the
world” [52]. This work would later inspire its own branch
of LCS research: anticipatory classifier systems (ACS) [24].
CFCS2 used “tags” to represent internal models, claiming a
reduction in the learning time for general sequential decision
tasks. Additionally, this system is one of the earliest to
incorporate a Q-learning-like credit assignment technique
(i.e., a nonbucket brigade temporal difference method).
Q-learning-based credit assignment would later become a
central component of the most popular LCS implementation
to date.

Journal of Artificial Evolution and Applications 7

5.2. The Revolution. From the late 80s until the mid-90s the
interest generated by these early ideas began to diminish as
researchers struggled with LCS’s inherent complexity and
the failure of various systems to reliably obtain the behavior
and performance envisioned by Holland. Two events have
repeatedly been credited with the revitalization of the LCS
community, namely the publication of the “Q-Learning”
algorithm in the RL community, and the advent of a
significantly simplified LCS architecture as found in the ZCS
and XCS (see Table 1). The fields of RL and LCSs have
evolved in parallel, each contributing to the other. RL has
been an integral component of LCSs from the very beginning
[3]. While the founding concepts of RL can be traced back
to Samuel’s checker player [41], it was not until the 80s that
RL became its own identifiable area of machine learning
research [159]. Early RL techniques included Holland’s BBA
[38] and Sutton’s temporal difference (TD) method [160]
which was followed closely by Watkins’s Q-Learning method
[161]. Over the years a handful of studies have confirmed
the basic equivalence of these three methods, highlighting
the distinct ties between the two fields. To summarize, the
BBA was shown to be one kind of TD method [160], and
the similarity between all three methods were noted by
Watkins [161] and confirmed by Liepins, Dorigo, and Bersini
[162, 163]. This similarity across fields paved the way for the
incorporation of Q-learning-based techniques into LCSs. To
date, Q-learning is the most well-understood and widely-
used RL algorithm available. In 1994, Wilson’s pursuit of
simplification culminated in the development of the “zeroth-
level” classifier system (ZCS) [19], aimed at increasing the
understandability and performance of an LCS. ZCS differed
from the standard LCS framework in that it removed the
rule-bidding and internal message list, both characteristic
of the original BBA (see Section 9.3). Furthermore, ZCS
was able to disregard a number of algorithmic components
which had been appended to preceding systems in an effort
to achieve acceptable performance using the original LCS
framework (e.g., heuristics [44] and operators [164]). New
to ZCS, was a novel credit assignment strategy that merged
elements from the BBA and Q-Learning into the “QBB”
strategy. This hybrid strategy represents the first attempt to
bridge the gap between the major LCS credit assignment
algorithm (i.e., the BBA) and other algorithms from the
field of RL. With ZCS, Wilson was able to achieve similar
performance to earlier, more complex implementations
demonstrating that Holland’s ideas could work even in
a very simple framework. However, ZCS still exhibited
unsatisfactory performance, attributed to the proliferation
of over-general classifiers. The following year, Wilson intro-
duced an eXtended Classifier System (XCS) [22] noted for
being able to reach optimal performance while evolving
accurate and maximally general classifiers. Retaining much
of the ZCS architecture, XCS can be distinguished by the
following key features: an accuracy based fitness, a niche
GA (acting in the action set [A]), and an adaptation of
standard Q-Learning as credit assignment. Probably the most
important innovation in XCS was the separation of the credit
assignment component from the GA component, based on
accuracy. Previous LCSs typically relied on a strength value

allocated to each rule (reflecting the reward the system can
expect if that rule is fired; a.k.a. reward prediction). This
one strength value was used both as a measure of fitness
for GA selection, and to control which rules are allowed
to participate in the decision making (i.e., predictions) of
the system. As a result, the GA tends to eliminate classifiers
from the population that have accumulated less reward than
others, which can in turn remove a low-predicting classifier
that is still well suited for its environmental niche. “Wilson’s
intuition was that prediction should estimate how much reward
might result from a certain action, but that the evolution
learning should be focused on most reliable classifiers, that is,
classifiers that give a more precise (accurate) prediction” [165].
With XCS, the GA fitness is solely dependent on rule accuracy
calculated separately from the other parameter values used
for decision making. Although not a new idea [3, 25, 166],
the accuracy-based fitness of XCS represents the starting
point for a new family of LCSs, termed “accuracy-based”
which are distinctly separable from the family of “strength-
based” LCSs epitomized by ZCS (see Table 1). XCS is also
important, because it successfully bridges the gap between
LCS and RL. RL typically seeks to learn a value function
which maps out a complete representation of the state/action
space. Similarly, the design of XCS drives it to form an all-
inclusive and accurate representation of the problem space
(i.e., a complete map) rather than simply focusing on higher
payoff niches in the environment (as is typically the case
with strength-based LCSs). This latter methodology which
seeks a rule set of efficient generalizations tends to form a
best action map (or a partial map) [102, 167]. In the wake of
XCS, it became clear that RL and LCS are not only linked
but inherently overlapping. So much so, that analyses by
Lanzi [168] led him to define LCSs as RL systems endowed
with a generalization capability. “This generalization property
has been recognized as the distinguishing feature of LCSs with
respect to the classical RL framework” [9]. “XCS was the first
classifier system to be both general enough to allow applications
to several domains and simple enough to allow duplication
of the presented results” [54]. As a result XCS has become
the most popular LCS implementation to date, generating
its own following of systems based directly on or heavily
inspired by its architecture.

5.3. In the Wake of XCS. Of this following, three of the
most prominent will be discussed: ACS, XCSF, and UCS.
In 1998 Stolzmann introduced ACS [24] and in doing so
formalized a new LCS family referred to as “anticipation-
based”. “[ACS] is able to predict the perceptual consequences
of an action in all possible situations in an environment.
Thus the system evolves a model that specifies not only what
to do in a given situation but also provides information
of what will happen after a specific action was executed”
[103]. The most apparent algorithmic difference in ACS
is the representation of rules in the form of a condition-
action-effect as opposed to the classic condition-action. This
architecture can be used for multi-step problems, planning,
speeding up learning, or disambiguating perceptual aliasing
(where the same observation is obtained in distinct states

8 Journal of Artificial Evolution and Applications

Table 1: A summary of noted LCS algorithms

System Year Author/cite Style Fitness
Learning/credit
assignment

Rule rep. GA Problem

CS-1 1978 Holland [3] M Accuracy Epochal Ternary [P] Maze Navigation

LS-1 1980 Smith [23] P Accuracy Implicit Critic Ternary [P] Poker Decisions

CS-1 (based) 1982 Booker [42] M Strength Bucket Brigade Ternary [M]
Environment
Navigation

Animat CS 1985 Wilson [44] M Strength
Implicit Bucket
Brigade

Ternary [P] Animat Navigation

LS-2 1985 Schaffer [56] P Accuracy Implicit Critic Ternary [P] Classification

Standard CS 1986 Holland [30] M Strength Bucket Brigade Ternary [P] Online Learning

BOOLE 1987 Wilson [43] M Strength
One-Step
Payoff-Penalty

Ternary [P]
Boolean Function
Learning

ADAM 1987 Greene [57] P Accuracy Custom Ternary [P] Classification

RUDI 1988 Grefenstette
[58]

H Strength
Bucket-Brigade
and Profit-Sharing
Plan

Ternary [P]
Generic Problem
Solving

GOFER 1988 Booker [59] M Strength Payoff-Sharing Ternary [M]
Environment
Navigation

GOFER-1 1989 Booker [47] M Strength
Bucket-Brigade-
like

Ternary [M]
Multiplexer
Function

SCS 1989 Goldberg [8] M Strength AOC Trit [P]
Multiplexer
Function

SAMUEL 1989–1997 Grefenstette
[60–62]

H Strength Profit-Sharing Plan Varied [P]
Sequential
Decision Tasks

NEWBOOLE 1990 Bonelli [46] M Strength
Symmetrical
Payoff-Penalty

Ternary [P] Classification

CFCS2 1991 Riolo [55] M Strength/
Accuracy

Q-Learning-Like Ternary [P] Maze Navigation

HCS 1991 Shu [63] H Strength Custom Ternary [P]
Boolearn Function
Learning

Fuzzy LCS 1991
Valenzuela-
Rendon
[48]

M Strength
Custom
Bucket-Brigade

Binary -
Fuzzy Logic

[P] Classification

ALECSYS 1991–1995 Dorigo [64, 65] M Strength Bucket Brigade Ternary [P] Robotics

GABIL 1991-1993 De Jong [66, 67] P Accuracy
Batch -
Incremental

Binary -
CNF

[P] Classification

GIL 1991–1993 Janikow [68, 69] P Accuracy
Supervised
Learning - Custom

Multi-
valued logic
(VL1)

[P] Multiple Domains

GARGLE 1992 Greene [70] P Accuracy Custom Ternary [P] Classification

COGIN 1993 Greene [71] M Accuracy/
Entropy

Custom Ternary [P]
Classification,
Model Induction

REGAL 1993 Giordana
[72–74]

H Accuracy Custom
Binary -
First Order
Logic

[P] Classification

ELF 1993–1996 Bonarini
[75–77]

H Strength Q-Learning-Like
Binary -
Fuzzy Logic

[P]
Robotics,
Cart-Pole Problem

ZCS 1994 Wilson [19] M Strength
Implicit Bucket
Brigade

Ternary [P]
Environment
Navigation

ZCSM 1994 Cliff [78] M Strength
Implicit Bucket
Brigade - Memory

Ternary [P]
Environment
Navigation

XCS 1995 Wilson [22] M Accuracy Q-Learning-Like Ternary [A]

Mulitplexor
Function and
Environment
Navigation

Journal of Artificial Evolution and Applications 9

Table 1: Continued.

System Year Author/cite Style Fitness
Learning/credit
assignment

Rule rep. GA Problem

GA-Miner 1995–1996 Flockhart
[79, 80]

H Accuracy Custom
Symbolic
Functions

LN
Classification, Data
Mining

BOOLE++ 1996 Holmes [81] M Strength
Symmetrical
Payoff-Penalty

Ternary [P]
Epidemiologic
Classification

EpiCS 1997 Holmes [82] M Strength
Symmetrical
Payoff-Penalty

Ternary [P]
Epidemiologic
Classification

XCSM 1998 Lanzi [83, 84] M Accuracy Q-Learning-Like Ternary [A]
Environment
Navigation

ZCCS 1998–1999 Tomlinson
[85, 86]

H Strength
Implicit Bucket
Brigade

Ternary [P]
Environment
Navigation

ACS 1998–2000 Stolzmann
[24, 87]

A Strength/
Accuracy

Bucket-Brigade-
like (reward or
anticipation
learning)

Ternary —
Environment
Navigation

iLCS 1999-2000 Browne [88, 89] M Strength/
Accuracy

Custom
Real-Value
Alphabet

[P]
Industrial
Applications - Hot
Strip Mill

XCSMH 2000 Lanzi [90] M Accuracy Q-Learning-Like Ternary [A]
Non-Markov
Environment
Navigation

CXCS 2000 Tomlinson [91] H Accuracy Q-Learning-Like Ternary [A]
Environment
Navigation

XCSR 2000 Wilson [92] M Accuracy Q-Learning-Like
Interval
Predicates

[A]
Real-Valued
Multiplexor
Problems

ClaDia 2000 Walter [93] M Strength
Supervised
Learning - Custom

Binary -
Fuzzy Logic

[P]
Epidemiologic
Classification

OCS 2000 Takadama [94] O Strength Profit Sharing Binary [P]
Non-Markov
Multiagent
Environments

XCSI 2000-2001 Wilson [95, 96] M Accuracy Q-Learning-Like
Interval
Predicates

[A]
Integer-Valued
Data Mining

MOLeCS 2000-2001
Bernado-
Mansilla
[97, 98]

M Accuracy
Multi- objective
Learning

Binary [P]
Multiplexor
Problem

YACS 2000–2002 Gerard [99, 100] A Accuracy Latent Learning Tokens —
Non-Markov
Environment
Navigation

SBXCS 2001-2002 Kovacs
[101, 102]

M Strength Q-Learning-Like Ternary [A]
Multiplexor
Function

ACS2 2001-2002 Butz [103, 104] A Accuracy Q-Learning-Like Ternary —
Environment
Navigation

ATNoSFERES 2001–2007
Landau and
Picault
[105–109]

P Accuracy Custom

Graph-
Based
Binary-
Tokens

[P]
Non-Markov
Environment
Navigation

GALE 2001-2002 Llora [110, 111] P Accuracy Custom Binary LN
Classification, Data
Mining

GALE2 2002 Llora [112] P Accuracy Custom Binary MLN
Classification, Data
Mining

XCSF 2002 Wilson [113] M Accuracy Q-Learning-Like
Interval
Predicates

[A]
Function
Approximation

10 Journal of Artificial Evolution and Applications

Table 1: Continued.

System Year Author/cite Style Fitness
Learning/credit
assignment

Rule rep. GA Problem

AXCS 2002 Tharakunnel
[114]

M Accuracy Q-Learning-Like Ternary [A]

Multi-step
Problems
Environmental
Navigation

TCS 2002 Hurst [115] M Strength Q-Learning-Like
Interval
Predicates

[P] Robotics

X-NCS 2002 Bull [116] M Accuracy Q-Learning-Like
Neural
Network

[A] Multiple Domains

X-NFCS 2002 Bull [116] M Accuracy Q-Learning-Like
Fuzzy -
Neural
Network

[A]
Function
Approximation

UCS 2003
Bernado-
Mansilla
[117]

M Accuracy
Supervised
Learning - Custom

Ternary [C]
Classification -
Data Mining

XACS 2003 Butz [118] A Accuracy
Generalizing State
Value Learner

Ternary —
Blocks World
Problem

XCSTS 2003 Butz [119] M Accuracy Q-Learning-Like Ternary [A]
Multiplexor
Problem

MOLCS 2003 Llora [120] P Multi-
objective

Custom Ternary [P]
Classification -
LED Problem

YCS 2003 Bull [121] M Accuracy
Q-Learning-Like
Widrow-Hoff

Ternary [P]
Accuracy Theory -
Multiplexor
Problem

XCSQ 2003 Dixon [122] M Accuracy Q-Learning-Like Ternary [A] Rule-set Reduction

YCSL 2004 Bull [123] A Accuracy Latent Learning Ternary —
Environment
Navigation

PICS 2004 Gaspar
[124, 125]

P Accuracy
Custom - Artificial
Immune System

Ternary [P]
Multiplexor
Problem

NCS 2004 Hurst [126] M Strength Q-Learning-Like
Neural
Network

[P] Robotics

MCS 2004 Bull [127] M Strength
Q-Learning-Like
Widrow-Hoff

Ternary [P]
Strength Theory -
Multiplexor
Problem

GAssist 2004–2007 Bacardit
[128–131]

P Accuracy ILAS
ADI -
Binary

[P]
Data Mining UCI
Problems

MACS 2005 Gerard [132] A Accuracy Latent Learning Tokens —
Non-Markov
Environment
Navigation

XCSFG 2005 Hamzeh [133] M Accuracy Q-Learning-Like
Interval
Predicates

[A]
Function
Approximation

ATNoSFERES-II 2005 Landau [134] P Accuracy Custom

Graph-
Based
Integer-
Tokens

[P]
Non-Markov
Environment
Navigation

GCS 2005 Unold
[135, 136]

M Accuracy Custom

Context-
Free
Grammar
CNF

[P]
Learning
Context-Free
Languages

DXCS 2005 Dam [137–139] M Accuracy Q-Learning-Like Ternary [A]
Distributed Data
Mining

LCSE 2005–2007 Gao [140–142] M
Strength
and
Accuracy

Ensemble Learning
Interval
Predicates

[A]
Data Mining UCI
Problems

Journal of Artificial Evolution and Applications 11

Table 1: Continued.

System Year Author/cite Style Fitness
Learning/credit
assignment

Rule rep. GA Problem

EpiXCS 2005–2007 Holmes
[143–145]

M Accuracy Q-Learning-Like Ternary [A]
Epidemiologic
Data Mining

XCSFNN 2006 Loiacono [146] M Accuracy Q-Learning-Like

Feedforward
Multilayer
Neural
Network

[A]
Function
Approximation

BCS 2006 Dam [147] M Bayesian
Supervised
Learning - Custom

Ternary [C]
Multiplexor
Problem

BioHEL 2006 Bacardit
[148, 149]

P Accuracy Custom
ADI -
Binary

[P]

Larger Problems
-Multiplexor,
Protein Structure
Prediction

XCSFGH 2006 Hamzeh [150] M Accuracy Q-Learning-Like
Binary
Polynomials

[A]
Function
Approximation

XCSFGC 2007 Hamzeh [151] M Accuracy Q-Learning-Like
Interval
Predicates

[A]
Function
Approximation

XCSCA 2007 Lanzi [152] M Accuracy
Supervised
Learning - Custom

Interval
Predicates

[M]
Environmental
Navigation

LCSE 2007 Gao [142] M Accuracy Q-Learning-Like
Interval
Predicates

[A]
Medical Data
Mining - Ensemble
Learning

CB-HXCS 2007 Gershoff [153] M Accuracy Q-Learning-Like Ternary [A]
Multiplexor
Problem

MILCS 2007 Smith [154] M Accuracy
Supervised
Learning - Custom

Neural
Network

[C]
Multiplexor,
Protein Structure

rGCS 2007 Cielecki [155] M Accuracy Custom

Real-Valued
Context-
Free
Grammar
Based

[P]
Checkerboard
Problem

Fuzzy XCS 2007 Casilas [156] M Accuracy Q-Learning-Like
Binary -
Fuzzy Logic

[A]
Single Step
Reinforcement
Problems

Fuzzy UCS 2007 Orriols-Puig
[157]

M Accuracy
Supervised
Learning - Custom

Binary -
Fuzzy Logic

[C]
Data Mining UCI
Problems

NAX 2007 Llora [158] P Accuracy Custom
Interval
Predicates

[P]
Classification -
Large Data Sets

NLCS 2008 Dam [2] M Accuracy
Supervised
Learning - Custom

Neural
Network

[C] Classification

requiring different actions). Contributing heavily to this
branch of research, Martin Butz later introduced ACS2 [103]
and developed several improvements to the original model
[104, 118, 169–171] . For a more in depth introduction to
ACS we refer the reader to [87, 172]. Another brainchild of
Wilson’s was XCSF [113]. The complete action mapping of
XCS made it possible to address the problem of function
approximation. “XCSF evolves classifiers which represent
piecewise linear approximations of parts of the reward surface
associated with the problem solution” [54]. To accomplish this,
XCSF introduces the concept of computed prediction, where
the classifier’s prediction (i.e., predicted reward) is no longer
represented by a scalar parameter value, but is instead a
function calculated as a linear combination of the classifier’s

inputs (for each dimension) and a weight vector maintained
by each classifier. In addition to systems based on fuzzy
logic, XCSF is of the minority of systems able to support
continuous-valued actions. In complete contrast to the spirit
of ACS, the sUpervised Classifier System (UCS) [117] was
designed specifically to address single-step problem domains
such as classification and data mining where delayed reward
is not a concern. While XCS and the vast majority of other
LCS implementations rely on RL, UCS trades this strategy
for supervised learning. Explicitly, classifier prediction was
replaced by accuracy in order to reflect the nature of a
problem domain where the system is trained, knowing the
correct prediction in advance. UCS demonstrates that a
best action map can yield effective generalization, evolve

12 Journal of Artificial Evolution and Applications

more compact knowledge representations, and can converge
earlier in large search spaces.

5.4. Revisiting the Pitt. While there is certainly no consensus
as to which style LCS (Michigan or Pittsburgh) is “better”,
the advantages of each system in the context of specific
problem domains are becoming clearer [173]. Some of the
more successful Pitt-style systems include GABIL [66], GALE
[110], ATNoSFERES [106], MOLCS [120], GAssist [128],
BioHEL [148] (a descendant of GAssist), and NAX [158] (a
descendant of GALE). All but ATNoSFERES were designed
primarily to address classification/data mining problems for
which Pitt-style systems seem to be fundamentally suited.
NAX and BioHEL both received recent praise for their
human-competitive performance on moderately complex
and large tasks. Also, a handful of “hybrid” systems have
been developed, which merge Michigan and Pitt-style archi-
tectures (e.g., REGAL [72], GA-Miner [79], ZCCS [85], and
CXCS [91]).

5.5. Visualization. There is an expanding wealth of literature
beyond what we have discussed in this brief history [174].
One final innovation, which will likely prove to be of
great significance to the LCS community is the design
and application of visualization tools. Such tools allow
researchers to follow algorithmic progress by (1) tracking
online performance (i.e., by graphing metrics such as error,
generality, and population size), (2) visualizing the current
classifier population as it evolves (i.e., condition visualiza-
tion), and (3) visualizing the action/prediction (useful in
function approximation to visualize the current prediction
surface) [144, 154, 175]. Examples include Holmes’s EpiXCS
Workbench geared towards knowledge discovery in medical
data [144], and Butz and Stalph’s cutting-edge XCSF visu-
alization software geared towards function approximation
[175, 176] and applied to robotic control in [177]. Tools
such as these will advance algorithmic understandability
and facilitate solution interpretation, while simultaneously
fueling a continued interest in the LCS algorithm.

6. Problem Domains

The range of problem domains to which LCS has been
applied can be broadly divided into three categories: func-
tion approximation problems, classification problems, and
reinforcement learning problems [178]. All three domains
are generally tied by the theme of optimizing prediction
within an environment. Function approximation problems
seek to accurately approximate a function represented by
a partially overlapping set of approximation rules (e.g., a
piecewise linear solution for a sine function). Classification
problems seek to find a compact set of rules that classify all
problem instances with maximal accuracy. Such problems
frequently rely on supervised learning where feedback is
provided instantly. A broad subdomain of the classification
problem includes “data mining” which is the process of
sorting through large amounts of data to extract or model
useful patterns. Classification problems may also be divided

into either Boolean or real-valued problems based on the
problem type being respectively discrete, or continuous in
nature. Examples of classification problems include Boolean
function learning, medical diagnosis, image classification
(e.g., letter recognition), pattern recognition, and game
analysis. RL problems seek to find an optimal behavioral
policy represented by a compact set of rules. These problems
are typically distinguished by inconsistent environmental
reward often requiring multiple actions before such reward is
obtained (i.e., multi-step RL problem or sequential decision
task). Examples of such problems would include robotic
control, game strategy, environmental navigation, modeling
time-dependant complex systems (e.g., stock market), and
design optimization (e.g., engineering applications). Some
RL problems are characterized by providing immediate
reward feedback about the accuracy of a chosen class (i.e.,
single-step RL problem), which essentially makes it similar
to a classification problem. RL problems can be partitioned
further based on whether they can be modeled as a Markov
decision process (MDP) or a partially observable Markov
decision process (POMDP) . In short, for Markov problems
the selection of the optimal action at any given time depends
only on the current state of the environment and not on
any past states. On the other hand, Non-Markov problems
may require information on past states to select the optimal
action. For a detailed introduction to this concept we refer
readers to [9, 179, 180].

7. Biological Applications

One particularly demanding and promising domain for LCS
application involves biological problems (e.g., epidemiology,
medical diagnosis, and genetics). In order to gain insight
into complex biological problems researchers often turn to
algorithms which are themselves inspired by biology (e.g.,
genetic programming [181], ant colony optimization [182],
artificial immune systems [183], and neural networks [184]).
Similarly, since the mid 90s biological LCS studies have
begun to appear that deal mainly with classification-type
problems. One of the earliest attempts to apply an LCS
algorithm to such a problem was [28]. Soon after, John
Holmes initiated a lineage of LCS designed for epidemio-
logical surveillance and knowledge discovery which included
BOOLE++ [81], EpiCS [82], and most recently EpiXCS
[143]. Similar applications include [93, 95, 130, 142, 185–
187], all of which examined the Wisconsin breast cancer
data taken from the UCI repository [188]. LCSs have also
been applied to protein structure prediction [131, 149, 154],
diagnostic image classification [158, 189], and promoter
region identification [190].

8. Optimizing LCS

There are a number of factors to consider when trying to
select or develop an “effective” LCS. The ultimate value of an
LCS might be gauged by the following: (1) performance—the
quality of the evolved solution (rule set), (2) scalability—how
rapidly the learning time or system size grows as the problem

Journal of Artificial Evolution and Applications 13

complexity increases, (3) adaptivity—the ability of online
learning systems to adapt to rapidly changing situations,
and/or (4) speed—the time it takes an offline learning system
to reach a “good” solution. Much of the field’s focus has been
placed on optimizing performance (as defined here). The
challenge of this task is in balancing algorithmic pressures
designed to evolve the population of rules towards becoming
what might be considered an optimal rule set. The definition
of an optimal rule set is subjective, depending on the problem
domain, and the system architecture. Kovacs discusses the
properties of an optimal XCS rule set [O] as being correct,
complete, minimal (compact), and non-overlapping [191].
Even for the XCS architecture it is not clear that these
properties are always optimal (e.g., discouraging overlap
prevents the evolution of default hierarchies, too much
emphasis on correctness may lead to overfitting in training,
and completeness is only important if the goal is to
evolve a complete action map). Some of the tradeoffs are
discussed in [192, 193]. Instead, researchers may use the
characteristics of correctness, completeness, compactness, and
overlap as metrics with which to track evolutionary learning
progress. LCS, being a complex multifaceted algorithm is
subject to a number of different pressures driving the
rule-set evolution. Butz and Pelikan discuss 5 pressures
that specifically influence XCS performance, and provide
an intuitive visualization of how these pressures interact
to evolve the intended complete, accurate, and maximally
general problem representation [194, 195]. These include
set pressure (an intrinsic generalization pressure), mutation
pressure (which influences rule specificity), deletion pressure
(included in set pressure), subsumption pressure (decreases
population size), and fitness pressures (which generate a
major drive towards accuracy). Other pressures have also
been considered, including parsimony pressure for discour-
aging large rule sets (i.e., bloat) [196], and crowding (or
niching) pressure for allocating classifiers to distinct subsets
of the problem domain [42]. In order to ensure XCS
success, Butz defines a number of learning bounds which
address specific algorithmic pitfalls [197–200]. Broadly
speaking, the number of studies addressing LCS theory
are few in comparison to applications-based research. Fur-
ther work in this area would certainly benefit the LCS
community.

9. Component Roadmap

The following section is meant as a summary of the
different LCS algorithmic components. Figure 2 encapsulates
the primary elements of a generic LCS framework (heavily
influenced by ZCS, XCS, and other Michigan-style systems).
Using this generalized framework we identify a number of
exchangeable methodologies, and direct readers towards the
studies that incorporate them. Many of these elements have
been introduced in Section 5, but are put in the context
of the working algorithm here. It should be kept in mind
that some outlying LCS implementations stray significantly
from this generalized framework, and while we present these
components separately, the system as a whole is dependent

on the interactions and overlaps which connect them.
Elements that do not obviously fit into the framework of
Figure 2 will be discussed in Section 9.6. Readers interested
in a simple summary and schematic of the three most
renowned systems (including Holland’s standard LCS, ZCS,
and XCS) are referred to [201].

9.1. Detectors and Effectors. The first and ultimately last
step of an LCS iteration involves interaction with the
environment. This interaction is managed by detectors and
effectors [30]. Detectors sense the current state of the
environment and encode it as a standard message (i.e.,
formatted input data). The impact of how sensors are
encoded has been explored [202]. Effectors, on the other
hand, translate action messages into performed actions that
modify the state of the environment. For supervised learning
problems, the action is supplanted by some prediction of
class, and the job of effectors is simply to check that the
correct prediction was made. Depending on the efficacy of
the systems’ predicted action or class, the environment may
eventually or immediately reward the system. As mentioned
previously, the environment is the source of input data for
the LCS algorithm, dependant on the problem domain being
examined. “The learning capabilities of LCS rely on and are
constrained by the way the agent perceives the environment,
e.g., by the detectors the system employs” [52]. Also, the format
of the input data may be binary, real-valued, or some other
customized representation. In systems dealing with batch
learning, the dataset that makes up the environment is often
divided into a training and a testing set (e.g., [82]) as part of
a cross-validation strategy to assess performance and ensure
against overfitting.

9.2. Population. Modifying the knowledge representation of
the population can occur on a few levels. First and foremost is
the difference in overall population structure as embodied by
the Michigan and Pitt-style families. In Michigan systems the
population is made up of a single rule-set which represents
the problem solution, and in Pitt systems the population
is a collection of multiple competing rule-sets, each which
represent a potential problem solution (see Figure 4). Next, is
the overall structure of an individual rule. Most commonly,
a rule is made up of a condition, an action, and one or more
parameter values (typically including a prediction value
and/or a fitness value) [1, 19, 22], but other structures have
been explored e.g., the condition-action-effect structure used
by ACSs [24]. Also worth mentioning are rule-structure-
induced mechanisms, proposed to encourage the evolution
of rule dependencies and internal models. Examples include:
bridging-classifiers (to aid the learning of long action chains)
[38, 50], tagging (a form of implicitly linking classifiers) [1,
203, 204], and classifier-chaining (a form of explicitly linking
classifiers and the defining feature of a “corporate” classifier
system) [85, 91]. The most basic level of rule representation
is the syntax which depicts how either the condition or
action is actually depicted. Many different syntaxes have
been examined for representing a rule condition. The first,
and probably most commonly used syntax for condition

14 Journal of Artificial Evolution and Applications

The rule set/solution
is the entire set of rule

strings in the population

Rule string/classifier
Michigan-style LCS

Pittsburgh-style LCS

Each rule string in the
population represents
a distinct rule set and

a potential solution

Figure 4: Michigan versus Pitt-style systems.

representation was fixed length bit-strings of the ternary
alphabet (0, 1, #) corresponding with the simple binary
encoding of input data [1, 3, 19, 22]. Unfortunately, it has
been shown that this type of encoding can introduce bias
as well as limit the system’s ability to represent a problem
solution [205]. For problems involving real-valued inputs
the following condition syntaxes have been explored: real-
valued alphabet [88], center-based interval predicates [92],
min-max interval predicates [95], unordered-bound inter-
val predicates [206], min-percentage representation [207],
convex hulls [208], real-valued context-free grammar [155],
ellipsoids [209], and hyper-ellipsoids [210]. Other condition
syntaxes include: partial matching [211], value representa-
tion [203], tokens, [99, 105, 132, 134], context-free grammar
[135], first-order logic expressions [212], messy conditions
[213], GP-like conditions (including s-expressions) [79, 214–
218], neural networks [2, 116, 219, 220], and fuzzy logic
[48, 75, 77, 156, 157, 221]. Overall, advanced representations
tend to improve generalization and learning, but require
larger populations to do so. Action representation has seen
much less attention. Actions are typically encoded in binary
or by a set of symbols. Recent work has also begun to
explore the prospect of computed actions, also known as
computed prediction, which replaces the usual classifier
action parameter with a function (e.g., XCSF function
approximation) [113, 152]. Neural network predictors have
also been explored [146]. Backtracking briefly, in contrast to
Michigan-style systems, Pitt-style implementations tend to
explore different rule semantics and typically rely on a simple
binary syntax. Examples of this include: VL1 [68], CNF [66],
and ADI [128, 148]. Beyond structural representation, other
issues concerning the population include: (1) population
initialization, (2) deciding whether to bound the population
size (N), and if it is bound, (3) what value of (N) to select
[129, 200].

9.3. Performance Component and Selection. This section will
discuss different performance component structures and the
selection mechanisms involved in covering, action selection,

and the GA. The message list, a component found in
many early LCSs (not included on Figure 2), is a kind of
blackboard that documents the current state of the system.
Acting as an interface, the message list temporarily stores all
communications between the system and the environment
(i.e., inputs from the detector, and classifier-posted messages
that culminate as outputs to the effector) [30, 37, 59, 201].
One potential benefit of using the message list is that the
LCS “can emulate memory mechanisms when a message is
kept on the list over several time steps” [9]. The role of
message lists will be discussed further in the context of
the BBA in Section 9.4. While the match set [M] is a
ubiquitous component of Michigan-style systems the action
set [A] only appeared after the removal of the internal
message list. [A] provided a physical location with which to
track classifiers involved in sending action messages to the
effector. Concurrently, a previously active action set [A]t−1

was implemented to keep track of the last set of rules to have
been placed in [A]. This temporary storage allows reward
to be implicitly passed up the activating chain of rules and
was aptly referred to as an implicit bucket brigade. For LCSs
designed for supervised learning (e.g., NEWBOOLE [46]
and UCS [117]), the sets of the performance component
take on a somewhat different appearance, with [A] being
replaced with a correct set [C], and not-correct set Not [C]
to accommodate the different learning style. Going beyond
the basic set structure, XCS also utilized a prediction array
added to modify both action selection and credit assignment
[22]. In brief, the prediction array calculates a system
prediction P(aj) for each action aj represented in [M]. P(aj)
represents the strength (the likely benefit) of selecting the
given aj based on the collective knowledge of all classifiers
in [M] that advocate aj . Its purpose will become clearer
in Section 9.4. Modern LCS selection mechanisms serve
three main functions: (1) using the classifiers to make an
action decision, (2) choosing parent rules for GA “mating”,
and (3) picking out classifiers to be deleted. Four selection
mechanisms are frequently implemented to perform these
functions. They include: (1) purely stochastic (random)

Journal of Artificial Evolution and Applications 15

selection, (2) deterministic selection—the classifier with the
largest fitness or prediction (in the case of action selection)
is chosen, (3) proportionate selection (often referred to as
roulette-wheel selection)—where the chances of selection
are proportional to fitness, and (4) tournament selection—
a number of classifiers (s) are selected at random and the
one with the largest fitness is chosen. Recent studies have
examined selection mechanisms and noted the advantages
of tournament selection [119, 222–225]. It should be noted
that when selecting classifiers for deletion, any fitness-based
selection will utilize the inverse of the fitness value so as to
remove less-fit classifiers. Additionally, when dealing with
action selection, selection methods will rely on the prediction
parameter instead of fitness. Also, it is not uncommon,
especially in the case of action selection, to alternate between
different selection mechanisms (e.g., MCS alternates between
stochastic and deterministic schemes from one iteration to
the next). Sometimes this method is referred to as the pure
explore/exploit scheme [19]. While action selection occurs
once per iteration, and different GA triggering mechanisms
are discussed in Section 9.5, deletion occurs under the
following circumstances; the global population (N) is bound,
and new classifiers are being added to a population that
has reached (N). At this point, a corresponding number
of classifiers must be deleted. This may occur following
covering (explained in Section 4) or after the GA has been
triggered. Of final note is a bidding mechanism. Bidding was
used by Holland’s LCS to select and allow the strongest n
classifiers in [M] to post their action messages to the message
list. Additionally either bidding or a conflict resolution
module [52] may be advocated for action selection from the
message list. A classifier’s “bid” is proportional to the product
of its strength and specificity. The critical role of bidding in
the BBA is discussed in the next section.

9.4. Reinforcement Component. Different LCS credit assign-
ment strategies are bound by a similar objective (to distribute
reward), but the varying specifics regarding where/when they
are called, what parameters are included and updated, and
what formulas are used to perform those updates have lead
to an assortment of methodologies, many of which have
only very subtle differences. As a result, the nomenclature
used to describe an LCS credit assignment scheme is often
vague (e.g., Q-Learning-Based [22]) and occasionally absent.
Therefore to understand the credit assignment used in a
specific system, we refer readers to the relevant primary
source. Credit assignment can be as simple as updating a
single value (as is implemented in MCS), or it may require
a much more elaborate series of steps (e.g., BBA). We
briefly review two of the most historically significant credit
assignment schemes, that is, the BBA and XCS’s Q-Learning-
based strategy.

9.4.1. Bucket Brigade. “The bucket brigade [BBA] may most
easily be viewed as an information economy where the right to
trade information is bought and sold by classifiers. Classifiers
form a chain of middlemen from information manufacturer
((detectors of) the environment) to information consumer (the

effectors)”—Goldberg. [8] The BBA, as described in the fol-
lowing lines, involves both performance and reinforcement
components. The following steps outline its progression over
a single time iteration (t): It should be noted that within a
given (t), the message list can receive only a limited number
of input messages as well as a limited number of classifier
postings. Also, when a classifier posts a message to the
current message list it is said to have been “activated” during
(t).

(1) Post one or more messages from the detector to the
current message list [ML].

(2) Compare all messages in [ML] to all conditions in [P]
and record all matches in [M].

(3) Post “action” messages of the highest bidding classi-
fiers of [M] onto [ML].

(4) Reduce the strengths of these activated classifiers {C}
by the amount of their respective bids B(t) and place
those collective bids in a “bucket” Btotal. (paying for
the privilege of posting a new message).

(5) Distribute Btotal evenly over the previously activated
classifiers {C′}. (suppliers {C′} are rewarded for
setting up a situation usable by {C}).

(6) Replace messages in {C′} with those in {C} and
clear {C}. (updates record of previously activated
classifiers).

(7) [ML] is processed through the output inter-
face(effector) to provoke an action.

(8) This step occurs if a reward is returned by the
environment. The reward value is added to the
strength of all classifiers in {C} (the most recently
activated classifiers receive the reward).

“Whenever a classifier wins a bidding competition, it initiates
a transaction in which it pays out part of its strength to
its suppliers and then receives similar payments from its
consumers. [This] strength is a kind of capital. If a classifier
receives more from its consumers than it paid out, it has made
a profit, that is its strength is increased”—Holland [30]. The
update for any given classifier can be summarized by the
following equation where S(t) is classifier strength, B(t) is
the bid of the classifier (see step 4), P(t) is the sum of all
payments made to this classifier by {C} (see step 5), and R(t)
is any reward received (see step 8):

S(t + 1) = S(t)− B(t) + P(t) + R(t). (2)

The desired effect of this cycle is to enable classifiers to
pass reward (when received) along to classifiers that may
have helped make that reward possible. See [8, 38] for more
details.

9.4.2. Q-Learning-Based. The Q-learning-based strategy
used by XCS is an archetype of modern credit assignment.
First off, it should be noted that the performance component
of XCS is similar to that described for MCS (although XCS
adds a prediction array and an [A]t−1 , both imperative to the

16 Journal of Artificial Evolution and Applications

credit assignment strategy). Each classifier (j) in XCS tracks
four parameters: prediction (p), prediction error (ε), fitness
(F), and experience (e). The update of these parameters takes
place in [A]t−1 as follows.

(1) Each rule’s ε is updated: ε j ← ε j + β(|P − pj|)− ε j).
(2) Rule predictions are updated: pj ← pj + β(P − pj).

(3) Each rule’s accuracy is determined: κj =
exp[(lnα)(ε j − ε0)/ε0)] for ε j > ε0 otherwise
1.

(4) A relative accuracy κ′j , is determined for each rule:
κ′j = κj/Σκ[A]t−1.

(5) Each rule’s F is updated using κ′j : Fj ← Fj +β(κ′j−Fj).

(6) Increment e for all classifiers in [A].

β is a learning rate constant (0 ≤ β ≤ 1) while ε0 and
α are accuracy function parameters. The procedure used to
calculate p, ε, and F is the widely implemented Widrow-Hoff
formula [226] (also known as Least Mean Square) seen here:

x ←− x + β
(
y − x

)
. (3)

An important caveat is that initially p, ε, and F are
actually updated by respectively averaging together their
current and previous values. It is only after a classifier
has been adjusted at least 1/β times that the Widrow-Hoff
procedure takes over parameter updates. This technique,
referred to as “moyenne adaptive modifee” [227], is used
to make early parameter values move more quickly to their
“true” average values in an attempt at avoiding the arbitrary
nature of early parameter values. The direct influence of Q-
learning on this credit assignment scheme is found in the
update of pj , which takes the maximum prediction value
from the prediction array, discounts it by a factor, and
adds in any external reward received in the previous time.
The resulting value, which Wilson calls P (see steps 1 and
2), is somewhat analogous to Q-Learning’s Q-values. Also
observe that a classifier’s fitness is dependent on its ability
to make accurate predictions, but is not proportional to
the prediction value itself. For further perspective on basic
modern credit assignment strategy see [19, 22, 228].

9.4.3. More Credit Assignment. Many other credit assignment
schemes have been implemented. For example Pitt-style sys-
tems track credit at the level of entire rule sets as opposed to
assigning parameters to individual rules. Supervised learning
systems like UCS have basically eliminated the reinforcement
component (as it is generally understood) and instead
maintains and updates a single accuracy parameter [117]. Of
course, many other credit assignment and parameter update
strategies have been suggested and implemented. Here we
list some of these strategies: epochal [3], implicit bucket
brigade [44], one-step payoff-penalty [43], symmetrical
payoff-penalty [46], hybrid bucket brigade-backward averag-
ing (BB-BA) algorithm [229], nonbucket brigade temporal
difference method [55], action-oriented credit assignment
[230, 231], QBB [19], average reward [114], gradient descent
[232, 233], eligibility traces [234], Bayesian update [147],
least squares update [235], and Kalman filter update [235].

9.5. Discovery Components. A standard discovery compo-
nent is comprised of a GA and a covering mechanism. The
primary role of the covering mechanism is to ensure that
there is at least one classifier in [P] that can handle the
current input. A new rule is generated by adding some
number of #’s (wild cards) at random to the input string
and then selecting a random action (i.e., the new rule
“0#110#0-01” might be generated from the input string
0011010) [44]. The random action assignment has been
noted to aid in escaping loops [22]. The parameter value(s)
of this newly generated classifier are set to the population
average. Covering might also be used to initialize classifier
populations on the fly, instead of starting the system with
an initialized population of maximum size. The covering
mechanism can be implemented differently by modifying
the frequency at which #’s are added to the new rule [22,
43, 44], altering how a new rule’s parameters are calculated
[19], and expanding the instances in which covering is
called (e.g., ZCS will “cover” when the total strength of
[M] is less than a fraction of the average seen in [P]
[19]). Covering does more than just handle an unfamiliar
input by assigning a random action. “Covering allows the
system [to] test a hypothesis (the condition-action relation
expressed by the created classifier) at the same time” [19].
The GA discovers rules by building upon knowledge already
in the population (i.e., the fitness). The vast majority of
LCS implementations utilize the GA as its primary discovery
component. Specifically, LCSs typically use steady state GAs,
where rules are changed in the population individually
without any defined notion of a generation. This differs
from generational GAs where all or an important part of
the population is renewed from one generation to the next
[9]. GAs implemented independent of an LCS are typically
generational. In selecting an algorithm to address a given
problem, an LCS algorithm that incorporates a GA would
likely be preferable to a straightforward GA when dealing
with more complex decision making tasks, specifically ones
where a single rule cannot effectively represent the solution,
or in problem domains where adaptive solutions are needed.
Like the covering mechanism, the specifics of how a GA is
implemented in an LCS may vary from system to system.
Three questions seem to best summarize these differences:
(1) Where is the GA applied? (2) When is GA fired? and
(3) What operators does it employ? The set of classifiers
to which the GA is applied can have a major impact on
the evolutionary pressure it produces. While early systems
applied the GA to [P] [3], the concepts of restricted mating
and niching [42] moved its action to [M] and then later
to [A], where it is typically applied in modern systems (see
Table 1). For more on niching see [22, 42, 236, 237]. The
firing of the GA can simply be controlled by a parameter
(g) which represents the probability of firing the GA on a
given time step (t), but in order to more fairly allocate the
application of the GA to different developing niches, it can
be triggered by a tracking parameter [22, 47]. Crossover and
mutation are the two most recognizable operators of the GA.
Both mechanisms are controlled by parameters representing
their respective probabilities of being called. Historically,
most early LCSs used simple one-point crossover, but interest

Journal of Artificial Evolution and Applications 17

in discovering complex “building blocks” [8, 238, 239]
has led to examining two-point, uniform, and informed
crossover (based on estimation of distribution algorithms)
as well [239]. Additionally, a smart crossover operator for a
Pitt-style LCS has also been explored [240]. The GA is a par-
ticularly important component of Pitt-style systems which
relies on it as its only adaptive process. Oftentimes it seems
more appropriate to classify Pitt-style systems simply as an
evolutionary algorithm as opposed to what is commonly
considered to be a modern LCS [9, 52]. Quite differently, the
GA is absent from ACSs, instead relying on nonevolutionary
discovery mechanisms [24, 99, 103, 118, 132].

9.6. Beyond the Basics. This section briefly identifies LCS
implementation themes that extend beyond the basic frame-
work such as the addition of memory, multilearning classifier
systems, multiobjectivity, and data concerns. While able to
deal optimally with Markov problems, the major drawback
of simpler systems like ZCS and XCS was their relative
inability to handle non-Markov problems. One of the
methodologies that were developed to address this problem
was the addition of memory via an internal register (i.e.,
a non-message-list memory mechanism) which can store a
limited amount of information reguarding a previous state.
Systems adopting memory include ZCSM [78], XCSM [83],
and XCSMH [90]. Another area that has drawn attention is
the development of what we will call “multilearning classifier
systems” (M-LCSs) (i.e., multiagent LCSs, ensemble LCSs,
and distributed LCSs), which run more than one LCS at a
time. Multiagent LCSs were designed to model multiagent
systems that intrinsically depend on the interaction between
multiple intelligent agents (e.g., game-play) [94, 241, 242].
Ensemble LCSs were designed to improve algorithmic per-
formance and generalization via parallelization [140–142,
153, 243–245]. Distributed LCSs were developed to assimi-
late distributed data (i.e. data coming from different sources)
[137, 246, 247]. Similar to the concept of M-LCS, Ranawana
and Palade published a detailed review and roadmap on
multiclassifier systems [248]. Multiobjective LCSs discussed
in [249] explicitly address the goals implicitly held by
many LCS implementations (i.e., accuracy, completeness,
minimalism) [97, 120]. A method that has been explored to
assure minimalism is the application of a rule compaction
algorithm for the removal of redundant or strongly over-
lapping classifiers [96, 122, 250, 251]. Some other dataset
issues which have come up especially in the context of
data mining include missing data [130, 252], unbalanced
data [253], dataset size [254], and noise [120]. Some other
interesting algorithmic innovations include partial matching
[211], endogenous fitness [255], self-adapted parameters
[219, 256–259], abstraction, [260], and macroclassifiers [22].

10. Conclusion

“Classifier Systems are a quagmire—a glorious, wondrous, and
inventing quagmire, but a quagmire nonetheless”—Goldberg
[261]. This early perspective was voiced at a time when
LCSs were still quite complex and nebulously understood.

Structurally speaking, the LCS algorithm is an interactive
merger of other stand-alone algorithms. Therefore, its per-
formance is dependent not only on individual components
but also on the interactive implementation of the frame-
work. The independent advancement of GA and learning
theory (in and outside the context of LCS) has inspired
an inovative generation of systems, that no longer merrit
the label of a “quagmire”. The application of LCSs to a
spectrum of problem domains has generated a diversity of
implementations. However it is not yet obvious which LCSs
are best suited to address a given domain, nor how to best
optimize performance. The basic XCS architecture has not
only revitalized interest in LCS research, but has become the
model framework upon which many recent modifications or
adaptations have been built. These expansions are intended
to address inherent limitations in different problem domains,
while sticking to a trusted and recognizable framework.
But will this be enough to address relevant real-world
applications? One of the greatest challenges for LCS might
inevitably be the issue of scalability as the problems we look
to be solved increase exponentially in size and complexity.
Perhaps, as was seen pre-empting the development of ZCS
and XCS, the addition of heuristics to an accepted framework
might again pave the way for some novel architecture(s).
Perhaps there will be a return to Holland-style architectures
as the limits of XCS-based systems are reached. A number of
theoretical questions should also be considered: What are the
limits of the LCS framework? How will LCS take advantage
of advancing computational technology? How can we best
identify and interpret an evolved population (solution)? And
how can we make using the algorithm more intuitive and/or
interactive? Beginning with a gentle introduction, this paper
has described the basic LCS framework, provided a historical
review of major advancements, and provided an extensive
roadmap to the problem domains, optimization, and varying
components of different LCS implementations. It is hoped
that by organizing many of the existing components and
concepts, they might be recycled into or inspire new systems
which are better adapted to a specific problem domain.
The ultimate challenge in developing an optimized LCS is
to design an implementation that best arranges multiple
interacting components, operating in concert, to evolve an
accurate, compact, comprehensible solution, in the least
amount of time, making efficient use of computational
power. It seems likely that LCS research may culminate in one
of two ways. Either there will be some dominant core plat-
form, flexibly supplemented by a variety of problem specific
modifiers, or will there be a handful of fundamentally dif-
ferent systems that specialize to different problem domains.
Whatever the direction, it is likely that LCS will continue to
evolve and inspire methodologies designed to address some
of the most difficult problems ever presented to a machine.

11. Resources

For various perspectives on the LCS algorithm, we refer
readers to the following review papers [4, 7, 9, 45, 52, 54,
165, 178, 262]. Together, [45, 165] represent two decade-
long consecutive summaries of current systems, unsolved

18 Journal of Artificial Evolution and Applications

problems and future challenges. For comparative system
discussions see [102, 192, 263, 264]. For a detailed summary
of LCS community resources as of (2002) see [265]. For
a detailed examination of the design and analysis of LCS
algorithms see [266].

References

[1] J. Holland, Hidden Order: How Adaptation Builds Complexity,
Addison-Wesley, Reading, Mass, USA, 1996.

[2] H. H. Dam, H. A. Abbass, C. Lokan, and X. Yao, “Neural-
based learning classifier systems,” IEEE Transactions on
Knowledge and Data Engineering, vol. 20, no. 1, pp. 26–39,
2008.

[3] J. Holland and J. Reitman, “Cognitive systems based on
adaptive agents,” in Pattern-Directed Inference Systems, D. A.
Waterman and F. Inand, Eds., Hayes-Roth, 1978.

[4] J. H. Holmes, P. L. Lanzi, W. Stolzmann, and S. W.
Wilson, “Learning classifier systems: new models, successful
applications,” Information Processing Letters, vol. 82, no. 1,
pp. 23–30, 2002.

[5] M. Minsky, “Steps toward artificial intelligence,” Proceedings
of the IRE, vol. 49, no. 1, pp. 8–30, 1961.

[6] J. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, Mich, USA, 1975.

[7] L. Bull and T. Kovacs, Foundations of Learning Classifier
Systems, Springer, Berlin, Germany, 2005.

[8] D. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley Longman, Boston, Mass,
USA, 1989.

[9] O. Sigaud and S. Wilson, “Learning classifier systems: a
survey,” Soft Computing, vol. 11, no. 11, pp. 1065–1078, 2007.

[10] J. Holmes, “Learning classifier systems applied to knowledge
discovery in clinical research databases,” in Learning Classifier
Systems, from Foundations to Applications, pp. 243–262, 2000.

[11] D. Goldberg, The Design of Innovation: Lessons from and for
Competent Genetic Algorithms, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2002.

[12] P. Langley, Elements of Machine Learning, Morgan Kaufmann,
San Francisco, Calif, USA, 1996.

[13] M. B. Harries, C. Sammut, and K. Horn, “Extracting hidden
context,” Machine Learning, vol. 32, no. 2, pp. 101–126, 1998.

[14] S. Ben-David, E. Kushilevitz, and Y. Mansour, “Online
learning versus offline learning,” Machine Learning, vol. 29,
no. 1, pp. 45–63, 1997.

[15] R. S. Sutton and A. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, Mass, USA, 1998.

[16] M. Harmon and S. Harmon, “Reinforcement Learning: A
Tutorial,” December 1996.

[17] J. Wyatt, “Reinforcement learning: a brief overview,” in
Foundations of Learning Classifier Systems, pp. 179–202, 2005.

[18] L. Bull, “Two simple learning classifier systems,” in Founda-
tions of Learning Classifier Systems, pp. 63–89, 2005.

[19] S. W. Wilson, “ZCS: a zeroth level classifier system,” Evolu-
tionary Computation, vol. 2, no. 1, pp. 1–18, 1994.

[20] D. Goldberg, Computer-aided gas pipeline operation using
genetic algorithms and machine learning, Ph.D. thesis, Depart-
ment Civil Engineering, University of Michigan, Ann Arbor,
Mich, USA, 1983.

[21] J. Baker, “Reducing bias and inefficiency in the selection
algorithm,” in Proceedings of the 2nd International Conference
on Genetic Algorithms on Genetic Algorithms and Their
Application, pp. 14–21, 1987.

[22] S. W. Wilson, “Classifier fitness based on accuracy,” Evolu-
tionary Computation, vol. 3, no. 2, pp. 149–175, 1995.

[23] S. Smith, A learning system based on genetic adaptive algo-
rithms, Ph.D. thesis, University of Pittsburgh, Pittsburgh, Pa,
USA, 1980.

[24] W. Stolzmann, “Anticipatory classifier systems,” in Proceed-
ings of the 3rd Annual Genetic Programming Conference, pp.
658–664, 1998.

[25] J. Holland, “Adaptation,” Progress in Theoretical Biology, vol.
4, pp. 263–293, 1976.

[26] G. G. Robertson and R. L. Riolo, “A tale of two classifier
systems,” Machine Learning, vol. 3, no. 2-3, pp. 139–159,
1988.

[27] S. Smith, “Flexible learning of problem solving heuristics
through adaptive search,” in Proceedings of the 8th Interna-
tional Joint Conference on Artificial Intelligence, pp. 422–425,
1983.

[28] C. Congdon, A comparison of genetic algorithms and other
machine learning systems of a complex classification task
from common disease research, Ph.D. thesis, University of
Michigan, 1995.

[29] R. Riolo, Empirical studies of default hierarchies and sequences
of rules in learning classifier systems, Doctoral dissertation,
University of Michigan, Ann Arbor, Mich, USA, 1988.

[30] J. Holland, “Escaping brittleness: the possibilities of general-
purpose learning algorithms applied to parallel rule-based
systems,” Machine Learning, vol. 2, pp. 593–623, 1986.

[31] J. Holland, “A mathematical framework for studying learning
in classifier systems,” Physica D, vol. 2, no. 1–3, pp. 307–317,
1986.

[32] J. H. Holland, “Adaptive algorithms for discovering and using
general patterns in growing knowledge bases,” International
Journal of Policy Analysis and Information Systems, vol. 4, no.
3, pp. 245–268, 1980.

[33] J. Holland, “Adaptive knowledge acquisition,” unpublished
research proposal, 1980.

[34] J. Holland, “Genetic algorithms and adaptation,” Tech. Rep.
34, Department of Computer and Communication Sciences,
University of Michigan, Ann Arbor, Mich, USA, 1981.

[35] J. Holland, “Induction in artificial intelligence,” Tech. Rep.,
Department of Computer and Communication Sciences,
University of Michigan, Ann Arbor, Mich, USA, 1983.

[36] J. Holland, “A more detailed discussion of classifier systems,”
Tech. Rep., Department of Computer and Communication
Sciences, University of Michigan, Ann Arbor, Mich, USA,
1983.

[37] J. Holland, “Genetic algorithms and adaptation,” in Adaptive
Control of Ill-Defined Systems, pp. 317–333, 1984.

[38] J. Holland, “Properties of the Bucket brigade,” in Proceedings
of the 1st International Conference on Genetic Algorithms, pp.
1–7, 1985.

[39] J. Holland, “A mathematical framework for studying learning
in classifier systems,” Research Memo RIS-25r, The Rowland
Institute for Science, Cambridge, Mass, USA, 1985.

[40] J. Holland, “Genetic algorithms and classifier systems: foun-
dations and future directions,” in Proceedings of the 2nd
International Conference on Genetic Algorithms and Their
Application, pp. 82–89, 1987.

[41] A. Samuel, “Some studies in machine learning using the
game of checkers,” IBM Journal of Research and Development,
pp. 211–232, 1959.

[42] L. B. Booker, “Intelligent behavior as an adaptation to the
task environment,” 1982.

Journal of Artificial Evolution and Applications 19

[43] S. W. Wilson, “Classifier systems and the animat problem,”
Machine Learning, vol. 2, no. 3, pp. 199–228, 1987.

[44] S. W. Wilson, “Knowledge growth in an artificial animal,”
in Proceedings of the 1st International Conference on Genetic
Algorithms and Their Application, pp. 16–23, 1985.

[45] S. W. Wilson and D. Goldberg, “A critical review of classifier
systems,” in Proceedings of the 3rd International Conference on
Genetic Algorithms and Their Application, pp. 244–255, 1989.

[46] P. Bonelli, A. Parodi, S. Sen, and S. Wilson, “NEWBOOLE:
a fast GBML system,” in Proceedings of the 7th International
Conference on Machine Learning, pp. 153–159, 1990.

[47] L. Booker, “Triggered rule discovery in classifier systems,”
in Proceedings of the 3rd International Conference on Genetic
Algorithms, pp. 265–274, 1989.

[48] M. Valenzuela-Rendon, “The fuzzy classifier system: a classi-
fier system for continuously varying variables,” in Proceedings
of the 4th International Conference on Genetic Algorithm, pp.
346–353, 1991.

[49] A. Bonarini, “An introduction to learning fuzzy classifier
systems,” in Proceedings of the International Workshop on
Learning Classifier Systems (IWLCS ’00), vol. 1813 of Lecture
Notes in Artificial Intelligence, pp. 83–104, 2000.

[50] R. Riolo, “Bucket brigade performance: I. Long sequences of
classifiers,” in Proceedings of the 2nd International Conference
on Genetic Algorithms and Their Application, pp. 184–195,
Lawrence Erlbaum, Mahwah, NJ, USA, 1987.

[51] R. Riolo, “Bucket brigade performance: II. Default hierar-
chies,” in Proceedings of the 2nd International Conference
on Genetic Algorithms and Their Application, pp. 196–201,
Lawrence Erlbaum, Mahwah, NJ, USA, 1987.

[52] P. Lanzi and R. Riolo, “Recent trends in learning classifier
systems research,” in Advances in Evolutionary Computing:
Theory and Applications, Natural Computing Series, pp. 955–
988, 2003.

[53] A. Barry, “Hierarchy formation within classifier systems: a
review,” in Proceedings of the 1st International Conference on
Evolutionary Algorithms and Their Application (EVCA ’96),
pp. 195–211, 1996.

[54] P. L. Lanzi, “Learning classifier systems: then and now,”
Evolutionary Intelligence, vol. 1, no. 1, pp. 63–82, 2008.

[55] R. Riolo, “Lookahead planning and latent learning in a
classifier system,” in Proceedings of the 1st International
Conference on Simulation of Adaptive Behavior on from
Animals to Animats, pp. 316–326, 1991.

[56] J. Schaffer and J. Grefenstette, “Multi-objective learning via
genetic algorithms,” in Proceedings of the 9th International
Joint Conference on Artificial Intelligence, pp. 593–595, 1985.

[57] D. Greene, “Automated knowledge acquisition: overcoming
the expert system bottleneck,” in Proceedings of the 8th
International Conference on Information Systems, J. DeGross
and C. Kriebel, Eds., pp. 107–117, Pittsburgh, Pa, USA, 1987.

[58] J. J. Grefenstette, “Credit assignment in rule discovery
systems based on genetic algorithms,” Machine Learning, vol.
3, no. 2-3, pp. 225–245, 1988.

[59] L. B. Booker, “Classifier systems that learn internal world
models,” Machine Learning, vol. 3, no. 2-3, pp. 161–192,
1988.

[60] J. Grefenstette, “Incremental learning of control strategies
with genetic algorithms,” in Proceedings of the 6th Interna-
tional Workshop on Machine Learning, pp. 340–344, 1989.

[61] J. Grefenstette, “The evolution of strategies for multiagent
environments,” Adaptive Behavior, vol. 1, no. 1, p. 65, 1992.

[62] J. Grefenstette, The User’s Guide to SAMUEL-97: An Evolu-
tionary Learning System, Navy Center for Applied Research
in Artificial Intelligence, Naval Research Laboratory, Wash-
ington, DC, USA, 1997.

[63] L. Shu and J. Schaeffer, “HCS: adding hierarchies to classifier
systems,” in Proceedings of the 4th International Conference on
Genetic Algorithms and Their Application, pp. 339–345, 1991.

[64] M. Dorigo and E. Sirtori, “Alecsys: a parallel laboratory
for learning classifier systems,” in Proceedings of the 4th
International Conference on Genetic Algorithms, 1991.

[65] M. Dorigo, “Alecsys and the autonoMouse: learning to con-
trol a real robot by distributed classifier systems,” Machine
Learning, vol. 19, no. 3, pp. 209–240, 1995.

[66] K. De Jong and W. Spears, “Learning concept classification
rules using genetic algorithms,” in Proceedings of the 12th
International Conference on Artificial Intelligence (IJCAI ’91),
vol. 2, 1991.

[67] K. A. De Jong, W. M. Spears, and D. F. Gordon, “Using
genetic algorithms for concept learning,” Machine Learning,
vol. 13, no. 2-3, pp. 161–188, 1993.

[68] C. Janikow, Inductive Learning of decision rules in attribute-
based examples: a knowledge-intensive genetic algorithm
approach, Ph.D. thesis, University of North Carolina, 1991.

[69] C. Z. Janikow, “A knowledge-intensive genetic algorithm for
supervised learning,” Machine Learning, vol. 13, no. 2-3, pp.
189–228, 1993.

[70] D. Greene, Inductive knowledge acquisition using genetic
adaptive search, Ph.D. thesis, 1992.

[71] D. P. Greene and S. F. Smith, “Competition-based induction
of decision models from examples,” Machine Learning, vol.
13, no. 2-3, pp. 229–257, 1993.

[72] A. Giordana and L. Saitta, “REGAL: an integrated system for
learning relations using genetic algorithms,” in Proceedings of
the 2nd International Workshop on Multistrategy Learning, pp.
234–249, 1993.

[73] A. Giordana, L. Saitta, and F. Zini, “Learning disjunctive
concepts with distributed genetic algorithms,” in Proceedings
of the 1st IEEE Conference on Evolutionary Computation, vol.
1, pp. 115–119, Orlando, Fla, USA, June 1994.

[74] A. Giordana and F. Neri, “Search-intensive concept induc-
tion,” Evolutionary Computation, vol. 3, no. 4, pp. 375–416,
1995.

[75] A. Bonarini, “ELF: learning incomplete fuzzy rule sets for an
autonomous robot,” in Proceedings of the ELITE Foundation
(EUFIT ’93), pp. 69–75, Aachen, Germany, 1993.

[76] A. Bonarini, “Some methodological issues about designing
autonomous agents which learn their behaviors: the ELF
experience,” in Proceedings of the Cybernetics and Systems
Research, R. Trappl, Ed., pp. 1435–1442, 1994.

[77] A. Bonarini, “Evolutionary learning of fuzzy rules: compe-
tition and cooperation,” in Fuzzy Modelling: Paradigms and
Practice, pp. 265–284, 1996.

[78] D. Cliff and S. Ross, “Adding memory to ZCS,” Adaptive
Behavior, vol. 3, no. 2, pp. 101–150, 1994.

[79] I. Flockhart and N. Radcliffe, “GA-MINER: parallel data
mining with hierarchical genetic algorithms-final report,”
EPCC AIKMS GA-Miner-Report 1.

[80] I. Flockhart, N. Radcliffe, E. Simoudis, J. Han, and U. Fayyad,
“A genetic algorithm-based approach to data mining,” in
Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining (KDD ’96), pp. 299–302, 1996.

[81] J. Holmes, “A genetics-based machine learning approach to
knowledge discovery in clinical data,” in Proceedings of the
AMIA Anual Symposim, pp. 883–883, 1996.

20 Journal of Artificial Evolution and Applications

[82] J. Holmes, “Discovering risk of disease with a learning
classifier system,” in Proceedings of the 7th International
Conference on Genetic Algorithms (ICGA ’97), pp. 426–433,
1997.

[83] P. Lanzi, “Adding memory to XCS,” in Proceedings of IEEE
Conference on Evolutionary Computation (ICEC ’98), pp.
609–614, 1998.

[84] P. Lanzi, “An analysis of the memory mechanism of XCSM,”
Genetic Programming, vol. 98, pp. 643–651, 1998.

[85] A. Tomlinson and L. Bull, “A corporate classifier system,”
Lecture Notes in Computer Science, pp. 550–559, 1998.

[86] A. Tomlinson and L. Bull, “A zeroth level corporate classifier
system,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’99), pp. 306–313, 1999.

[87] W. Stolzmann, “An introduction to anticipatory classifier
systems,” in Learning Classifier Systems: From Foundations to
Applications, Lecture Notes in Computer Science, pp. 175–
194, 2000.

[88] W. Browne, The Development of an Industrial Learning
Classifier System for Application to a Steel Hot Strip Mill,
Ph.D. thesis, Division of Mechanical Engineering and Energy
Studies, University of Wales, Cardiff, UK, 1999.

[89] W. N. L. Browne, K. M. Holford, C. J. Moore, and J. Bullock,
“An industrial learning classifier system: the importance of
pre-processing real data and choice of alphabet,” Engineering
Applications of Artificial Intelligence, vol. 13, no. 1, pp. 25–36,
2000.

[90] P. Lanzi and S. Wilson, “Toward optimal classifier system
performance in non-Markov environments,” Evolutionary
Computation, vol. 8, no. 4, pp. 393–418, 2000.

[91] A. Tomlinson and L. Bull, “A corporate XCS,” in Proceedings
of the International Workshop on Learning Classifier Systems,
Lecture Notes in Computer Science, pp. 195–208, 2000.

[92] S. W. Wilson, “Get real! XCS with continuous-valued inputs,”
in Proceedings of the 3rd International Workshop on Advances
in Learning Classifier Systems, Lecture Notes in Computer
Science, pp. 209–222, 2000.

[93] D. Walter and C. K. Mohan, “ClaDia: a fuzzy classifier system
for disease diagnosis,” in Proceedings of the IEEE Conference
on Evolutionary Computation (ICEC ’00), vol. 2, pp. 1429–
1435, 2000.

[94] K. Takadama, T. Terano, and K. Shimohara, “Learning classi-
fier systems meet multiagent environments,” in Proceedings of
the 3rd International Workshop on Learning Classifier Systems
(IWLCS ’00), L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds.,
pp. 192–210, Springer, 2000.

[95] S. W. Wilson, “Mining oblique data with XCS,” in Proceedings
of the 3rd International Workshop on Advances in Learning
Classifier Systems, pp. 158–176, 2000.

[96] S. W. Wilson, “Compact rulesets from XCSI,” in Proceedings
of the 4th International Workshop on Advances in Learning
Classifier Systems, pp. 197–210, 2001.

[97] E. Bernado-Mansilla and J. Garrell-Guiu, “MOLeCS: a
multiObjective learning classifier system,” in Proceedings of
the Conference on Genetic and Evolutionary Computation, vol.
1, 2000.

[98] E. Mansilla and J. Guiu, “MOLeCS: using multiobjective
evolutionary algorithms for learning,” in Proceedings of the
1st International Conference on Evolutionary Multi-Criterion
Optimization, Lecture Notes in Computer Science, pp. 696–
710, 2001.

[99] P. Gérard and O. Sigaud, “YACS: combining dynamic
programming with generalization in classifiersystems,” in
Proceedings of the 3rd International Workshop on Advances in
Learning Classifier Systems (IWLCS ’00), pp. 52–69, 2000.

[100] P. Gérard, W. Stolzmann, and O. Sigaud, “YACS : a new learn-
ing classifier system using anticipation,” Soft Computing-A,
vol. 6, no. 3, pp. 216–228, 2002.

[101] T. Kovacs, A comparison of strength and accuracy-based
fitness in learning classifier systems, Ph.D. thesis, University of
Birmingham, Birmingham, UK, 2001.

[102] T. Kovacs, “Two views of classifier systems,” in Advances
in Learning Classifier Systems, Lecture Notes in Computer
Science, pp. 74–87, 2002.

[103] M. Butz, “Biasing exploration in an anticipatory learning
classifier system,” in Proceedings of the 4th International
Workshop on Advances in Learning Classifier Systems, vol.
2321 of Lecture Notes in Computer Science, pp. 3–22, 2001.

[104] M. V. Butz and J. Hoffmann, “Anticipations control behavior:
animal behavior in an anticipatory learning classifier system,”
Adaptive Behavior, vol. 10, no. 2, pp. 75–96, 2002.

[105] S. Picault and S. Landau, “ATNoSFERES: a Darwinian evo-
lutionary model for individual or collective agent behavior,”
Tech. Rep., LIP6, Paris, France, 2001.

[106] S. Landau, S. Picault, and A. Drogoul, “ATNoSFERES: a
model for evolutive agent behaviors,” in Proceedings of the
Symposium on Adaptive Agents and Multi-Agent Systems
(AISB ’01), vol. 1, 2001.

[107] S. Landau, S. Picault, O. Sigaud, and P. Gérard, “A compari-
son between ATNoSFERES and XCSM,” in Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 926–
933, 2002.

[108] S. Landau, S. Picault, O. Sigaud, and P. Gerard, “Further com-
parison between ATNoSFERES and XCSM,” in Proceedings of
the 5th International Workshop on Learning Classifier Systems,
vol. 2661 of Lecture Notes in Computer Science, pp. 99–117,
2003.

[109] S. Landau, O. Sigaud, S. Picault, and P. Gerard, “An
experimental comparison between ATNoSFERES and ACS,”
in Proceedings of the International Workshop on Learning
Classifier Systems, vol. 4399 of Lecture Notes in Computer
Science, pp. 144–160, 2007.

[110] X. Llorà, J. Garrell, et al., “Knowledge-independent data
mining with fine-grained parallel evolutionary algorithms,”
in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’01), pp. 461–468, Morgan Kaufmann,
San Francisco, Calif, USA, 2001.

[111] T. Kovacs, Genetic based machine learning using fine-grained
parallelism for data mining, Ph.D. thesis, Enginyeria i Arqui-
tectura La Salle, Ramon Llull University, 2002.

[112] X. Llorà and J. Guiu, “Coevolving different knowledge
representations with fine-grained parallel learning classifier
systems,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’02), pp. 934–941, Morgan
Kaufmann, San Francisco, Calif, USA, 2002.

[113] S. W. Wilson, “Classifiers that approximate functions,”
Natural Computing, vol. 1, no. 2, pp. 211–234, 2002.

[114] K. Tharakunnel and D. Goldberg, “XCS with average reward
criterion in multi-step environment,” Tech. Rep., Illinois
Genetic Algorithms Laboratory (IlliGAL), Department of
General Engineering, University of Illinois at Urbana-
Champaign, 2002.

Journal of Artificial Evolution and Applications 21

[115] J. Hurst, L. Bull, and C. Melhuish, “TCS learning classifier
system controller on a real robot,” in Proceedings of the 7th
International Conference on Parallel Problem Solving from
Nature (PPSN ’02), Lecture Notes in Computer Science, pp.
588–600, Granada, Spain, September 2002.

[116] L. Bull and T. O’Hara, “Accuracy-based neuro and neuro-
fuzzy classifier systems,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’02), pp. 905–
911, 2002.

[117] E. Bernadó-Mansilla and J. M. Garrell-Guiu, “Accuracy-
based learning classifier systems: models, analysis and appli-
cations to classification tasks,” Evolutionary Computation,
vol. 11, no. 3, pp. 209–238, 2003.

[118] M. Butz and D. Goldberg, “Generalized state values in an
anticipatory learning classifier system,” in Proceedings of
the 7th International Conference on Simulation of Adaptive
Behavior in Anticipatory Learning Systems, Lecture Notes in
Computer Science, pp. 282–302, 2003.

[119] M. Butz, K. Sastry, and D. Goldberg, “Tournament selection:
stable fitness pressure in XCS,” in Proceedings of the Genetic
and Evolutionary Computation Conference, Lecture Notes in
Computer Science, pp. 1857–1869, 2003.

[120] X. Llorà and D. E. Goldberg, “Bounding the effect of noise
in multiobjective learning classifier systems,” Evolutionary
Computation, vol. 11, no. 3, pp. 279–298, 2003.

[121] L. Bull, “A simple accuracy-based learning classifier sys-
tem,” Learning Classifier Systems Group Technical Report
UWELCSG03-005, University of the West of England, Bristol,
UK, 2003.

[122] P. W. Dixon, D. W. Corne, and M. J. Oates, “A ruleset
reduction algorithm for the XCS learning classifier system,”
in Learning Classifier Systems, vol. 2661 of Lecture Notes in
Computer Science, pp. 20–29, 2003.

[123] L. Bull, “Lookahead and latent learning in a simple accuracy-
based classifier system,” in Proceedings of the 8th International
Conference on Parallel Problem Solving from Nature, Lecture
Notes in Computer Science, pp. 1042–1050, 2004.

[124] A. Gaspar and B. Hirsbrunner, “PICS: Pittsburgh immune
classifier system,” in Proceedings of the AISB Symposium on
the Immune System and Cognition, Leeds, UK, March 2004.

[125] A. Gaspar and B. Hirsbrunner, “From optimization to
learning in changing environments: the Pittsburgh immune
classifier system,” in Proceedings of the 1st International Con-
ference on Artificial Immune Systems (ICARIS ’02), September
2002.

[126] J. Hurst and L. Bull, “A self-adaptive neural learning classifier
system with constructivism for mobile robot control,” in
Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature (PPSN ’04), Lecture Notes in
Computer Science, pp. 942–951, Birmingham, UK, Septem-
ber 2004.

[127] L. Bull, “A simple payoff-based learning classifier system,”
in Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature, Lecture Notes in Computer
Science, pp. 1032–1041, 2004.

[128] J. Bacardit, Pittsburgh genetic-based machine learning in the
data mining era: representations, generalization, and run-time,
Ph.D. thesis, Enginyeria i Arquitectura La Salle, Ramon Llull
University, Barcelona, European Union, Catalonia, Spain,
2004.

[129] J. Bacardit, “Analysis of the initialization stage of a Pittsburgh
approach learning classifier system,” in Proceedings of the
Conference on Genetic and Evolutionary Computation, pp.
1843–1850, 2005.

[130] J. Bacardit and M. Butz, “Data mining in learning classifier
systems: comparing XCS with GAssist,” in Proceedings of
the International Workshop on Learning Classifier Systems
(IWLCS ’07), vol. 4399 of Lecture Notes in Computer Science,
pp. 282–290, 2007.

[131] M. Stout, J. Bacardit, J. D. Hirst, R. E. Smith, and N.
Krasnogor, “Prediction of topological contacts in proteins
using learning classifier systems,” Soft Computing, vol. 13, no.
3, pp. 245–258, 2009.

[132] P. Gérard, J.-A. Meyer, and O. Sigaud, “Combining latent
learning with dynamic programming in the modular antic-
ipatory classifier system,” European Journal of Operational
Research, vol. 160, no. 3, pp. 614–637, 2005.

[133] A. Hamzeh and A. Rahmani, “An evolutionary function
approximation approach to compute prediction in XCSF,”
in Proceedings of the 16th European Conference on Machine
Learning (ECML ’05), vol. 3720 of Lecture Notes in Computer
Science, pp. 584–592, Porto, Portugal, October 2005.

[134] S. Landau, O. Sigaud, and M. Schoenauer, “ATNoSFERES
revisited,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’05), pp. 1867–1874, 2005.

[135] O. Unold, “Context-free grammar induction with grammar-
based classifier system,” Archives of Control Science, vol. 15,
no. 4, p. 681, 2005.

[136] O. Unold and L. Cielecki, “Grammar-based classifier system,”
in Issues in Intelligent Systems: Paradigms, pp. 273–286, EXIT,
Warsaw, Poland, 2005.

[137] H. Dam, H. Abbass, and C. Lokan, “DXCS: an XCS system for
distributed data mining,” in Proceedings of the Conference on
Genetic and Evolutionary Computation, pp. 1883–1890, 2005.

[138] H. Dam, H. Abbass, and C. Lokan, “Investigation on
DXCS: an XCS system for distribution data mining, with
continuous-valued inputs in static and dynamic environ-
ments,” in Proceedings of the IEEE Cogress on Evolutionary
Computation, 2005.

[139] H. Dam, H. Abbass, and C. Lokan, “The performance of the
DXCS system on continuous-valued inputs in stationary and
dynamic environments,” in Proceedings of the IEEE Congress
on Evolutionary Computation, vol. 1, 2005.

[140] Y. Gao, J. Huang, H. Rong, and D. Gu, “Learning classifier
system ensemble for data mining,” in Proceedings of the
Workshops on Genetic and Evolutionary Computation, pp. 63–
66, 2005.

[141] Y. Gao, L. Wu, and J. Huang, “Ensemble learning classifier
system and compact ruleset,” in Proceedings of the 6th
International Conference Simulated Evolution and Learning
(SEAL ’06), vol. 4247 of Lecture Notes in Computer Science,
pp. 42–49, Hefei, China, October 2006.

[142] Y. Gao, J. Z. Huang, H. Rong, and D.-Q. Gu, “LCSE:
learning classifier system ensemble for incremental medical
instances,” in Proceedings of the International Workshop on
Learning Classifier Systems (IWLCS ’07), vol. 4399 of Lecture
Notes in Computer Science, pp. 93–103, 2007.

[143] J. H. Holmes and J. A. Sager, “Rule discovery in epi-
demiologic surveillance data using EpiXCS: an evolutionary
computation approach,” in Proceedings of the 10th Conference
on Artificial Intelligence in Medicine (AIME ’05), vol. 3581 of
Lecture Notes in Computer Science, pp. 444–452, Aberdeen,
Scotland, July 2005.

[144] J. H. Holmes and J. A. Sager, “The EpiXCS workbench: a
tool for experimentation and visualization,” in Proceedings
of the International Workshop on Learning Classifier Systems
(IWLCS ’07), vol. 4399 of Lecture Notes in Computer Science,
pp. 333–344, 2007.

22 Journal of Artificial Evolution and Applications

[145] J. H. Holmes, “Detection of sentinel predictor-class asso-
ciations with XCS: a sensitivity analysis,” in Proceedings of
the International Workshop on Learning Classifier Systems
(IWLCS ’07), vol. 4399 of Lecture Notes in Computer Science,
pp. 270–281, 2007.

[146] D. Loiacono and P. Lanzi, “Evolving neural networks for clas-
sifier prediction with XCSF,” in Proceedings of the Workshop
on Evolutionary Computation (ECAI ’06), pp. 36–40, 2006.

[147] H. Dam, H. Abbass, and C. Lokan, “BCS: a Bayesian
learning classifier system,” Tech. Rep. TR-ALAR-200604005,
The Artificial Life and Adaptic Robotics Laboratory, School
of Information Technology and Electrical Engineering, Uni-
versity of New South Wales, Cardiff, UK, 2006.

[148] J. Bacardit and N. Krasnogor, “Biohel: bioinformatics-
oriented hierarchical evolutionary learning (Nottingham
ePrints),” Tech. Rep., University of Nottingham, Nottingham,
UK, 2006.

[149] J. Bacardit, M. Stout, J. D. Hirst, K. Sastry, X. Llorà, and
N. Krasnogor, “Automated alphabet reduction method with
evolutionary algorithms for protein structure prediction,”
in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’07), pp. 346–353, ACM Press, New
York, NY, USA, 2007.

[150] A. Hamzeh and A. Rahmani, “Extending XCSFG beyond
linear approximation,” in Proceedings of the IEEE Congress
on Evolutionary Computation (CEC ’06), pp. 2246–2253,
Vancouver, Canada, July 2006.

[151] A. Hamzeh and A. Rahmani, “A new architecture of XCS
to approximate real-valued functions based on high order
polynomials using variable-length GA,” in Proceedings of
the 3rd International Conference on Natural Computation
(ICNC ’07), vol. 3, pp. 515–519, Haikou, China, August 2007.

[152] P. Lanzi and D. Loiacono, “Classifier systems that compute
action mappings,” in Proceedings of the 9th Genetic and
Evolutionary Computation Conference (GECCO ’07), pp.
1822–1829, ACM Press, New York, NY, USA, 2007.

[153] M. Gershoff and S. Schulenburg, “Collective behavior based
hierarchical XCS,” in Proceedings of the Conference on Genetic
and Evolutionary Computation Conference (GECCO ’07), pp.
2695–2700, ACM Press, New York, NY, USA, 2007.

[154] R. E. Smith and M. K. Jiang, “MILCS: a mutual information
learning classifier system,” in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’07), pp.
2945–2952, ACM Press, New York, NY, USA, 2007.

[155] L. Cielecki and O. Unold, “GCS with real-valued input,” in
Proceedings of the 2nd International Work-Conference on The
Interplay between Natural and Artificial Computation, vol.
4527 of Lecture Notes in Computer Science, pp. 488–497, 2007.

[156] J. Casillas and L. Bull, “Fuzzy-XCS: a Michigan genetic fuzzy
system,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 4,
pp. 536–550, 2007.

[157] A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla, “Fuzzy-
UCS: preliminary results,” in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’07), pp.
2871–2874, 2007.

[158] X. Llorà, R. Reddy, B. Matesic, and R. Bhargava, “Towards
better than human capability in diagnosing prostate cancer
using infrared spectroscopic imaging,” in Proceedings of
the 9th Genetic and Evolutionary Computation Conference
(GECCO ’07), pp. 2098–2105, ACM Press, New York, NY,
USA, 2007.

[159] R. S. Sutton, “Introduction: the challenge of reinforcement
learning,” Machine Learning, vol. 8, no. 3-4, pp. 225–227,
1992.

[160] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[161] C. Watkins, Learning from Delayed Rewards, 1989.
[162] G. Liepins, M. Hilliard, M. Palmer, and G. Rangarajan,

“Alternatives for classifier system credit assignment,” in
Proceedings of the 11th International Joint Conference on
Artificial Intelligence (IJCAI ’89), pp. 756–761, 1989.

[163] M. Dorigo and H. Bersini, “A comparison of Q-learning
and classifier systems,” in Proceedings of the 3rd International
Conference on Simulation of Adaptive Behavior: From Animals
to Animats 3, pp. 248–255, MIT Press, Cambridge, Mass,
USA, 1994.

[164] M. Dorigo, “Genetic and non-genetic operators in ALEC-
SYS,” Evolutionary Computation, vol. 1, no. 2, pp. 151–164,
1993.

[165] P. Lanzi and R. Riolo, “A roadmap to the last decade
of learning classifier system research(from 1989 to 1999),”
in Proceedings of the International Workshop on Learning
Classifier Systems, Lecture Notes in Computer Science, pp.
33–61, 2000.

[166] P. W. Frey and D. J. Slate, “Letter recognition using Holland-
style adaptive classifiers,” Machine Learning, vol. 6, no. 2, pp.
161–182, 1991.

[167] T. Kovacs, A comparison of strength and accuracy-based
fitness in learning classifier systems, Ph.D. thesis, University of
Birmingham, Birmingham, UK, 2002.

[168] P. Lanzi, “Learning classifier systems from a reinforcement
learning perspective,” Soft Computing, vol. 6, no. 3, pp. 162–
170, 2002.

[169] M. Butz, D. Goldberg, and W. Stolzmann, “Introduc-
ing a genetic generalization pressure to the anticipatory
classier system: part 1-theoretical approach,” in Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO ’00), 2000.

[170] M. Butz, D. Goldberg, and W. Stolzmann, “Investigating
generalization in the anticipatory classifier system,” in
Proceedings of the 6th International Conference on Parallel
Problem Solving from Nature, Lecture Notes in Computer
Science, pp. 735–744, 2000.

[171] M. Butz, D. Goldberg, and W. Stolzmann, “Probability-
enhanced predictions in the anticipatory classifier system,”
in Proceedings of the International Workshop on Learning
Classifier Systems (IWLCS ’00), pp. 37–51, Springer, 2000.

[172] M. Butz, Anticipatory Learning Classifier Systems, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2002.

[173] J. Bacardit and M. Butz, “Data mining in learning classifier
systems: comparing XCS with GAssist,” in Proceedings of the
7th International Workshop on Learning Classifier Systems
(IWLCS ’04), 2004.

[174] T. Kovacs and P. Lanzi, “A learning classifier systems
bibliography,” Tech. Rep., CSR Centre, School of Computer
Science Research, University of Birmingham, Birmingham,
UK, 1999.

[175] P. Stalph and M. Butz, Documentation of XCSF-Ellipsoids
Java plus Visualization.

[176] M. Butz, “Documentation of XCSFJava 1.1 plus visualiza-
tion,” MEDAL Report 2007008, 2007.

[177] M. Butz and O. Herbort, “Context-dependent predictions
and cognitive arm control with XCSF,” in Proceedings of
the 10th Annual Conference on Genetic and Evolutionary
Computation, pp. 1357–1364, ACM, New York, NY, USA,
2008.

Journal of Artificial Evolution and Applications 23

[178] M. Butz, “Combining gradient-based with evolutionary
online learning: an introduction to learning classifier sys-
tems,” in Proceedings of the 7th International Conference on
Hybrid Intelligent Systems (HIS ’07), pp. 12–17, 2007.

[179] S. Russell, P. Norvig, J. Canny, J. Malik, and D. Edwards,
Artificial Intelligence: A Modern Approach, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1995.

[180] M. Butz, Rule-based Evolutionary Online Learning Systems:
A Principled Approach to LCS Analysis And Design, Springer,
Berlin, Germany, 2006.

[181] J. Koza, Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection, MIT Press, Cambridge,
Mass, USA, 1992.

[182] M. Dorigo and T. Stützle, Ant Colony Optimization, MIT
Press, Cambridge, Mass, USA, 2004.

[183] L. De Castro and J. Timmis, Artificial Immune Systems: A New
Computational Intelligence Approach, Springer, New York,
NY, USA, 2002.

[184] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice-Hall, Upper Saddle River, NJ, USA, 1998.

[185] E. Bernado, X. Llorà, and J. Garrell, “XCS and GALE: a
comparative study of two learning classifier systems with
six other learning algorithms on classification tasks,” in
Proceedings of the 4th International Workshop on Learning
Classifier Systems (IWLCS ’01), pp. 337–341, 2001.

[186] F. Kharbat, L. Bull, and M. Odeh, “Mining breast cancer
data with XCS,” in Proceedings of the 9th Annual Confer-
ence on Genetic and Evolutionary Computation Conference
(GECCO ’07), pp. 2066–2073, 2007.

[187] O. Unold and K. Tuszyński, “Mining knowledge from
data using anticipatory classifier system,” Knowledge-Based
Systems, vol. 21, no. 5, pp. 363–370, 2008.

[188] C. Blake and C. Merz, “UCI repository of machine learning
databases,” 1998.

[189] S. Alayón, J. I. Estévez, J. Sigut, J. L. Sánchez, and P. Toledo,
“An evolutionary Michigan recurrent fuzzy system for nuclei
classification in cytological images using nuclear chromatin
distribution,” Journal of Biomedical Informatics, vol. 39, no.
6, pp. 573–588, 2006.

[190] O. Unold, “Grammar-based classifier system for recognition
of promoter regions,” in Proceedings of the 8th International
Conference on Adaptive and Natural Computing Algorithms
(ICANNGA ’07), vol. 4431 of Lecture Notes in Computer
Science, pp. 798–805, 2007.

[191] T. Kovacs, Evolving optimal populations with XCS classier
systems, M.S. thesis, School of Computer Science, University
of Birmingham, Birmingham, UK, 1996.

[192] T. Kovacs, “What should a classifier system learn?” in
Proceedings of the Congress on Evolutionary Computation, vol.
2, 2001.

[193] T. Kovacs, “What should a classifier system learn and how
should we measure it?” Soft Computing-A, vol. 6, no. 3, pp.
171–182, 2002.

[194] M. Butz and M. Pelikan, “Analyzing the evolutionary pres-
sures in XCS,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’01), pp. 935–942, 2001.

[195] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson,
“Toward a theory of generalization and learning in XCS,”
IEEE Transactions on Evolutionary Computation, vol. 8, no.
1, pp. 28–46, 2004.

[196] J. Bassett and K. De Jong, “Evolving behaviors for coop-
erating agents,” in Proceedings of the 12th International
Symposium on Foundations of Intelligent Systems (ISMIS ’00),
vol. 1932 of Lecture Notes in Computer Science, pp. 157–165,
2000.

[197] M. Butz and D. Goldberg, “Bounding the population size
in XCS to ensure reproductive opportunities,” in Proceedings
of the Conference on Genetic and Evolutionary Computation,
Lecture Notes in Computer Science, pp. 1844–1856, 2003.

[198] M. Butz, D. Goldberg, P. Lanzi, and K. Sastry, “Bounding
the population size to ensure niche support in XCS,” IlliGAl
Report 2004033, July 2004.

[199] M. Butz, D. Goldberg, and P. Lanzi, “Bounding learning time
in XCS,” in Proceedings of Genetic and Evolutionary Compu-
tation Conference (GECCO ’04), pp. 739–750, Seattle,Wash,
USA, June 2004.

[200] M. Butz, Rule-based evolutionary online learning systems:
learning bounds, classification, and prediction, Ph.D. thesis,
2004.

[201] L. Bull, “Learning classifier systems: a brief introduction,”
Applications of Learning Classifier Systems, 2004.

[202] L. Booker, “Representing attribute-based concepts in a
classifier system,” Foundations of Genetic Algorithms, pp. 115–
127, 1991.

[203] S. Sen, “A tale of two representations,” in Proceedings of the
7th International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, pp.
245–254, Gordon and Breach, 1994.

[204] R. Riolo, “The emergence of coupled sequences of classifiers,”
in Proceedings of the 3rd International Conference on Genetic
Algorithms and Their Application, pp. 256–264, Morgan
Kaufmann, San Francisco, Calif, USA, 1989.

[205] D. Schuurmans and J. Schaeffer, Representational Difficulties
with Classifier Systems, Department of Computing Science,
University of Alberta, Edmonton, Canada, 1988.

[206] C. Stone and L. Bull, “For real! XCS with continuous-valued
inputs,” Evolutionary Computation, vol. 11, no. 3, pp. 299–
336, 2003.

[207] H. Dam, H. Abbass, and C. Lokan, “Be real! XCS with
continuous-valued inputs,” in Proceedings of the Workshops
on Genetic and Evolutionary Computation, pp. 85–87, ACM,
New York, NY, USA, 2005.

[208] P. Lanzi and S. Wilson, “Using convex hulls to represent
classifier conditions,” in Proceedings of the 8th Genetic and
Evolutionary Computation Conference (GECCO ’06), vol. 2,
pp. 1481–1488, ACM Press, New York, NY, USA, 2006.

[209] M. Butz, “Kernel-based, ellipsoidal conditions in the real-
valued XCS classifier system,” in Proceedings of the Conference
on Genetic and Evolutionary Computation, pp. 1835–1842,
2005.

[210] M. Butz, P. Lanzi, and S. Wilson, “Hyper-ellipsoidal condi-
tions in XCS: rotation, linear approximation, and solution
structure,” in Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, pp. 1457–1464, ACM,
New York, NY, USA, 2006.

[211] L. Booker, “Improving the performance of genetic algorithms
in classifier systems,” in Proceedings of the 1st International
Conference on Genetic Algorithms, pp. 80–92, Lawrence
Erlbaum Associates, Mahwah, NJ, USA, 1985.

[212] D. Mellor, “A first order logic classifier system,” in Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO ’05), pp. 1819–1826, ACM Press, New York, NY,
USA, 2005.

24 Journal of Artificial Evolution and Applications

[213] P. Lanzi, “Extending the representation of classifier
conditions—part I: from binary to messy coding,” in
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’99), vol. 1, pp. 337–344, 1999.

[214] P. Tufts, “Dynamic classifiers: genetic programming and
classifier systems,” in Proceedings of the Genetic Programming,
pp. 114–119, 1995.

[215] M. Ahluwalia, L. Bull, W. Banzhaf, et al., “A genetic
programming-based classifier system,” in Proceedings of the
Genetic and Evolutionary Computation Conference, vol. 1, pp.
11–18, 1999.

[216] P. Lanzi and A. Perrucci, “Extending the representation
of classifier conditions—part II: from messy coding to S-
expressions,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’99), vol. 1, pp. 345–352,
1999.

[217] P. Lanzi, “Mining interesting knowledge from data with
the XCS classier system,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’01), pp. 958–
965, 2001.

[218] P. Lanzi, “An analysis of generalization in XCS with symbolic
conditions,” in Proceedings of IEEE Congress on Evolutionary
Computation (CEC ’07), pp. 2149–2156, 2007.

[219] L. Bull and J. Hurst, “A neural learning classifier system with
self-adaptive constructivism,” in Proceedings of the Congress
on Evolutionary Computation (CEC ’03), vol. 2, 2003.

[220] T. O’Hara and L. Bull, “A memetic accuracy-based neural
learning classifier system,” in Proceedings of IEEE Congress on
Evolutionary Computation (CEC ’05), vol. 3, pp. 2040–2045,
2005.

[221] B. Carse and T. Fogarty, “A fuzzy classifier system using
the Pittsburgh approach,” in Proceedings of the International
Conference on Evolutionary Computation, the 3rd Conference
on Parallel Problem Solving from Nature, Jerusalem, Israel,
October 1994.

[222] M. Butz, K. Sastry, and D. Goldberg, “Tournament selection
in XCS,” in Proceedings of the 5th Genetic and Evolutionary
Computation Conference (GECCO ’02), vol. 1869, 2002.

[223] M. V. Butz, D. E. Goldberg, and K. Tharakunnel, “Analysis
and improvement of fitness exploitation in XCS: bounding
models, tournament selection, and bilateral accuracy,” Evo-
lutionary Computation, vol. 11, no. 3, pp. 239–277, 2003.

[224] F. Kharbat, L. Bull, and M. Odeh, “Revisiting genetic
selection in the XCS learning classifier system,” in Proceedings
of the IEEE Congress on Evolutionary Computation, vol. 3,
2005.

[225] M. V. Butz, K. Sastry, and D. E. Goldberg, “Strong, stable, and
reliable fitness pressure in XCS due to tournament selection,”
Genetic Programming and Evolvable Machines, vol. 6, no. 1,
pp. 53–77, 2005.

[226] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in
IRE WESCON Convention Record, vol. 4, pp. 709–717, 1960.

[227] G. Venturini, Apprentissage adaptatif et apprentissage super-
vise par algorithme genetique, These de Docteur en Science,
Universite de Paris-Sud, Paris, France, 1994.

[228] M. Butz, T. Kovacs, P. Lanzi, and S. Wilson, “How XCS
evolves accurate classifiers,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’01), pp. 927–
934, 2001.

[229] G. Liepins and L. Wang, “Classifier system learning of
Boolean concepts,” in Proceedings of the 4th International
Conference on Genetic Algorithms, pp. 318–323, Morgan
Kaufmann, San Francisco, Calif, USA, 1991.

[230] G. Weiss, The Action oriented Bucket Brigade, Institut für
Informatik, 1991.

[231] G. Weiss, “Ah action-oriented perspective of learning in
classifier systems,” Journal of Experimental and Theoretical
Artificial Intelligence, vol. 8, no. 1, pp. 43–62, 1996.

[232] M. V. Butz, D. E. Goldberg, and P. L. Lanzi, “Gradient
descent methods in learning classifier systems: improving
XCS performance in multistep problems,” IEEE Transactions
on Evolutionary Computation, vol. 9, no. 5, pp. 452–473,
2005.

[233] P. Lanzi, M. V. Butz, and D. E. Goldberg, “Empirical
analysis of generalization and learning in XCS with gradient
descent,” in Proceedings of of the 9th Genetic and Evolutionary
Computation Conference (GECCO ’07), pp. 1814–1821, ACM
Press, New York, NY, USA, 2007.

[234] J. Drugowitsch and A. M. Barry, “XCS with eligibility traces,”
in Proceedings of the Conference on Genetic and Evolution-
ary Computation Conference (GECCO ’05), pp. 1851–1858,
ACM, New York, NY, USA, 2005.

[235] P. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg,
“Prediction update algorithms for XCSF: RLS, Kalman filter,
and gain adaptation,” in Proceedings of the 8th Genetic and
Evolutionary Computation Conference (GECCO ’06), vol. 2,
pp. 1505–1512, ACM Press, 2006.

[236] J. Horn, D. Goldberg, and K. Deb, “Implicit niching in
a learning classifier system: nature’s way,” Evolutionary
Computation, vol. 2, no. 1, pp. 37–66, 1994.

[237] J. Horn, D. Goldberg, J. Koza, D. Goldberg, D. Fogel, and R.
Riolo, “Natural niching for cooperative learning in classifier
systems,” in Proceedings of the 1st Annual Conference on
Genetic Programming, pp. 553–564, MIT Press, 1996.

[238] M. V. Butz, M. Pelikan, X. Llorà, and D. E. Goldberg,
“Extracted global structure makes local building block
processing effective in XCS,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’05), pp. 655–
662, ACM, New York, NY, USA, 2005.

[239] M. V. Butz, M. Pelikan, X. Llorà, and D. E. Goldberg, “Auto-
mated global structure extraction for effective local building
block processing in XCS,” Evolutionary Computation, vol. 14,
no. 3, pp. 345–380, 2006.

[240] J. Bacardit and N. Krasnogor, “Smart crossover operator with
multiple parents for a pittsburgh learning classifier system,”
in Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’06), vol. 2, pp. 1441–
1448, ACM Press, New York, NY, USA, 2006.

[241] F. Serendynski, P. Cichosz, and G. Klebus, “Learning classifier
systems in multi-agent environments,” in Proceedings of
the 1st International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications (GAESIA
’95), pp. 287–292, 1995.

[242] S. Sen and M. Sekaran, “Multiagent coordination with
learning classifier systems,” in Proceedings of the Adaption and
Learning in Multi-Agent Systems, Lecture Notes in Computer
Science, pp. 218–233, 1996.

[243] L. Bull, M. Studley, T. Bagnall, and I. Whittley, “On the
use of rule-sharing in learning classifier system ensembles,”
in Proceedings of the Congress on Evolutionary Computation
(CEC ’05), vol. 1, 2005.

[244] L. Bull, M. Studley, A. Bagnall, and I. Whittley, “Learning
classifier system ensembles with rule-sharing,” IEEE Trans-
actions on Evolutionary Computation, vol. 11, no. 4, pp. 496–
502, 2007.

[245] J. Bacardit and N. Krasnogor, “Empirical evaluation of
ensemble techniques for a Pittsburgh learning classifier

Journal of Artificial Evolution and Applications 25

system,” in Proceedings of the 9th International Workshop on
Learning Classifier Systems (IWLCS ’08), vol. 4998, pp. 255–
268, 2008.

[246] H. H. Dam, P. Rojanavasu, H. A. Abbass, and C. Lokan, “Dis-
tributed learning classifier systems,” Studies in Computational
Intelligence, vol. 125, pp. 69–91, 2008.

[247] C. Lokan, “Distributed learning classifier systems,” in Learn-
ing Classifier Systems in Data Mining, 2008.

[248] R. Ranawana and V. Palade, “Multi-classifier systems: review
and a roadmap for developers,” International Journal of
Hybrid Intelligent Systems, vol. 3, no. 1, pp. 35–61, 2006.

[249] E. Bernado-Mansilla, X. Llorà, and I. Traus, “Multiobjective
learning classifier systems: an overview,” Tech. Rep., Univer-
sity of Illinois at Urbana Champaign, Urbana, Ill, USA, 2005.

[250] C. Fu and L. Davis, “A modified classifier system compaction
algorithm,” in Proceedings of the Conference on Genetic and
Evolutionary Computation Conference (GECCO ’02), pp. 920–
925, 2002.

[251] M. V. Butz, P. L. Lanzi, and S. W. Wilson, “Function approxi-
mation with XCS: hyperellipsoidal conditions, recursive least
squares, and compaction,” IEEE Transactions on Evolutionary
Computation, vol. 12, no. 3, pp. 355–376, 2008.

[252] J. Holmes, J. Sager, and W. Bilker, “A comparison of three
methods for covering missing data in XCS,” in Proceedings of
the 7th International Workshop on Learning Classifier Systems
(IWLCS ’04), Seattle, Wash, USA, June 2004.

[253] A. Orriols-Puig and E. Bernadó-Mansilla, “Bounding XCS’s
parameters for unbalanced datasets,” in Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation
Conference (GECCO ’06), vol. 2, pp. 1561–1568, ACM, New
York, NY, USA, 2006.

[254] H. Dam, K. Shafi, and H. Abbass, “Can
evolutionary computation handle large dataset?”
Tech. Rep. TR-ALAR-2005070001, 2005,
http://seal.itee.adfa.edu.au/∼alar/techreps.

[255] L. Booker, “Classier systems, endogenous fitness, and delayed
rewards: a preliminary investigation,” in Proceedings of
the International Workshop on Learning Classifier Systems
(IWLCS ’00) in the Joint Workshops of SAB, 2000.

[256] J. Hurst and L. Bull, “A self-adaptive classifier system,” in
Proceedings of the 3rd International Workshop on Advances in
Learning Classifier Systems, pp. 70–79, Springer, 2000.

[257] L. Bull and J. Hurst, “Self-adaptive mutation in ZCS
controllers,” in Proceedings of the Real-World Applications
of Evolutionary Computing, EvoWorkshops, Lecture Notes in
Computer Science, pp. 339–346, 2000.

[258] L. Bull, J. Hurst, and A. Tomlinson, “Self-adaptive mutation
in classifier system controllers,” in From Animals to Animats
6: Proceedings of the 6th International Conference on Simula-
tion of Adaptive Behavior, MIT Press, 2000.

[259] J. Hurst and L. Bull, “A self-adaptive XCS,” in Proceedings
of the 4th International Workshop on Advances in Learning
Classifier Systems, Lecture Notes in Computer Science, pp.
57–73, 2002.

[260] W. Browne, “Improving Evolutionary Computation Based
Data-Mining for the Process Industry: The Importance of
Abstraction,” Learning Classifier Systems in Data Mining,
2008.

[261] D. Goldberg, J. Horn, and K. Deb, “What makes a problem
hard for a classifier system?” Tech. Rep., Santa Fe Working
Paper, 1992.

[262] L. B. Booker, D. E. Goldberg, and J. Holland, “Classifier
systems and genetic algorithms,” in Machine Learning:
Paradigms and Methods, pp. 235–282, 1989.

[263] J. Holland, L. Booker, M. Colombetti, et al., “What is a
learning classifier system?” in Learning Classifier Systems,
from Foundations to Applications, Lecture Notes in Computer
Science, pp. 3–32, 2000.

[264] S. W. Wilson, “State of XCS classifier system research,” in
Proceedings of the 3rd International Workshop on Advances
in Learning Classifier Systems, Lecture Notes in Computer
Science, pp. 63–82, 2000.

[265] T. Kovacs, “Learning classifier systems resources,” Soft
Computing-A, vol. 6, no. 3, pp. 240–243, 2002.

[266] J. Drugowitsch, Design and Analysis of Learning Classifier
Systems: A Probabilistic Approach, Springer, Berlin, Germany,
2008.

