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Abstract 
In many classifier systems, the classifier strength parameter serves as a predictor of future 
payoff and as the classifier’s fitness for the genetic algorithm. We investigate a classifier 
system, XCS, in which each classifier maintains a prediction of expected payoff, but the 
classifier’s fitness is given by a measure of the prediction’s accuracy. T h e  system executes 
the genetic algorithm in niches defined by the match sets, instead of panmictically. These 
aspects of XCS result in its population tending to form a complete and accurate mapping 
X x A + P from inputs and actions to payoff predictions. Further, XCS tends to evolve 
classifiers that are maximally general, subject to an accuracy criterion. Besides introducing 
a new direction for classifier system research, these properties of XCS make it suitable 
for a wide range of reinforcement learning situations where generalization over states is 
desirable. 

Classifier systems, strength, fitness, accuracy, mapping, generalization, restricted mating, 
niche genetic algorithm. 

Keywords 

1. Introduction 

Traditionally in classifier systems, the classifier strength parameter serves both as a predictor of 
future payoff and as the classifier’s fitness for the genetic algorithm (GA). However, predicted 
payoff may inadequately represent fitness. For example, a low-predicting classifier may 
nevertheless be the best one for its environmental niche. We investigate a classifier system, 
XCS, in which each classifier maintains a prediction of expected payoff, but the classifier’s 
fitness is not given by the prediction. Instead, the fitness is a separate number based on an 
inverse function of the classifier’s average prediction error; that is, it is based on a measure of 
the accuracy of the prediction, instead of the prediction itself. XCS also executes the genetic 
algorithm in niches defined by the match sets (Booker, 1982) rather than panmicucally. 

The present research-an investigation into classifier system technique-stemmed from 
dissatisfaction with the behavior of traditional classifier systems, and the hypothesis that the 
shortcomings were due in part to the definition of fitness. As we will discuss in Section 5.1, 
some previous work had factored measures of accuracy into the fitness function. However, 
the results with XCS show that a complete shift to accuracy-based fitness is not only possible, 
but yields a classifier system that is superior to traditional systems in important respects. 

Specifically, accuracy-based fitness, in combination with a niche GA, results in XCS’s 
population tending to form a complete and accurate mapping X x A =+ P from inputs and ac- 
tions to payoff predictions. Traditional classifier systems have not theoretically emphasized 
or actually produced such mappings, which can make payoff-maximizing action-selection 
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straightforward. Further, XCS tends to evolve classifiers that are maximally general, subject 
to an accuracy criterion, so that the mapping gains representational efficiency. In traditional 
classifier systems there is in theory no adaptive pressure toward accurate generalization, and, 
in fact, accurate generalized classifiers have rarely been exhibited, except in studies using 
payoff regimes biased toward formally general classifiers (e.g., Wilson, 1987a). Besides in- 
troducing a new direction for classifier system research, the mapping and generalization 
properties of XCS should make it suitable for a wide range of reinforcement learning situa- 
tions where generalization over states is important. 

Section 2 motivates the shift from payoff-based to accuracy-based fitness. Section 3 
presents XCS in sufficient detail to permit implementation. Section 4 tests the system 
in single-step (Boolean multiplexer) and sequential (“woods”-like) environments, focusing 
in both cases on mapping performance and generalization. Ln Section 5 we summarize 
the article, discuss related work and directions for future research, and present our main 
conclusions. 

2 .  How to Measure Fitness? 

In many classifier systems (Holland, 1986; Wilson, 1994), a classifier’s strength parameter 
estimates the payoff that the classifier will receive when, given satisfaction of its condition, 
its action is chosen by the system. Strength is therefore important to the system’s perfor- 
mance component, which is generally interested in choosing the most remunerative action. 
But strength is also used as the measure of fitness for the discovery component’s genetic 
algorithm; that is, higher strength classifiers are more likely to be selected for reproduction 
and modification by genetic operators. Strength thus forms the basis for the system’s search 
for improved structures. 

Basing fitness on strength is reasonable: after all, shouldn’t better performing classifiers 
lead the search? On closer examination, however, there are several problems. 

1. Different niches of the environment usually have different payoff levels. (Here, 
following Booker (1982), niche means a set of environmental states each ofwhich is 
matched by approximately the same set of classifiers.) To prevent population takeover 
by classifiers in high-payoff niches, i t  is necessary to implement a sharing technique in 
which the available payoff is divided among active classifiers instead of giving each one 
the full value (for an analysis, see Horn, Goldberg, & Deb, 1994). 

2. Sharing eliminates takeover effects but then a classifier’s strength no longer directly 
predicts payoff; instead, the total of the shared strength (among matching classifiers 
advocating the same action) predicts the payoff. This division of the prediction 
becomes problematic because a given classifier, with its single strength value, is often 
involved in numerous distinct matching sets, so that the meaning of the strength value 
becomes unclear. 

3.  Moreover, it is still the case under sharing that more remunerative niches will get 
more resources (classifiers) than less remunerative ones. That may be reasonable in 
single-step decision problems. But classifier systems dealing with sequential problems 
involving deferred reward often employ some form of payoff discounting so as to 
encourage expeditious behavior. The result is that early-matching classifiers that “set 
up’’ later ones in a chain will, due to the discounting, appear inherently less fit, so that 
long chains cannot be sustained O/Vilson & Goldberg, 1989). 

150 Evolutionary Computation Volume 3, Number 2 



Classifier Fitness Based on Accuracy 

The last problem can be alleviated by conducting the genetic algorithm using popula- 
tions restricted to the match sets (Booker, 1982), instead of panmictically using the population 
as a whole. Differences in payoff between match sets will thus not affect a given classifier’s 
selection chances. Competition will be restricted to classifiers within (i.e., matching) a niche 
(sharing may or may not be maintained). However, even with such a niche GA, there remain 
at least two problems: 

4. The  GA cannot distinguish an accurate classifier with moderate payoff from an overly 
general classifier having the same payoff on the average. Thus overgenerals- 
“guessers”-will be unduly encouraged, and in fact may proliferate because they occur 
in many match sets and (especially under a niche GA) have many chances to reproduce. 

5 .  Classifier systems employ a “don’t care” (#) symbol in the syntax of their conditions 
and thus permit the formation of generalizations. However, under payoff-based 
fitness, there appears to be no clear tendency or, indeed, theoretical reason, for 
accurate generalizations to evolve. 

Given the above problems, it seemed reasonable to inquire whether there might exist a 
more appropriate basis for classifier fitness than expected payoff. A first hint was provided 
by problems 4 and 5 above: if estimated payoff does not distinguish between accurate and 
overgeneral classifiers, why not base fimess on accuracy itself? The system might need to 
be bigger because the number of accurate classifiers could exceed the number of highly 
remunerative ones. However, overgeneral rules would be suppressed. 

A second source of inspiration came from reinforcement learning (Sutton, 199 1), which 
emphasizes the formation of relatively complete mappings X x A + P from the product 
set of situations and actions to payoffs. In contrast, the general classifier system philosophy 
(see, e.g., Holland, Holyoak, Nisbett, & Thagard, 1986) attempts more pragmatically to 
discover the best rule in each niche without worrylng too much about knowing the payoff 
consequences of every possible action. However, should a sub-optimal rule be converged 
upon as a consequence of incomplete exploration, it may be difficult for the standard system 
to discover and switch to a better one. If, on the other hand-as in reinforcement learning- 
the system were oriented toward learning relatively complete maps of the consequences 
of each action in each niche, then determining the most remunerative action would be 
straightforward. For this, it seemed logical to base fimess on some measure of accuracy. 

Out of the above considerations, it was decided to investigate systems in which the 
classifier strength parameter would be replaced by three new ones: (1) prediction, an average 
of the payoff received-internal or external-when that classifier’s action controlled the 
system; ( 2 )  prediction error, an average of a measure of the error in the prediction parameter; 
and (3)fi tness,  an inverse function of the prediction error. The  prediction (and possibly the 
prediction error) would be used in the performance component-that is, in selecting actions. 
The fitness parameter would be used in the genetic algorithm, which would occur in the 
niches defined by the match sets. 

3. Description of XCS 

Figure 1 gives an overall picture of the system, which is shown in interaction with an en- 
vironment via detectors for sensory input and effectors for motor actions. In addition, the 
environment a t  times provides a scalar reinforcement, here termed reward. Many aspects 
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Figure 1. Schematic illustration of XCS. 

of XCS are copied from ZCS (Wilson, 1994), a “zeroth-level” classifier system intended to 
simplify Holland’s canonical framework while retaining the essence of the classifier system 
idea. Some descriptive material is omitted here because it can be found in the ZCS paper. 
The differences between XCS and ZCS lie in the definition of classifier fitness, the GA 
mechanism, and the more sophisticated action selection that accuracy-based fitness makes 
possible. 

The box labeled [PI contains the classifier population, and shows some example clas- 
sifiers. The  left side of each classifier consists of a single condition; the right side codes 
an environmental action. Associated with each classifier are prediction, prediction error, 
and fitness parameters, symbolized by p, E ,  and F ,  respectively. The  population has a fixed 
maximum size N and may be initialized in a variety of ways: with N randomly generated 
classifiers; with potentially useful “seed” classifiers; with no classifiers; or with one general 
(condition consisting of #s) classifier for each action, and so on. The  initial values of p ,  E, 

and F can be set more or less arbitrarily; there is little effect on performance. 

3.1 Performance Component 
Given an input, a match set [MI is formed in the usual way (Wilson, 1994). The  system 
then forms a ystem prediction P(aJ for each action ai represented in [MI. There are several 
reasonable ways to determine P(ai). We have experimented primarily with a fitness-weighted 
average of the predictions of classifiers advocating a,. Presumably, one wants a method that 
yields the system’s “best guess” as to the payoff-internal and/or external-to be received if 
ai is chosen. The P(aJ values are placed in aprediction array (some of whose slots will receive 
no values if there is no corresponding action in [MI), and an action is selected. 

Many action-selection methods are possible. The system may simply pick the action 
with the largest prediction; for brevity, we shall call this deterministic action selection. Al- 
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ternatively, the action may be selected probabilistically, with the probability of selection 
proportional to P(ai); we shall call this roulette-wheel action selection. In some cases the 
action may be selected completely at random (from actions with non-null predictions), ig- 
noring the P(ai). There are, of course, additional schemes. Once an action is selected, the 
system forms an action set [A] consisting of the classifiers in [MI advocating the chosen action. 
That action is then sent to the effectors and an immediate reward rim may (or may not) be 
returned by the environment. 

3.2 Reinforcement Component 
XCS’s reinforcement component consists in updating thep, E ,  and F parameters of classifiers 
in the previous time step’s action set [A] - 1 ,  as shown in Figure 1. Thep values are adjusted by 
the technique of Q-learning (Watkins, 1989), which is implemented as shown in the figure 
by the combination of talung the maximum P(aJ of the prediction array, “discounting” it by 
multiplying by a factor y (0 < y 5 I), and adding in any external reward from the previous 
time-step. The  resulting quantity, called simply P, is used to adjust the predictions pJ of the 
classifiers in [A]- 1 using the standard Widrow-Hoff delta rule (Wilson, 1994) with learning 
rate parameter p (0 < p 5 1). That is, p, t pl + p(P - p,). 

However, for each classifier in [A]_l, the update, in fact, begins by first recalculating 
the fitness 4 using the current value of E],  according to a technique to be described in 
Section 3.4. Second, is itself adjusted using P and the current value ofp,. For this, the 
Widrow-Hoff technique is used to adjust cJ toward the absolute difference ( P  - pJI. That is, 
E, + + P(lP -pJl - E ~ ) .  Finally, pJ is adjusted as described above. (The adjustment of F and 
E makes the term “reinforcement component” something of a misnomer, but we shall stick 
with this traditional usage for the component that modifies classifier parameters.) 

The Widrow-Hoff procedure is used for p ,  E ,  and as part of the adjustment of F only 
after a classifier has been adjusted at least 1 //? times. Prior to that, the new values in each 
case are simple averages of the previous values and the current one. For example, the value 
ofp, on the fourth adjustment will be just one-fourth of the sum of the first four P values, if 
1 / p  > 4. This two-phase technique causes the early parameter values to move more quickly 
to their “true” average values, and makes the system less sensitive to initial, possibly arbitrary, 
settings of the parameters. The  technique, called MAM (moyenne adaptive modifiee), was 
introduced in Venturini (1 994). To keep track of the number of updates, a classifier maintains 
an experience parameter that is incremented every time the classifier belongs to [A]. 

Finally, we note that in single-step problems such as the Boolean multiplexer the updates 
occur as described, but in the set [A], because each problem involves just a single action set. 
In addition, P consists only of the current reward. Similarly, if a multistep problem happens 
to take just one step (e.g., food is found within one step and that defines the end of the current 
problem), the updates occur in [A] and P is just the current reward. 

3.3 Discovery Component 
As can be seen in Figure 1, the genetic algorithm acts on the match set [MI. It selects two 
classifiers from [MI with probabilities proportional to their fitnesses, copies the classifiers, 
performs crossover on the copies with probability x, and with probability /I per allele per- 
forms mutation on them. If [PI contains less than N members, the copies are inserted into 
the population and no compensating deletion occurs. Otherwise, two classifiers are deleted 
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stochastically from [PI to make room. We have experimented with two methods of selecting 
the classifiers to be deleted: 

1. Every classifier keeps an estimate of the size of the match sets in which it occurs. The 
estimate is updated every time the classifier takes part in an [MI, using the MAM 
technique with rate p. A classifier’s deletion probability is set proportional to the 
match set size estimate, which tends to make all match sets have about the same size, 
so that classifier resources are allocated more or less equally to all niches (match sets). 
This deletion technique is similar to one introduced in Booker (1989) for the same 
purpose. 

fraction 6 of the population mean fitness. Then the probability from (1) is multiplied 
by the mean fitness divided by the classifier’s fitness. If, for example, 6 is 0.1, the result 
is to delete such low-fitness classifiers with a probability 10 times that of the others. 

2 .  A classifier’s deletion probability is as in (I), except if its fitness is less than a small 

Like the basic deletion technique of (l), the rate of incidence of the GA is controlled 
with the aim of allocating classifier resources approximately equally to the different match 
sets (such an allocation being consistent with the purpose of forming a relatively complete 
mapping). This cannot, in general, be achieved if the GA simply occurs with a certain 
probability in each match set. Depending on the environment, some match sets (niches) 
may occur much more often than others. Instead, the GA is run in a match set if the number 
of time-steps since the last GA in that match set exceeds a threshold. As a result, the rate 
of reproduction per match set per unit time is approximately constant-except in the most 
rarely occurring match sets. To implement this regime, each classifier is time stamped at 
birth with the reading of a counter that is incremented on every time-step. When a match 
set is formed, XCS computes the average time-stamp of its classifiers and executes the GA 
if the difference between that average and the current counter reading exceeds a threshold 
8. This technique and the deletion algorithm result in approximately equal allocation of 
classifiers to the various niches. 

Besides the GA, the discovery component contains a coveying mechanism (Wilson, 1985) 
for use in two special circumstances. First, it sometimes happens that no classifiers match 
a given input-[MI is null. In this case, XCS simply creates a classifier with a condition 
matching the input and a randomly chosen action. The new classifier is inserted into [PI, 
and a classifier is deleted as in the GA. Then the system forms a new [MI and proceeds as 
usual. Covering is also used as a way of escaping if the system seems to be stuck in a l o o p f o r  
example, if the action selection mechanism causes the system persistently to go back and forth 
between two positions in the environment. The situation is detectable because the system’s 
discounting mechanism will cause the predictions of the classifiers involved to fall steadily. 
The creation of a new matching classifier with a random action can usually be relied upon 
to break the loop; if it does not, another round of covering will do so, and so on. In practice, 
loops are rare, and break as soon as the discounting mechanism causes one of the current 
actions’ predictions to fall below that for some other action. Covering has only been needed 
occasionally at the beginning of a run when alternative classifiers were not yet available. 

3.4 The Fitness Calculation 
As noted earlier, a classifier’s fitness is updated every time it belongs to [A]-1 (or [A], in 
single-step problems). Broadly, the fitness is updated by a quantity that depends on the 
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classifier's accuracy relative to the accuracies of the other classifiers in the set. There are 
three steps in the calculation. First, each classifier's accuracy K] is computed. Accuracy is 
defined as a function of the current value of E].  We have experimented with a number of 
functional forms. The  best one so far is 'il = exp [(In a)(&] - E " ) / E O ) ]  for E] > EO,  otherwise 1. 
This function falls off exponentially for E~ > FO. The rate is such that the accuracy at E] = 2 ~ 0  
equals cy (0 < cy < l), so smaller c\ means a steeper falloff. Next, a relative accuracy K; is 
computed for each classifier by dividing its accuracy by the total of the accuracies in the 
set. Finally, the relative accuracy is used to adjust the classifier's fitness I$ using the MAM 
procedure. If the fitness has been adjusted a t  least 1 / P  times, f$ - 5 + d($ ~ 6). Otherwise, 
5 is set to the average of the current and previous values of K;. 

Because the relative accuracies sum to 1, the total of the fitness adjustments to the 
members of [A]-1 is constant. The  effect is that the various action sets within a given 
match set [MI have approximately the same total fitness. Because reproduction depends on 
fitness, approximately the same number of classifiers will be associated with each action that 
is represented in [MI, supporting the general goal of assigning equal resources to all parts of 
the X x A + P map. 

However, within a given action set, the more accurate classifiers will have higher fimesses 
than the less accurate ones. They will consequently have more offspring. But by becoming 
relatively more numerous, those classifiers will gain a larger fraction of the total relative 
accuracy (which always equals 1) and so will have yet more offspring compared to their less 
accurate brethren. Eventually, the most accurate classifiers in the action set will drive out 
the others, in principle leaving the X x A + P map with the best classifier (assuming the GA 
has discovered it) for each situation-action combination. 

3.5 Macroclassifiers 
Whenever XCS generates a new classifier, either a t  system initialization or later, the popu- 
lation is scanned to see if the new classifier has the same condition and action as any existing 
classifier. If so, the new classifier is not actually added to the population, but a numerosi9 
field in the existing classifier is incremented by one. If, instead, there is no existing classifier 
with identical condition and action, the new classifier is added to the population with its own 
numerosity field initialized to one. We term such classifiers mawoclassijiers. They are essen- 
tially a programming technique that speeds up matching [PI against an input (and speeds 
other aspects of processing), because one macroclassifier with numerosity n is the structural 
equivalent of n regular classifiers. 

To be sure that the system still behaves as though it consists of N regular classifiers, 
all system functions are written so as to be sensitive to the numerosities, if that is relevant. 
For example, in calculating the relative accuracy shares of the last section, a macroclassifier 
with numerosity n will be treated as though it is n separate classifiers; that is, it will get a 
share n times bigger than if it had numerosity 1. Similarly, a macroclassifier's probability 
of suffering a deletion is its numerosity times its match set size estimate, as described in 
Section 3.3.  If it is selected for deletion and its numerosity is greater than one, the numerosity 
is simply decremented; if not, the macroclassifier is entirely deleted. The  population as a 
whole is always treated as though it contains N regular classifiers, though the actual number 
of macroclassifiers, 111, may be substantially less than N-which gives the computational 
advantage. 

A potential question is whether, in fact, a population of macroclassifiers, even when 
treated like the equivalent regular classifiers, behaves the same way. We have conducted 
informal experiments to test this and found no apparent difference. Consequently, our 
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recent classifier system work, including that reported here, was done with macroclassifiers. 
However, classifier system mechanics and theory appear to be more easily communicated 
and understood in terms of regular classifiers, so that language will be used in most of this 
article, and the term “classifier” will have the standard meaning. The term “macroclassifier” 
will be reserved for the few situations in which it makes the explanation clearer. 

3.6 Parameter List 
The foregoing description of XCS has mentioned most of the system’s parameters. They are 
summarized below. Some typical values can be seen in the captions to Figures 3,4, and 6. 

N 
I3 

Y 
O 

Eo, ck 

X 
CL 

6 
4 

Population size. 
Learning rate for prediction, prediction error, and fimess updates. 
Discount factor. 
Do a GA in this [MI if the average number of time-steps since the last GA 
is greater than 0. 
Parameters of the accuracy function. 
Probability of crossover per invocation of the GA. 
Probability of mutation per allele in an offspring. Mutation takes 0, 1, # 
equiprobably into one of the other allowed alleles. 
Value of the fraction used in the second deletion method of Section 3 . 3 .  
If the total prediction of [MI is less than 4 times the mean prediction of 
[PI, covering occurs. 
Probability of a # at an allele position in the condition of a classifier created 
through covering and in the conditions of classifiers in an initial randomly 
generated population. 
Prediction, prediction error, and fitness assigned to each classifier in the 
initial population. 

4. Experiments with XCS 

4.1 Generalization Hypothesis 
As noted in Section 2, our intention with XCS was to form accurate maps of the X x A 3 P 
space, or payoff landscape, of the problem. We also hoped by basing fimess on accuracy to 
suppress overgeneral classifiers. However, it appeared that the interaction of accuracy-based 
fimess and the use of a niche GA could result in evolutionary pressure toward classifiers that 
would be not only accurate, but both accurate and maximally general. That is, given an 
accuracy criterion, classifiers would evolve to be as general as possible while still satisfymg 
the criterion. In t h ~ s  way, niches of the “landscape” that had the same payoff to within the 
accuracy criterion, but presented different sensory inputs to the system, might be merged 
into a single niche through evolution of classifiers that generalized over the differences. 
The resulting population would be efficient in the sense of minimizing the number of sep- 
arate “concepts” represented by the classifiers’ conditions. In terms of  macroclassifiers, the 
population’s physical size would be minimized as well. 

The hypothesized mechanism was as follows. Consider two classifiers C1 and C2 having 
the same action, where C2’s condition is a generalization of Cl’s. That is, C2’s condition can 
be generated from Cl’s by changing one or more of Cl’s specified (1 or 0) alleles to don’t 
cares (#). Suppose that C1 and C2 are equally accurate in that their values of E are the same. 
Whenever C l  and C2 occur in the same action set, their fitness values will be updated by the 
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same amounts. However, because C2 is a generalization of CI , it will tend to occur in more 
match sets than C1. Because the GA occurs in match sets, C2 would have more reproductive 
opportunities and thus its number of exemplars would tend to grow with respect to Cl’s (or, 
in macroclassifier terms, the ratio of C2’s numerosity to Cl’s would increase). Consequently, 
when C1 and C2 next meet in the same action set, a larger fraction of the constant fitness 
update amount would be “steered” toward exemplars of C2, resulting through the GA in yet 
more exemplars of C2 relative to C1. Eventually, it was hypothesized, C2 would displace 
C1 from the population. 

The generalization process should continue as long as more-general classifiers (strictly, 
classifiers with more matching opportunities) can be formed without losing accuracy; oth- 
erwise, it should stop. The stopping point should be controllable in the accuracy function. 
Indeed, this is the role of EO in the function of Section 3.4: classifiers with error greater than 
€0 have sharply lower fitness. So classifiers should evolve that are as general as possible while 
still having errors less than Eo-the “accuracy criterion” referred to earlier. (Naturally, there 
is the possibility of trade-off in which it is some function of both accuracy and generality-for 
instance their product-that determines the point of maximum generalization.) 

4.2 
To test the generalization hypothesis, we sought a problem having a payoff landscape that 
(1) contained potential generalizations, and (2) had generalizations that were expressible in 
the syntax of classifier conditions. We also wanted to start with a single-step problem to avoid 
any complications that might result from deferred external payoff. We designed a modified 
form of the Boolean multiplexer function in which different payoffs were associated with 
different parts of the function’s domain. 

Tests on a Single-Step Problem 

4.2.1 The 6-Multiplexer Boolean multiplexer functions are defined for binary strings 
of length I = k + 2 k .  The function’s value may be determined by treating the first k bits as an 
address that indexes into the remaining 2 k  bits, and returning the indexed bit. For example, 
in the 6-multiplexer (I = 6), the value for the input string 100010 is 1, because the “address”, 
10, indexes bit 2 of the remaining four bits. In disjunctive normal form, the 6-multiplexer is 
fairly complicated (the primes indicate negation): 

There are exactly eight classifiers that would give the right answer for the example string 
above. The most specific is 100010: 1 and the most general is 10##1#: 1 (the other six replace 
one or more of the #s in the latter by 0s). Notice that 10##1#:1 is correct for all (eight) inputs 
it can match; in fact, it is maximally general in the sense that no further #s can be added to 
its condition without producing an error. 

The 64-string input space can be covered by exactly eight such maximally general 
classifiers, each having three #s in its condition so it matches eight strings. They are 

OOO###:O 
001###:1 
01#0##:0 
0 I#l##: 1 
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1 O##O#:O 
1 O## 1#: 1 
11###0:0 
11###1:1 

To construct our payoff landscape, we associated two payoff values, 300 and 0, with the 
eight strings matched by the first classifier above: payoff 300 was for the right answer, 0; 
payoff 0 was for the wrong answer, 1. Thus for that part of the landscape, X x 0 =+ 300 and 
X x 1 + 0. With the eight strings matched by the second classifier, we similarly associated 
payoffs 400 and 100 for right and wrong answers, respectively. The payoffs continued to rise 
in 100-point increments, ending with 1,000 and 700 for strings matched by the last classifier 
in the list. The result was a landscape in which the mapping X x A + P had 16 levels each 
associated with a generalization over eight input strings. The  question then was: can XCS 
learn this landscape in the sense of predicting the payoff associated with each X x A pair, and 
will it evolve the above eight general classifiers, together with the eight classifiers (for the 
“wrong” answers) that are identical to the above except that their actions are complemented? 

In the experiment, input strings were randomly presented to XCS, which would choose 
an action, receive the associated payoff from the environment, make its internal adjustments 
including the GA, and go on to the next random string. The population was initially empty, so 
that the first classifiers were created through covering. Values of the basic system parameters 
are given in the caption to Figure 3 .  

Because our aim in the experiment was to test the generalization hypothesis, we were 
not immediately concerned with the system’s ability to chose the “right” answer. Rather, we 
wanted to know if it could form a complete payoff map expressed in terms of the 16 maximally 
general classifiers. At the same time, we were, of course, curious as to whether XCS could, 
in fact, learn to choose the right answer if it had to! To address both purposes, we set the 
system’s action-selection regme so that, given an input, it would with probability 0.5 choose 
an action (1 or 0) at random, or it would choose the action that in the prediction array had 
the higher prediction (note that higher payoff was always associated with the right answer). 
Thus the system either acted randomly to gain information, or acted deterministically to gain 
maximum payoff. The action-selection regime thus alternated probabilistically between what 
one might term “pure explore” and “pure exploit” modes. In pure exploit mode classifier 
parameter adjustments and the GA did not occur. To determine how well the system was 
doing at getting the right answer, we simply kept track of the fraction of its decisions that 
were correct over the preceding 50 exploit trials. (XCS has been run successfully in a variety 
of other action-selection regimes.) 

Figure 2 shows a portion of the macroclassifier population after 10,000 trials, or “prob- 
lems,” from one run of the experiment. Each line represents a macroclassifier. The  total 
number of macroclassifiers in the population was 94; the total of their numerosities, and thus 
N ,  the number of regular classifiers represented by the macroclassifiers, was 400. Shown for 
each macroclassifier are its condition, action, predictionp, prediction error E ,  fitness F ,  and 
numerosity n. The prediction error is expressed as a fraction of the total payoff range, 1,000. 
The fitness is multiplied by the payoff range. The list is in ascending prediction order. 

Notice that high-fitness, high-numerosity macroclassifiers correspond to maximal gen- 
eralizations. Note also that classifiers with nonzero errors have low fitness-so they con- 
tribute little in the prediction array calculation. The  remaining 69 macroclassifiers in [PI 
exhibit the same pattern, with a dominant macroclassifier for each of the 16 levels of the 
payoff landscape. Thus in this experiment-Figure 2 is typical of all runs-XCS not only 
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Figure 2. Macroclassifiers from a 6-multiplexer experiment. 

maps the landscape, but finds maximally general classifiers that drive out all other classifiers 
except for a few that are slight specializations of the generals. 

Figure 3 shows performance, system error, and macroclassifier population size averaged 
over 10 runs of the experiment. Performance is the fraction of the last SO exploit trials that were 
correct. System error is the absolute difference between the system prediction (Section 3.1) for 
the chosen action and the actual external payoff, divided by the total payoff range (1,000) and 
averaged over the last 50 exploit trials. Population size is M ,  the number of macroclassifiers. 
Note that because XCS was in pure explore during about half of the total number of trials, 
the graph indicates that essentially 100% performance was reached within approximately 
2,000 explore trials. Because the system only adjusted parameters and performed the GA 
during explore trials, one can say that XCS “learned the 6-multiplexer” within about 2,000 
explore trials, and in a situation where the payoff difference between correct and incorrect 
differed by just a fraction of the total payoff range. 

The system error falls to zero at about the point the performance reaches 100%. Zero 
error means that the X x A + P map is both complete and highly accurate. The  population 
size curve shows the change in the number of macroclassifiers, which grows from zero, then 
settles back to about half its peak value. Informal observation suggests that the size grows 
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Figure 3. Results in a 6-multiplexer experiment. Solid curve: Performance, the fraction of last 50 
exploit problems correct. Dotted curve: System error as a fraction of total payoff range. Dashed curve: 
Population size in macroclassifiers (divided by 1,000). Parameters: N = 400, p = 0.2, y = 0.71,tJ = 25, 
E,, = 0.01, a = 0.1, x = 0.8, p = 0.04, 6 = 0.1, 4 = 0.5, P# = 0.33,pr = 10.0, €1 = 0.0, FI = 10.0. Curves 
are averages of 10 runs. 

until the system has found accurate, though still fairly specialized, classifiers for all parts of its 
map, then “condenses” as the population finds maximally general classifiers and eliminates 
many of the specialists. 

4.2.2 The 11-Multiplexer A similar experiment was done using the 1 1-multiplexer 
function (1 = 11). Because the 1 1-multiplexer has 32 maximally general covering classifiers, 
the landscape was designed with 32 payoffs instead of 16. As in Figure 2, the population 
evolved to contain a complete set of high-fitness maximally general classifiers, together with 
a residue of low-fitness slight specializations of the generals. Figure 4 is a graph of the results. 
Note its similarity in form to Figure 3 ,  but note also that the horizontal scale is different 
by a factor of two. Broadly, it appears that the 1 1-multiplexer is approximately 3 times as 
difficult as the 6-multiplexer. For example, the performance reaches 100% and system error 
reaches zero at  about 12,000 problems instead of 4,000, the population peak is a t  about 600 
macroclassifiers instead of 200, and the final size is around 300 instead of 100. 

This difference in difficulty would not be suggested by the difference in the search- 
space sizes for the two problems. The  ratio of input space sizes is 211/26 = 32. The  ratio 
of classifier-space sizes is 2 x 3 l 1  /2 x 36 = 243. At the same time, the ratio of the number 
of maximal generalizations in the two problems is 2. This suggests the hypothesis that the 
difficulty of learning a payoff landscape scales more according to the number of concepts 
(generalizations) it contains than exponentially with its dimensionality-at least for systems 
that can detect and exploit the generalizations, as XCS is apparently able to do. We will test 
this hypothesis on the 20-multiplexer (k = 4) in future experiments. 
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Figure 4. Results in an 1 1-multiplexer experiment. Curves have the same meaning as in Figure 3. 
Parameters are the same as in Figure 3,  except N = 800. Curves are averages of 10 runs. 

4.3 Multistep Environments 
The  multiplexer problems of the previous two sections were single-step in that external re- 
ward was received on every time-step and the environmental input for each time-step was 
completely independent of that for the prior time-step. Problems involving categorization 
of data examples are typically single-step, because a decision is made, and reinforcement 
as to the quality of the decision is received, in a single time-step, and the examples to be 
categorized are usually independent. In a seyuential, or multistep problem, reward may occur 
(though not necessarily) on any time-step, and the input on a time-step is dependent on a t  
least the prior input and the system’s last action. A major research use of sequential problems 
is to model, in part, the adaptive interaction of a system such as an animal or robot with its 
environment. In this simplified view, the system seeks to get as much reward as possible, 
and must learn associations between environmental inputs and its own actions that will lead 
to reward, even when-as with food located sparsely in the environment-many actions will 
receive no immediate reward (food). This is the general setting of the reinforcement learning 
problem, and has been studied using a variety of methods, including classifier systems (e.g., 
Wilson, 1 9S5), neural networks (e.g., Lin, 1993), and, especially formally, complete listings 
of state-action pairs and their outcomes (e.g., Sutton, 1991, Watkins & Dayan, 1992). 

In a basic land of multistep environment, the next inputy (and the reward, if any) 
encountered by the system depends only on the current input x and the current action a; 
there is no further history dependence. Such an environment is described as “Markovian 
with delayed rewards” or, in the terminology of Wilson (1991), it is a “Class 1” environment. 
The  predictability ofy given x and a makes it possible for the widely used technique called 
Q-learning (Watluns, 1989) to learn apoliy (i.e., which a to choose for each x) that is optimal 
in the sense that it maximizes the discounted sum of future rewards that the system receives. 
In this article we shall not review Q-learning except to note that the algorithm works by 
associating a quantity Q with every input-action pair. AS experience occurs, the algorithm 
updates that value, using the Widrow-Hoff rule, with an adjustment equal to the sum of the 
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current external reward, if any, and the product of a discount factor y (0 < y < 1) and the 
largest of the Q values associated with the following input y. Watkins proved that in Class 1 
environments this procedure, if done often enough for every input, would converge to a 
function Q(x, a) such that the policy that always executed the action with the maximum Q 
for each x would be optimal in the above sense. 

Several articles (e.g., Roberts, 1993; Twardowski, 1993; Dorigo & Bersini, 1994; Wilson, 
1994) have drawn attention to the relationship between the Q-learning update procedure 
and various versions of the classifier-system bucket-brigade algorithm, especially a version 
in which the payoff value is, as in Q-learning, a discounted sum of immediate reward and 
the sum of strengths of the maximum strength action in the next match set (Wilson, 1994). 
The major difference is precisely that it is this sum of strengths that represents the Q value, 
not a single number as in Q-learning. That is, assuming sharing of strength as discussed 
in Section 2, the system’s Q information is distributed over sets of classifiers, sets that are 
subject to abrupt membership changes due to the GA. In XCS, however, the relation to 
Q-learning is closer and more stable because each classifier uses Q-learning to predict the 
payoff directly, independent of the other classifiers, and the system prediction is an average 
instead of a sum. 

Recall that XCS, as shown in Figure 1, updates predictions p j  of classifiers in [A]-, 
with a Q-learning-like quantity P that is based on the system predictions contained in the 
prediction array (and any prior-step external reward). The  system predictions are fimess- 
weighted averages of the predictions of classifiers in [MI, and, as noted, should be more 
accurate than the sums of strengths in other classifier systems. The update procedure is not 
quite identical with Q-learning, in that Q-learning updates a single Q(x, a) value (stored in 
a table) and not a number of predictors (classifiers) whose predictions get averaged. But 
the connection is close enough to suggest that the X x A 3 P map constructed by XCS 
should converge to predict Q(x, a). In single-step problems such as the multiplexers, the map 
converged to predict the external reward, as indicated both by convergence of the predictions 
of high-fitness classifiers and the reduction of the system prediction error to near zero. In a 
multistep problem, XCS adjusts classifier predictions to predict a payoff P, which is, in fact, 
the Q-learning-like combination of the current reward and the next time-step’s maximum 
system prediction. The question is whether the system predictions and the predictions of 
high-fitness classifiers converge to the same values that Q-learning would converge to. 

If so, there is the further possibility that XCS’s generalization mechanism will cause it to 
exploit any generalization possibilities in Q(x, a), that is, to evolve classifiers that generalize 
over inputs x having the same Qvalue for a given a. Generalization using Q-learning in multi- 
step environments has been difficult to achieve. Proofs of convergence of the basic algorithm 
are known only for systems that enumerate all input-action pairs (x, a) in a table and have no 
natural generalization mechanism. Some success has been reported by supplementing the 
table with statistical clustering methods (Mahadevan & Connell, 1992) or by using neural 
networks &in, 1993) that implicitly generalize but may learn slowly. In contrast, XCS’s 
generalization mechanism is intrinsic to the system, explicitly exhibits the generalizations 
found (as classifiers), and the learning rate may be reasonable. In Section 4.2, we observed 
XCS’s generalization ability in the multiplexer problem, a single-step environment. We next 
test it in a multistep one. 

4.3.1 Wilson (1994) reported experiments in a two-dimensional, Class 1 envi- 
ronment called Woodsl. For experiments with XCS, we retained Woodsl’s basic pattern, 
but made it more challenging by defining Woods2, shown in Figure 5 (the left and right edges 

Woods2 
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Figure 5. Environment “Woods2” with animat. Empty cells are indicated by “.” 

of Woods2 are connected, as are the top and bottom). Woods2 has two kinds of “food” and 
two kinds of “rocks,” compared with one h n d  of each in Woods1 . F and G are the two kinds 
of food, with sensor codes 110 and 1 11, respectively. 0 and Q are the two kinds of rocks, 
with sensor codes 010 and 01 1, respectively. Blanks, denoted by “.”, have sensor code 000. 
The  system, here regarded as an animat (Wilson, 1985) or artificial animal, is represented by 
*. To sense its environment, * is capable of detecting the sensor codes of objects occupying 
the eight nearest cells (sensing 000 if the cell is a blank). For example, in the position shown, 
* ’s detector input is the 24-bit string 0000000000000000 100 10 1 10. The  left-hand three bits 
are always those due to the object occupying the cell directly north of *, with the remainder 
corresponding to cells proceeding clockwise around it. The  animat’s available actions con- 
sist of the eight one-step moves into adjacent cells, with the move directions similarly coded 
from 0 for north clockwise to 7 for north-west. If a cell is blank, * simply moves there. If the 
cell is occupied by a rock, the move is not permitted to take place, though one time-step still 
elapses. If the cell contains food, * moves to the cell, “eats” the food, and receives a reward 
(Y,,,, = 1000). 

Woods2 was constructed by repeating a basic block of nine objects and 16 blanks, with 
Fs and Gs assigned at random to the food position in the upper-right corner of the block, and 
0 s  and Qs assigned a t  random to the other positions. The  blank positions of the resulting 
environment yield a total of 70 distinct input strings. Due to the random assignment of 
symbols, the right-hand bit of the sensor code is not of much use to a food-seeking animat, 
because its value does not distinguish between food and rock, and does not reliably distinguish 
between object and blank. In contrast, the left-hand bit is completely sufficient to determine 
whether or not an object is food; fancifully, it might be termed the “aroma” bit. Similarly, 
the middle bit reliably distinguishes between object and blank; it could be called “opacity.” 
We added the right-hand bit to the code with the intention of introducing regions of the 
X x A + P mapping that  could be generalized over without introducing errors. The 
hypothesis was that  high-fitness classifiers would “hash out” this bit, because an accurate 
classifier that did so would have more matching opportunities than an accurate one that did 
not. 

Evolutionary Computation Volume 3 ,  Number 2 163 



Stewart W. Wilson 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 

I 

Steps to food (/lo) 
System error 
Pop. size (/1000) 
Optimum (/lo) 

I 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - -  
------------ 
- _ _  - - -  - - 

0 1 2 3 4 
Problems (1000s) 

Figure 6. Results in a Woods2 experiment. Solid curve: Performance, average steps to food in last 50 
exploit problems (divided by 10). Dotted curve: System error as a fraction of external reward. Dashed 
curve: Population size in macroclassifiers (divided by 1,000). Dash-dot curve: Optimum performance 
(divided by 10). Parameters are the same as in Figure 3 except N = 800,p = 0.01, and P# = 0.5. Curves 
are averages of 10 runs. 

4.3.2 Experiments in Woods2 In an experiment, the animat repeatedly executed “prob- 
lems,” each consisting of being placed in a randomly chosen blank cell of Woods2 and then 
moving under control of the system until a food object was eaten, at which point the food 
instantly regrew and a new problem began. As with the multiplexers, the experiments used a 
50-50 explore/exploit regme. At the start of a problem, XCS would decide with probability 
0.5 whether or not action selection throughout the problem would be random (explore) or 
deterministic (exploit). In explore mode, both the reinforcement and discovery components 
operated normally, but in the performance component, actions were selected at  random 
from among those that had non-null predictions in the prediction array. In exploit mode, 
the performance component selected the action with the maximum prediction. The discov- 
ery component was turned off (except for covering), but in the reinforcement component 
updates occurred normally for [A] - 1 (but not [A]). Updates to [A] - 1 were maintained to 
allow escape, via covering, from occasional loops early in a run. To keep track of exploit 
mode performance, the system kept a moving average, over the past 50 exploit problems, 
of the length of each problem in time-steps. As with the multiplexers, the population was 
initially empty. 

Experiments were typically run for several thousand problems. Under a variety of 
parameter regimes and initializations, XCS quite reliably achieved optimal performance 
within roughly 1,000 explore problems. For Woods2, optimal performance is 1.7 steps to 
food. This is the average of the shortest path to food from every starting position; no system 
having the same actions can do better in Woods2. Figure 6 shows performance (in average 
steps to food), system error (average absolute difference between the system prediction 
for the chosen action and P), and population-size curves for the experiment with the best 
performance so far (to show the curves on the same scale, performance and population size 
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Figure 7. Example of system predictions learned in Woods2. Line length is proportional to the 
prediction in that direction, scaled so half the length of a cell edge equals the external reward. 

were divided by the factors indicated before plomng). The  performance curve begins off- 
scale, with steps-to-food generally at least 27 (the random value), then falls rapidly within 
500 problems (or about 250 explore problems) to 2.0 and gradually approaches the optimum 
over the next 500 problems. The system error, shown as a fraction of the external reward 
value (1,000) is about 10% by 100 problems, then falls slowly to around 2 % . The population 
size in macroclassifiers rises rapidly at the beginning to  around 500, and stays near tha t  value 
for the rest of the experiment. 

That the X x A + P map has converged to Q(x, a) is suggested by the reduction in system 
error to a few percent and, as will be seen, by the predictions of high-fitness classifiers. The 
mapping may be visualized in a different way in Figure 7, which symbolizes, for each blank 
position in the repeat pattern of Woods2, the system prediction associated with each of the 
eight directions of movement at 4,000 problems in one run of the experiment. The length 
of a line segment represents the prediction for the associated direction, and is scaled so that a 
prediction of 1,000 equals half a cell side. The  diagram shows that the mapping is complete 
in that all actions are represented in all cells. It may be seen to be roughly accurate by noting 
that actions that are one step from food have predictions of 1,000, actions two steps away (i.e., 
after talung the action, the shortest resulting path to food is one step long) have predictions 
roughly 1,000 y = 710 in length, and actions three steps away have predictions roughly 
710 y = 504 in length. Further evidence of accuracy is given in Section 4.3.3. (Figure 7 was 
computed by placing the system in 16 cells with 0 s  and F as neighboring objects, so it does 
not represent predictions over all positions in Woods2 and is strictly only suggestive of the 
mapping’s convergence.) 

4.3.3 The  population-size result in Figure 6 
is a first indication of the system’s generalization ability in this kind of environment. Note 
that 500 is less than the size of the table required by standard Q-learning for Woods2. 
Because Woods2 produces 70 distinct inputs for the system and there are eight directions of 
movement, the table size would be 560. This is not a dramatic difference, but may imply that 
XCS’s advantage would be bigger in larger problems. Recall that the 6-multiplexer required 

Evidence of Generalization in Woods2 
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Figure 8. First 1 3  macroclassifiers from the experiment of Figure 6 a t  4,000 problems. 

about 200 classifiers peak and settled to about 100. The Q table size for that problem 
would be 64 x 2 = 128, again not a dramatic difference. However, the 11-multiplexer 
required 600 classifiers peak and settled to around 300. For that problem, the Q table 
requires 2048 x 2 = 4096 entries, suggesting an increasing advantage for the classifier system 
in larger problems. It should be mentioned that not all experiments with Woods2 had a 
steady or falling population size by 4,000 problems. However, population sizes like tha t  in 
Figure 6 were obtained by lowering the mutation and crossover rates. This, in fact, improved 
performance, suggesting that appropriate parameter regimes will not trade off performance 
and population stability. 

The actual classifiers evolved by XCS turned out to be a rich source of information. 
Unfortunately, space limitations preclude exhibiting more than a sample of them. The 
general picture was that by 4,000 problems the vast majority predicted, with essentially 
zero error, either 1,000, 710, or 504; that is, they predicted the values of Q(x,a) precisely. 
In addition, they covered all (x,a) situations. A second and surprising observation was 
that besides discovering and largely exploiting the generalization that we contrived for the 
right-hand sensor code bit, XCS discovered in Woods2 dozens of generalizations that we 
had not suspected were present. In fact, the landscape is crisscrossed with intersecting 
generalizations, some applying in many situations, some in just two. 

We look first at some classifiers predicting 1,000. Figure 8 shows the first 13 macro- 
classifiers from a listing of the population in descending prediction order. They all match in 
positions adjacent to food. Look first at the six macros (with total numerosity 10) that have 
action 7. Each requires that the “aroma” bit in direction 7 be a I ,  indicating food. Each also 
has a hash symbol in most positions corresponding to the redundant right-hand sensor code 
bit. However, a number of other positions contain 0, and there is even a 1 in the “opacity” 
position in direction 5 in all but one of the classifiers. What is going on? Why are not all 
of these positions hashed out, since the aroma bit in direction 7 is necessary and sufficient 
for predicting 1,000 with zero error? The reason is that each of the six classifiers matches in 
every cell for which food is in direction 7; no classifier obtained by changing one of these bits 
to a # would match (and predict accurately) more often. As a result they cannot be displaced 
by a classifier that is formally more general (i.e., has more #s). 

From the point of view of minimizing population size, it would be desirable to see these 
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unnecessarily specific bits-let us call them “optional”-replaced by hashes. But Woods2 
provides no evolutionary pressure to do so. The  six classifiers are, so to speak, on an evolu- 
tionary plateau that is maximal in terms of accuracy and reproductive opportunity. If food 
objects, that is, objects with aroma bit set, occurred in a greater variety of contexts, there 
would be pressure to hash out the optionals. In the multiplexer environments, every input 
bit occurred in the context of every other input bit value, so the system indeed “drove” 
toward generalizations that were both formally and pragmatically maximal. But Woods2 is 
sparse in the sense that the input strings that actually occur form a minute fraction of those 
that are possible under the coding, with the result that winning generalizations will very 
likely contain bits that could optionally be replaced by #s. The  effect contributes to making 
populations in sparse environments larger than they might ideally be. 

The six classifiers in Figure 8 with action 4 illustrate how the system can discover and 
maintain more than one “concept” to describe a particular situation. Note that three of them 
have aroma bit 1 in direction 4, as might be expected. But two of the others recognize the 
“food to the south” situation via the combination of the opacity bit set to 1 in that direction 
(which is not in itself sufficient) plus the opacity bit set to 0 in direction 3 (south-east). Finally, 
the sixth classifier apparently achieves its accuracy through the combination of opacity bit 
set to 1 in directions 4 and 5, plus the aroma bit set to 0 in direction 3. This “concept” is 
rather complicated but because no other is more accurate and frequent in that situation, it 
survives. 

The classifiers just examined match in exactly one position of the basic repeat pattern 
of Woods2. They generalize over the details of the 18 different versions of that pattern. 
But they do not match at different positions within the pattern. We now give examples 
of classifiers that do match, and therefore generalize over, several such positions. They 
were identifiable in the population as classifiers with both high fitness and high numerosity. 
Shown are the classifier, its prediction, an interpretation of the prediction, and the number 
of places in the basic pattern that the classifier matches. The  phrase “food is x steps” in a 
given direction means if the system moves in that direction, the shortest path to food from 
there will be x - 1 steps long. (Note that XCS only makes payoff predictions and acts on 
them; the interpretations are strictly from the standpoint of an observer!) 

O##O##O#################: 1503 

“Food is 3 steps NVV” (16 places). 

Holds everywhere. Note that the three 0s are optional. That is, changing them to # 
does not increase the number of matching situations. 

######0##0##000#########: 2 497 

“If there’s a blank to the S, food is 3 steps E” (13 places). 

This covers all positions except the three along the top of the block. 

###0##0#####00#0##0##01#: 6501 

“If there’s a rock NW, food is 3 steps W (4 places). 

Holds for four positions below and to the right of the block. 

#l#O########OOO#########: 3 710 

“If there’s opacity to the N, food is 2 steps SE” ( 3  places). 
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Holds along the bottom of the block. 

###O#O#O#####l####OO#O##: 0 503 

“If there’s opacity to the S, food is 3 steps N” ( 3  places). 

Holds along the top of the block. 

0##0##0#####000####1####: 0708 

“If there’s opacity to the W, food is 2 steps N ( 3  places). 

Holds along the right side of the block. 

O##O###l#######O##O#####: 1502 

“If there’s opacity to the E, food is 3 steps NE” ( 3  places). 

Holds along the left side of the block. 

######O##Ol#OO#O########: 6 708 

“If there’s a rock to the SE and a blank to the S, food is 2 steps W” ( 3  places). 

Holds in 3 cells NW of the left side of the block. 

Large numbers of such generalizations can be found in the population. XCS gives 
the impression of tending to ferret out every possible grouping (permitted by the coding) 
of situations having equal payoff. The result is a network of overlapping generalizations 
covering the space of X x A. However, the cover is more than sufficient to solve the problem; 
that is, many classifiers could be removed without affecting the system’s performance. Thus 
while the system’s generalization drive aids efficiency by grouping situations under single 
classifiers, the system may find more generalizations than are actually needed, offsetting the 
gained efficiency. Nevertheless, XCS’s ability to arrive at numerous accurate generalizations 
is an advance compared with previous classifier systems, which had no natural mechanism 
for producing them. 

5. Discussion 

This article has described and reported experimental results with a classifier system, XCS, in 
which fitness is based on the accuracy of a classifier’s prediction, not the prediction itself, and 
the genetic algorithm is conducted in the match sets, instead of over the population as a whole. 
The results indicate that XCS is capable of forming complete X x A + P maps of its payoff 
landscape, and that classifiers that accurately generalize over sets of inputs are discovered and 
emphasized. Due to the generalization ability, the number of classifiers required to solve the 
multiplexer problem grows much more slowly than the size of the input space. The results in 
the multistep environment Woods2 are less certain in t h s  respect, though still promising. A 
further aspect of XCS is that, in some contrast with earlier classifier system architectures, the 
role of the GA is more natural and constructive. Rather than pitting classifiers against each 
other for their payoff-getting ability-with the side effects discussed in Section 2-in XCS 
they compete based on the accuracy and generality of their knowledge of the environment. 
This kind of competition does not interfere with their ability to cooperate. 
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5.1 Related Work 
The  first article on classifier systems (Holland, 1976) proposed that classifier fitness be based 
not only on predicted payoff, but also on the consistency of the prediction, among other 
measures of worth. The idea was implemented in Holland and Reitman (1978). Later, 
however, Holland focused on payoff-based fitness in connection with the bucket-brigade 
algorithm (e.g., Holland, 1986). 

As noted earlier, Booker (1982) introduced the idea of conducting the genetic algo- 
rithm in the “niches” defined by classifier match sets. His reasoning was that the classifiers 
in a match set were relevant to the same or similar problems, so crossovers among them (a 
form of “restricted mating”) were likely to be more fruitful than a panmictic regime that 
crossed classifiers drawn from the general population, that is, from probably quite unre- 
lated niches. Booker built on the niche GA idea in several subsequent articles, culminating 
in Booker (1989), in which he presented GOFER-1, a classifier system that, via operators 
triggered in various circumstances, used nonpayoff as well as payoff information in its dis- 
covery component. Two aspects of this sophisticated system seem most important here. 
First “effectiveness,” Booker’s measure of classifier worth or, simplifylng somewhat, fitness, 
was the product of three factors: 7r (“impact”), essentially a prediction of local (i.e., bucket- 
brigade-like) payoff; (“consistency”), proportional to one minus normalized mean-squared 
prediction error; and p (“match score”), a measure of the classifier’s specificity. Effectiveness 
is thus a quantity that combines the perspectives of payoff and accuracy. Second, the system 
employed a deletion method proportional to match-set size, which tended to equalize the 
resources (classifiers) devoted to each niche of the environment; as noted in Section 3,  XCS 
uses basically the same technique. 

Booker presented results of tests on a 6-multiplexer problem in which the payoff land- 
scape had reward 1,000 for the right answer and 0 for the wrong answer. Using a deterministic 
measure of performance, GOFER-1’s performance exceeded “the 97% level after 2,500 input 
strings” (1989, p. 272) (2,500 explore trials using a form of roulette-wheel selection). This 
is similar to XCS’s performance on the 16-reward-level 6-multiplexer (Figure 3). The latter 
would appear to be a more difficult problem, and it would be interesting to know GOFER- 
1’s performance on it. Booker also tested his system on the state space search problem of 
Grefenstette (1988) with good results. 

GOFER-I anticipates XCS in the niche GA and in the use of at least some accuracy 
information in the fitness measure. Booker states that the system’s goal is to “build a useful 
internal model of the environment, not merely to optimize the strength of rewarded stimulus- 
response pairs” (1989, p. 265). This also anticipates XCS, but it is not clear from the 
article just what the internal model looks like, or whether any generalization-accurate or 
inaccurate-is occurring. No classifiers are exhibited. In addition, the system appears to 
have more mechanisms and parameters than XCS. Nevertheless, Booker’s approach is a very 
important line of classifier system research from which, obviously, much can be learned. 

Frey and Slate (1991) presented a classifier system in which predictive accuracy rather 
than payoff-based strength was the central quantity. They investigated a letter-recognition 
task in which the system was first trained on a large number of exemplars, then tested 
on additional exemplars. Initial experiments were done with a strength-based system, but 
the authors found they could get as good results, with less concern for precise parameter 
settings, by shiftmg to the accuracy approach. In more detail, a classifier kept a record of its 
“accuracy,” defined as the “cumulative ratio of the number of [its] correct bids to the total 
number of [its] bids” (p. 180). Ln Frey and Slate’s system, a classifier’s action was a letter name. 
When it matched an input, the classifier would assert the letter name. The  accuracy was the 
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cumulative fraction of the assertions that were in fact correct. The performance component 
used it as the classifier’s “bid,” with the the system’s decision being the letter asserted by the 
highest bidding member of the match set. Accuracy was also used as the fitness measure 
when the discovery component employed a (panmictic) GA-the authors also experimented 
with exemplar-based and random generation of rules. Apparently because accuracy alone 
tended to produce rules that were too specific in a population of a given size, the authors 
added a second measure, “utility.” This was “the number of correct winning bids divided by 
the [total] number of stimulus items presented [to the system] during the lifetime of the rule,” 
so that utility measured the frequency with whtch the rule successfully controlled the system 
(p. 176). Classifiers whose utilities fell below a threshold were deleted, which pushed the 
population toward accurate but also more useful (more frequently matching and correctly 
bidding) rules. 

Although Frey and Slate’s system predicted a category instead of a payoff quantity, 
it anticipated XCS’s emphasis on accuracy. Frey and Slate’s use of the “utility” measure 
evidently resulted in greater generalization than would otherwise have occurred, though 
they do not show any classifiers. They note that their system is not directly applicable to 
reinforcement learning problems but might be so adapted. 

The idea of keeping track of the variance of a classifier’s payoff occurs in Goldberg 
(1988). Goldberg discusses an action-selection method in which, for each matching classifier, 
a weighted sum of its strength and a Gaussian based on its payoff variance is calculated. 
Then the action of the classifier with the largest sum is selected. The method, termed 
variance-sensitive bidding, causes action selection to become increasingly deterministic as the 
classifiers’ payoff estimates become increasingly reliable. The  variance calculation is similar 
to the error estimate in XCS, but the Goldberg article does not consider including a function 
of the variance in the fitness calculation. 

Grefenstette, Ramsey, and Schultz (1990) also calculate the variance but redefine classi- 
fier strength as the payoff estimate minus the variance. Action selection is based probabilis- 
tically on strength, so that the selection is biased toward classifiers with high payoff and low 
variance. This technique was used as part of Grefenstette’s SAMUEL system, in which the 
genetic algorithm operates on classifier sets, not individual classifiers, so that the concept 
of the fitness of individual classifiers does not apply. Later, however, Grefenstette (1991) 
extended the use in SAMUEL of the above kind of strength to affect the probabilities of 
deletion and the application of certain mutation operators, so that payoff variance had an 
influence on the survival and modification of individual rules. 

Separately, mention should be made of Grefenstette’s (1 988) study of classifier-system 
credit assignment. He  exhibits circumstances in which strength, as traditionally defined and 
employed in the bucket-brigade algorithm, does not correctly predict external payoff. The 
problem arises when two different environmental states are matched by a single classifier 
and the external payoffs resulting from t h a t  classifier’s action are different. As a result, 
earlier classifiers in the corresponding chains acquire strengths reflecting a mixture of the 
two payoffs. In effect, the problem occurs because the matching classifier is not sufficiently 
specific to distinguish the two states, yet it (presumably) survives because its fitness is based 
on payoff instead of accuracy. From the present perspective, thls is a good example of the 
problem noted under (4) in Section 2: overgeneral classifiers can survive under payoff-based 
fitness. With XCS, overgeneral classifiers do not, in general, survive, and we would not 
expect to observe the situation Grefenstette presents. 

Finally, the present work is related to Wilson (1994) in that XCS deliberately changes 
the fimess measure and GA method of ZCS, but retains many elements of the earlier system. 
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The  two systems can be experimentally compared because ZCS learned in Woodsl, a simple 
version of Woods2. In Woodsl, ZCS’s performance never reached the optimum, which, as 
in Woods2, was 1.7 steps. Instead, ZCS did not do better than about 3.2 steps (see Figure 3 
of Wilson [1994]). In addition, the X x A =+ P map was incomplete in that  the match 
sets contained classifiers for only one or two of the possible actions (compare Figure 4 of 
Wilson [1994] with the present Figure 7). Finally, no significant accurate generalizations 
were found. These deficiencies were overcome in XCS through use of accuracy-based fitness 
and a niche GA. However, the case for these changes is not quite closed, because the two 
systems employed different action-selection regimes. ZCS employed roulette-wheel action 
selection. A tax on classifiers not selected increased the probability of choosing the highest 
strength action, but also tended to cause convergence on suboptimal classifiers. Had ZCS 
used some form of pure explore/pure exploit regime as in XCS, the results might have 
been better. This is an experimental question and should be investigated. We predict that 
ZCS’s inability to suppress overgenerals, together with the distribution of the prediction over 
multiple classifiers would still result in a performance and accuracy shortfall versus XCS. 

5.2 Future Research Directions 
An important objective in future XCS research is to increase the efficiency with which the 
X x A + P map is represented. One point of attack would be to reduce the number 
of accurate, general classifiers that nevertheless contain “optional” specific bits. This can 
perhaps be accomplished through a modified fitness function that favors formal generality 
(i.e., more #s) when E is below a low threshold (initial experiments indicate that this technique 
is effective). A second approach would be to develop methods of “condensing” the population 
to remove classifiers unnecessary to the generalization cover. For example, the first classifier 
shown in Section 4.3.3 renders redundant all other classifiers with action 1; eliminating 
them would substantially shrink the population. Informally, we have been able to reduce 
the population without loss of performance by running the GA with mutation and crossover 
turned off. That is, classifiers were selected, reproduced, and deleted without the formation 
of any new macroclassifiers. Large (e.g., 75%) reductions in population size were obtained 
before a needed classifier was finally deleted and system performance decreased. Similarly, 
in regular experiments, we have noticed a rather strong dependence of ultimate population 
size on the mutation and crossover, that is, search, rates. So it would appear important to 
investigate techniques that adaptively control the search rate. 

In principle, search should be vigorous when little is known or the system is in trouble; 
once a problem is solved, search is unnecessary. Of course, the information and decision 
procedures needed to  achieve such control successfully in learning systems represent a large 
and relatively unexplored research area. We are not spealung here of finding the “right” 
fixed explore/exploit regime, but instead of dynamic control of the explore/exploit regime 
throughout learning. In fact, experiments were done with the multiplexers using annealing 
of the percentage of explore trials from 100% a t  the start down to 0%, and a switched regime 
in which 100% explore was conducted up to a certain trial after which the system changed 
to 100% exploit. The total number of explore trials required for a given performance 
was found to be comparable in both these and the SO-SO regime of Section 4.2. Thus 
XCS would appear suitable for a variety of explore/exploit regimes. What is more difficult, 
however, is to find ways of controlling exploration adaptively, where exploration includes 
both exploratory actions and search via the GA. Initial experiments indicate that XCS’s 
error measures may be useful in this regard, somewhat in the spirit of Goldberg’s (1988) 
variance-sensitive bidding. 
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Another approach to increased efficiency would be through changes in input repre- 
sentation that would more concisely capture the regularities of the environment. This is 
the potential benefit of s-classifiers (Wilson, 1994), that is, classifiers whose conditions are 
expressed in the language of LISP s-expressions (the system’s discovery component would 
employ a version of genetic programming Boza, 19921). As a simple example, Boolean OR 
could be represented in a single classifier condition, permitting a single classifier to express 
a generalization that required OR. In contrast, traditional classifier syntax can only repre- 
sent the AND of variables and their negations, so that a generalization involving OR requires 
at least two classifiers. If s-classifiers were extended to calculate their prediction (instead of 
merely asserting a statistic) single classifiers might be evolved that were capable of predicting 
correct values in an even wider variety of situations. 

Adherents of payoff-based fitness might suggest that the efficiency issue arises because 
accuracy-based fitness, as demonstrated, results in relatively complete maps of the payoff 
landscape, whereas traditional classifier systems “go for the best” (paying classifiers) and ig- 
nore the rest. They might say that the latter pragmatic approach is the only practical one in 
large problems (Holland et al. 1986). Against this one can note that the traditional classifier 
system has no principled approach to achieving generalization-the lack of which may well 
offset whatever is gained through pragmatics-and the solutions converged upon are often 
suboptimal. Nevertheless, in many problems large regions of the X x A 3 P map will be rel- 
atively unremunerative, and techniques for reducing exploration there need to be developed. 

Asecond major direction for future research is development of systems that learnfinctzon 
approximations. In contrast to traditional classifier systems, XCS emphasizes the formation 
of a well-defined prediction prior to talung an action or generating a message. In effect, 
improving the prediction means learning a better and better approximation to a function 
f ( x ,  a) of the system’s inputs and actions. Furthermore, there is no essential reason why the 
inputs x need to be binary. They could be continuous, with the classifier condition being 
a conjunct of “receptive fields” having adaptive centers and widths corresponding to each 
input variable, or, indeed, the condition could be an s-expression. 

From this perspective, XCS could be used to learn approximations to functions f ( x ) ,  
where x is a vector of input variables, by providingf(x) as the value to be “predicted” and 
defining just one (dummy) action. There are already, of course, well-developed approaches 
to such problems (Albus, 1975; Poggo & Edelman, 1990), and classifier systems have been 
combined with fuzzy logc to a similar end (Valenzuela-Rendbn, 1991; Parodi & Bonelli, 
1993; Bonarini, 1994). Generally missing, however, have been mechanisms that automati- 
cally adapt the approximation’s structures to the function’s curvature, so that fewer resources 
(basis functions, classifiers) are employed where the function is changng slowly. XCS’s 
generalization ability may be able to contribute significantly in this respect. 

A third major research direction concerns the problem of classifier systems with tempo- 
rary memory, that is, systems that either post messages to an internal message list (Holland, 
1986; Robertson & Riolo, 1988; Smith, 1991) or set register bits that can be matched on the 
next time-step (Ross, 1994; Wilson, 1994). Broad success with temporary memory would 
open the way to systems with variable event-granularity (e.g., getting a coffee, getting a 
degree) and hierarchical behavior (Wilson, 1987b). At this point it is still not clear how best 
to organize these more complicated systems, though basing fitness on accuracy of prediction 
instead of the prediction itself seems intuitively sounder in systems that are increasingly more 
cognitive than reactive. 

Finally, a fourth and related direction for future research concerns classifier systems that 
learn predictive models of the environment. XCS models its environment only in the sense of 
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learning payoffs, that is, the X x A + P map. It does not learn what input sensation will 
follow a given action. That is, it does nor learn an X x A + Y map, where Y is the following 
sensation. However, Riolo (1991) and Holland (1990) (see also Sutton, 1991 and Drescher, 
1991) developed classifier systems in which each classifier has a condition, an action, and a 
prediction of the resulting sensation (which, echoing the use of “taxon” for condition, we 
could call an “expecton”). The  expectons permitted forward chaining of classifier conditions 
and consequences, so these systems could look ahead and plan. However, fitness in both 
systems was still implicitly based on payoff (the experiments reported did not involve the 
discovery component). Clearly, the concept of fitness based on accuracy of prediction could 
be extended to classifiers with expectons. Besides rating how well a classifier predicted payoff, 
the fitness might also, or separately, represent the accuracy of the expecton in predicting the 
next sensation. The latter fimess could cause the GA to evolve classifiers that model “what 
follows what” in the world. 

5.3 Conclusion 
Much work remains to understand how to make XCS’s mapping and generalization fully 
efficient, and to extend the system’s principles to more challenging problems and environ- 
ments. But the results in this article demonstrate that accuracy-based fimess and a niche 
GA can evolve-perhaps for the first time seen in classifier systems-complete payoff maps 
containing accurate maximally general classifiers. The  results point to the conclusion that 
accuracy-based fitness and a niche GA form a promising foundation for future classifier- 
system research, and underline classifier systems’ relevance to the broader field of reinforce- 
ment learning. Further, it is perhaps not premature to suggest that  the use of strength as the 
dominant component of fitness in classifier systems is fundamentally inadequate. Strength is 
sufficient for simple problems, or where the quality of learning need not be high. However, 
as research moves on to tackle more complex environments, increased examination of other 
concepts of classifier fitness is surely in order. 
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