Burning Saltwater

There is hype coming from some chemist at Penn State University that claims a serendipitous discovery that salt water; when irradiated with radio waves; burns.

This is dumb people; it’s not going to power your cars or your homes. All that has been discovered is that salt in water is conductive; and radio waves induce radio frequency currents in conductors, thus causing electrolysis, the emission of hydrogen and oxygen; and that hydrogen when burned in a stoichiometric mixture with pure oxygen burns damn hot, about 1700 °C hot; but it doesn’t generate more energy burning than the energy put into breaking the water down in the first place.

There are real energy solutions out there; this isn’t one of them. If you want to make energy from water; the way to do it is first to separate the water containing deuterium molecules from the rest of the water. This can be done through repeated distillation because the water with deuterium molecules has a higher boiling point.

Next electrolyze the water to get hydrogen, deuterium, and oxygen. Separate the hydrogen from the deuterium, any number of possible ways that this can be done; since the mass to charge ratio for deuterium is twice that of ordinary hydrogen, it’s not real difficult.

Now, take the deuterium and put it in a spherical tokamak with a lithium blanket; add a strong confining magnetic field; some heating current; and in a some D-D reactions will take place; you’ll get some protons, some tritium nuclei (proton+two neutrons), and some neutrons. Some of those neutrons will collide with the lithium and create more tritium nuclei.

After about a day there will be enough tritium generated for D-T reactions to predominate and at this point the reactor becomes a net producer of energy and continues to breed tritium from lithium.

The Tokamak science is understood well enough now that we could build such reactors if the people really in power didn’t oppose their construction. But the banks and oil companies have a lot to lose. The oil companies built platforms costing billions of dollars that take decades to recoup the costs; almost free environmentally friendly and unlimited energy would undo that. And the banks that loaned money to build these things don’t want that to happen either.

An alternative; build a Bussard reactor and use boron and hydrogen as the fuel; much cheaper (about 100x) in terms of capital expense; much more efficient as the energy can be drawn directly as electricity; and much cleaner; no neutrons means no neutron activation; no neutron embrittlement. The Bussard reactor requires no superconductors magnets, no exotic rare earth materials, and no extensive shielding, it can’t explode, melt down, and it neither produces radioactive waste nor requires radioactive fuel.

The Bussard reactor is much smaller than a Tokamak but still too large for cars; probably too large for trucks, but possibly could be fit in a large airplane, and definitely in in ships and trains.

These are some ways we can get large amounts of energy from water; we can get much smaller but still substantial energy from water by taping it’s latent heat or motion. We can build devices that generate energy based on the temperature differences between deep and shallow water, or between water and the air above it. We can tap energy of it’s motion by using undersea turbines, or tidal energy by damming inlets; or by taping wave motion by using a float and a anchored objects relative motion to generate electricity.

But we won’t get any net energy gain from bombarding saltwater with radio waves and burning the gas that results; always we will get less energy than we put in this way. Perhaps if we all throw some salt over our left shoulder the Penn-state chemist will go away.