Connecting The Dots…

Often partial solutions to our problems are presented on the Internet but nobody puts the pieces together. Recently, I have focused quite a bit on the energy issue, and I have found that solutions abound, but the political will to implement them is lacking, or they appear uneconomical because they are, by themselves in fact uneconomical.

A good example of this is wind power penetrating the grid at more than about 20%. By itself taken in isolation, with all other variables ignored; more than about 20% seems impractical because of the variability of wind. But taken with other solutions the picture is quite different.

Our existing electrical grid is mostly an AC grid, the east and the western grids aren’t substantially connected, and overall it’s inefficient, unreliable, and at capacity straining to meet ever growing demands.

If this weren’t the case; if we modernized our electrical grid adding east-west ties and converting all spans longer than 300km to DC transmission, first, doing this alone would be like adding 15% additional generating capacity to the grid without any additional pollution because we could cut the losses from around 17% to around 2%. Moreover, efficient east-west transmission would allow us to distribute the peak load across the time zones requiring less peak capacity and making more efficient use of the capacity we already have, above and beyond grid losses.

If we can utilize geographical diversity with wind generation, something only possible with the modernization of our power grid; then the total capacity available from wind power never falls below about 1/3rd of peak capacity, and then we could, if we choose, simply overbuild capacity and supply our entire electrical needs from wind alone. I’m not advocating wind alone, ideally we’d use a mixture of renewable sources, solar, geo-thermal, ocean-current, ocean-wave, tidal, ocean-thermal, various forms of hydro (there are forms that can capture energy from the movement of river water without dams), etc.

We could generate all of our electricity by wind if we so choose simply by building 3x as much capacity as we need and modernizing the electrical grid. But there is a snag, wind, presently the least expensive method of generating electricity, less so even than coal now, would lose it’s attractive economics if we had to overbuild by 3x AND if there were no market for that peak power.

Add in some other technologies, for example, we can take electricity, carbon dioxide, and water, and using one of three processes, we can make an alcohol called butynol which can directly be used as a replacement for gasoline in ordinary gasoline cars. Butynol actually has tremendous advantages over gasoline. Butynol produces only 3% of the hydrocarbon emissions, almost unmeasurable carbon monoxide emissions, and greatly reduced nitrous oxides relative to gasoline. It also produces slightly better fuel mileage and power, greatly reduced acidic blow-by products (thereby enhancing engine life) and less waste heat (also enhancing engine life).

We can make butynol from electricity, carbon dioxide, and water by one of three methods. There exists a kind of reverse fuel cell that was recently invented that uses a catalyst in the presence of electricity to convert carbon dioxide and water to butynol. That is one method; it’s a method that from what I’ve read Richard Branson paid to have developed to produce butynol as a renewable jet fuel. However, there are two other methods also that can be used, carbon dioxide can be electrolyzed into oxygen and carbon monoxide, the carbon monoxide can be mixed with steam to form “process gas”, and then in the presence of catalysts, this can be used to create a variety of useful hydrocarbons including butynol. Lastly, electricity can be used to create sufficient heat to disassociate carbon dioxide into carbon monoxide and oxygen and then the same process that follows electrolysis can be used. The last process has been demonstrated on an industrial scale, I’m not sure if the first processes have made it out of the lab, but they have at least been demonstrated in the lab. Using the latter two processes it is also possible to make synthetic diesel.

If use the electricity generated during times when there is excess capacity to create butynol, we can replace imported oil used for gasoline and diesel, while at the same time providing a market for the peak electrical production, thereby allowing wind power to be economical even when capacity is overbuilt, and we create a market for the carbon dioxide generated by existing coal and gas fired plants instead of just releasing the carbon dioxide into the air. When the butynol is burned it will release carbon dioxide, but this is displacing oil that would have been burnt, so the net result will be a reduction in carbon dioxide and if we can bring enough renewable electricity capacity online to eliminate the need for fossil fueled power generation, then we can continue to make butynol by sequestering carbon dioxide directly from the atmosphere, thus making the process a closed loop resulting in no net carbon dioxide increase.

Any one of these elements by themselves may not be economic; but they are all mutually synergistic and implemented together they could eliminate our dependency upon foreign oil first, and later eliminate our dependency upon fossil fuels (or for that matter abiotic oil) entirely.

We should be doing this, and we should not be doing it ten or fifty years from now, we should be doing it now.

Bush Asks Saudi’s to Produce More Oil

If the Saudis could produce more oil, why would they? $129/barrel is a good thing from their perspective. So they offered to increase by 300,000 barrels/day, a drop in the bucket, which essentially amounts to “no”. I don’t think the Saudis can produce significantly more oil. Ghawar is Saudi Arabia’s largest oil field, accounting for approximately 70% if it’s daily output. In 2001, the Saudis started injecting seawater to maintain oil pressure. Now the water cut from many of the wells is on the order of 55%. A point will be reached when the energy required to extract the oil is so great that it will become impractical to continue producing oil from this field and the rate that the water cut has increased suggests that that point is not far away.

There are newly discovered fields offshore in the Santos basin that may eventually replace some of the lost production capacity in Ghawar but this reservoir, like the other newly discovered reservoirs along the South American coast and in the Gulf of Mexico, requires drilling an average of 22,000 feet and the cap consists of 5500 feet of salt which is highly corrosive at the pressures that exist at that depth. This presents significant technological challenges that neither Brazil or Mexico appears ready to tackle.

At the current market rate you had better believe that the Saudis are producing every drop they can. The current high market prices have produced a wealth of new oil discoveries and there is no doubt in my mind that supply will catch up with demand eventually but these types of deep ocean reservoirs typically take 5-10 years or more to develop so this is not going to provide any immediate relief from high oil prices.

The only thing that is going to lower the price of gasoline and other oil derivatives is if we reduce our demand and increase our supply. We have the means to do both but apparently not the political will.

The real solutions are going to come from a variety of sources but all of them take time to bring online, so in my view, we should be pursuing all of them as fast as we can.

There is enough surplus energy on the electrical grid at night to power our daily commute, all that we need to make this possible is a practical plug-in hybrid vehicle. While GM has a concept car called “The Volt”, like most GM concepts it will probably never see production. Their present claim is that the batteries aren’t available in sufficient quantity yet. Meanwhile, a Chinese company is making plug-in hybrid vehicles with a 60 mile all electric range using their own proprietary lithium-iron-sulfide battery technology. I would bet that if GM was given sufficient financial incentives, we could see that plug-in hybrid introduced in the near term.

Even if GM produced an affordable plug-in hybrid tomorrow, people don’t replace their cars overnight, especially in a depressed economy, but it would be a start; lowering the prices, and it also would be an exportable technology which would help reduce our trade imbalance and strengthen the dollar. To the degree which it does reduce oil consumption, it will place downward pressure on the price of oil and upward pressure on the value of the dollar.

If we’re going to make the transition to clean renewable energy we need to find a way to do so that won’t totally destroy our economy and we have to find ways to minimize economic opposition to this transition. To this end, I think we should invest in coal to liquid technologies, and in places where we have natural gas production without an economical method of transporting it, natural gas to liquid. Then, as we displace coal and natural gas from electricity production, we can use this coal and natural gas to make liquid fuels and displace imported oil.

We have to stop the economic hemorrhaging, the money leaving our country and the value of our money from going down the toilet, in order to have the capital resources necessary for new energy infrastructures.

Doing this would reduce net carbon dioxide emission because we wouldn’t be burning that imported oil anymore; and we’d be using coal much more cleanly rather than burning it in a power plant, because the process of converting it to a liquid fuel would remove contaminants like mercury, arsenic, sulfur, radium, etc, and that material would no longer go up a smoke stack and be disbursed across the countryside. Instead, those materials can be recycled and used by industries that need them.

As coal production is replaced by renewable sources such as wind, solar, geothermal, and other renewables, we can start using surplus electricity to produce liquid fuels, especially butynol which can be used as a direct replacement for gasoline, and removing carbon dioxide from the environment in the process.

We really need to ramp up our domestic energy production now; it’s the only thing that we can do that will leave us with enough of an economy to make a transition to renewables and to prevent starvation as food shortages and the inability to move foods to the market, will otherwise price food out of the reach of many people.

Magic financial manipulation won’t save us from $10/gallon gasoline, the only thing that will do that is to produce enough energy to meet our demands, and the only thing that is going to stop the rapid decline of the dollar is a correction of the huge trade imbalance and national debt that we have. Becoming self-sufficient for our energy needs is a necessary prerequisite for peace in the middle east. As long as we are dependent upon the middle east for energy, the financial effects are going to provide the incentives for war. Nothing is a larger environmental or economic disaster than war.

National security also demands energy self-sufficiency. If we are dependent upon the middle east for fuel, pretty soon we’re going to find it difficult to even fly our planes. There is no doubt in my mind that this fact will not be lost on China and Russia, not to mention many other nations that we’ve given good reason to hate us. When they realize that all that is necessary to cripple our military is to disrupt an 8,000 mile long supply line of oil tankers, they are going to feel emboldened. The only defensive option that would leave us is the nuclear option, and a nuclear exchange with Russia would be pretty much the end of civilization.

Energy Costs – Gasoline Prices

Our energy woes aren’t going to resolve themselves unless we continue to let them escalate until enough of us die off that demand is brought within the constraints of supply. That would be an extremely painful solution to the problem but it seems to be the default solution and the one that politicians are heading towards. Without major input from us, it’s not going to get better.

The demand for energy from China and India is going to continue to grow, and it must, because only by eliminating poverty can we hope to have a humane solution to overpopulation. In developed countries, people naturally have fewer children, in fact, excluding immigration developed countries have negative population growth. The same thing needs to happen in Africa as well, Malaria and AIDS need to be brought under control, the food and water issues need to be resolved, and when these things happen we’ll see a similar growth in demand for energy.

In the United States we could totally eliminate our need to import oil by simply addressing waste in the electrical generation and distribution system. What does electricity have to do with gasoline? Well, everything!

50% of our electricity is generated by coal, 20% by natural gas, 19% by nuclear, 7% by hydroelectric, 2% by petroleum, and approximately 2% from solar, wind, and other renewables (excluding hydro-electric).

Coal and nuclear energy, which together make up 69% of the energy supply, can not be throttled down at night. In the case of coal, the thermal mass of the system is just to great to change the energy production rate rapidly, and in the case of nuclear, it takes too long to bring the reaction back up after shutting it down. The electrical demand for energy is much lower at night, so the excess produced is dissipated as waste heat, pollution is generated, but the energy is just wasted.

There is so much wasted energy from these sources at night that they could power our entire daily commute eliminating the need to import oil. We import about the same percentage of oil as goes into powering our daily commute.

If we could take that wasted energy produced at night, use it to power our commute during the day, we would eliminate the need to import oil; we’d go from having a trade deficit to having a trade surplus, we’d see the dollar strengthen, we’d see our economy improve; and we’d eliminate the financial incentives for going to war in the middle east. We’d eliminate all of the carbon dioxide from all of that imported oil being burned, without adding anymore from power plants, because we’re just using energy they’re already producing that is being wasted.

How can we do this? There are a variety of ways we can do this; the one that you hear talked about the most is plug-in hybrid vehicles. These are gas-electric or diesel electric hybrids with enough battery capacity to cover the normal commute and the ability to recharge off the power grid. Problem, nobody in the United States is producing them at present. Chevrolet has a concept car called, “The Volt”, which they claim will be in production in 2010 but not at present because they claim adequate batteries aren’t available.

Yet, the Toyota Prius is readily converted to a plug-in hybrid using existing battery technology. The Prius has a “stealth mode” button that is enabled in other countries but not in the United States that stops the car from using the gasoline engine so that one can drive short distances on electricity alone. The Prius also has space for a second battery pack. Plug-in hybrid enthusiasts have been enabling this button on US models, adding a second battery pack, and adding an off-the-grid charger to convert these cars to a plug-in hybrid.

China has an automobile manufacturer making plug-in hybrids for domestic use in China, a company called BYD makes a plug-in hybrid vehicle that can go sixty miles on electricity alone. BYD developed a rechargeable lithium iron phosphate battery system for their vehicles. They plan to market these vehicles to Europe and the United States in 3-5 years. Meanwhile our automobile industry continues to lose money and lay off workers because they can’t sell the SUV gas hogs they produce when gas is $4/gallon. Why isn’t Detroit producing these? Why does GM drag it’s feet saying that the battery technology is not available when amateurs are converting Prius cars using existing battery technology and China’s BYD is manufacturing and marketing plug-in hybrid vehicles based upon their own battery technology?

Plug-in hybrid vehicles are only one way to use this surplus energy. Another method is to convert surplus electricity into liquid fuel. How can we do this? There are two methods I am aware of for taking electricity, carbon dioxide, and water, and making a 4-carbon alcohol called butynol which unlike Ethanol and Methanol, has an energy density nearly that of gasoline, a road octane of 104, and can be burned directly in unmodified gasoline engines. Because of the characteristics of the fuel, it actually gets better mileage, produces more power, and reduced emissions by 97% relative to gas, and the lower peak cylinder temperatures and lower partial combustion products, longer engine life can be expected. One method involves a kind of reverse fuel cell in which electricity and a catalyst drive a reaction to produce butynol from carbon dioxide, water, and electricity, the other method is to electrolyze carbon dioxide (yes, you can do this) to produce carbon monoxide and oxygen. The carbon monoxide is then mixed with steam to make process gas which can then be converted into a number of useful hydrocarbon liquids, including butynol.

This process CONSUMES carbon dioxide making the butynol fuel! So if we located these adjacent to coal fired plants, we could take that carbon dioxide and instead of pumping it into the ground, which is long term a really bad thing to do for reasons I mentioned in another post; we can make it into fuel! So this is a way that we can shift the EXISTING automotive fleet to using surplus electricity at night and this wouldn’t have the limited range of plug-in hybrids since butynol can be distributed the same way that gasoline is. Because butynol is not hydroscopic, unlike ethanol and methanol, it can be piped through the same pipelines used to move oil distillates.

Now, long term we want to get off of burning hydrocarbons entirely, except those that are created by taking carbon dioxide out of the air such as biomass, or butynol produced this way. We have plenty of sources that we can exploit. There is enough geothermal energy available in environmentally non-sensitive areas of the western United States that we could power our entire electrical grid this way. Presently however wind is the most economical, but wind is not constant. Now if we put these electricity to butynol plants in place, and then just overbuild wind capacity we provide a market for the times when wind produces a surplus by using that surplus to make fuel. Thus making butynol from electricity can shift the commute to using presently wasted energy, provide a market for carbon dioxide and surplus wind power allowing wind power, which is the least expensive source of electricity, to fulfill a much larger percentage of our energy needs.

There is another way butynol can be produced, and that is by using concentrated sunlight to break down carbon dioxide to produce the same process gas, which ultimately can be made into butynol and other hydrocarbons.

These things can only be ramped up so fast. We need to be doing everything we can to encourage them. We also must stop the outflow of capital from this country to the middle east. To that end, in the short term we need coal-to-liquid plants. If we did this concurrent with displacing coal generation with solar, geothermal, wind, and other renewables, it would result in less resistance from the industry to the transition, and at the same time provide more capital for the implementation of new clean and renewable technologies. We can not afford to allow our economy to go down the tubes any further because it will make conversion impossible and in the end all we’ll have is a lot of people starving to death, riots, and war.

Our current energy situation is so dire that we really need to exploit all our alternatives to the max, but even so it may not be enough to keep our farm equipment moving producing food and our distribution network distributing it, and get us to work and back. We need to do what we need to do in the short term but we need to focus on the long-term.

To this end I believe we should look at adding an import duty tax on oil of around $20/barrel, and then taking that money and using it to develop all of these alternatives as fast as possible.

Another area we could obtain a huge amount of energy from, and that would also increase the degree to which we can depend upon wind and solar, would be to drastically modernize our grid system. Presently, long distance transmission lines lose an average of about 17% of the energy put into them. Nationwide this results in a loss of approximate 10% of our electrical production capacity.

The particular modernization that we should consider is converting all AC transmission lines that are longer than 300km to DC high voltage transmission lines. Doing that would cut that 17% loss figure to 2-3% by eliminating radiative losses which are the largest portion of transmission line losses.

Switching to DC transmission eliminates electromagnetic radiation from those AC transmission lines which is a leukemia hazard to anyone living near them. Low frequency magnetic fields have been determined to have carcinogenic effects. One suspected mechanism is that a low frequency AC magnetic field causes ions to spiral as they pass ion transport channels in cell walls reducing their ability to cross these channels. Drugs which reduce ion transport have also been shown to increase cancer rates. For many people, particularly those living in houses with older wiring where the source and return path are not always cabled together, the magnetic fields generated inside are often far higher because you are very close to them. Never the less, there is a statistical correlation between leukemia and living in proximity to AC high voltage transmission lines. DC high voltage lines do not radiate and thus eliminate both the majority of their power losses and this cancer threat.

Switching to DC eliminates susceptibility to space weather. Space weather, solar storms, induce very low frequency currents in long distance transmission lines. In AC lines, the transformers have very low impedance to this low frequency current and the current causes the transformer core to saturate. This results in the destruction of the transformer and failure of the transmission line. In DC transmission lines, this same current is induced, but simply slightly increases or decreases the voltage and the far end and the inverters compensate in real time and no damage results.

Switching to DC eliminates cascading failures. In an AC line, if one source of capacity is lost or load increases, there is no way to limit the load on the line except through load shedding which may or may not happen fast enough, and if it doesn’t happen fast enough, failures result. When one line goes down, it increases the load on the next, phase and voltage fluctuations result which increase the load even further, and additional lines go down. In this way, a localized failure can cascade across an entire grid. But with DC lines, the inverter technologies limit the power in real time and keep the phase constant, so no cascading failures result.

Switching to DC adds significant capacity in two ways. In an AC transmission system, the peak voltage is 1.414 times the RMS or average voltage. So a line designed to carry 500KV AC has to have insulators designed to carry 1.414 times that value or 707KV. So we can take an AC line designed to operate at 500KV and operate it at 707KV DC, at the same current that is a 141% improvement in transmission capacity. But it gets even better, because on long transmission lines, the factor that limits current is heat induced sag. When wires are warmer they expand, when they expand the total length of the line changes and that changes the phase relationship of the voltage at the far end. Out of phase power just heats the wires and so current has to be limited to values that are much lower than the line is physically capable of carrying. With DC transmission, the phase is determined by the inverter and is independent of the line length, and thus sag induced phase shift is no longer a limiting factor. Of coarse the current still has to be limited to values above which sag would represent a physical danger to the line but this value is significantly higher. So switching to DC transmission increases both the current carrying capacity and the voltage capacity of the line.

For new lines, the costs are less for DC lines than AC lines for distances longer than 300km. DC lines require less right-of-way because there is no AC magnetic field radiation. They require only two conductors instead of three (or in some cases six). For a given conductor power and insulators they can carry significantly more power. These factors all combine to make them much less expensive for distances greater than 300km.

Reducing the losses substantially while increasing capacity makes it cost effective to transmit power over greater distances and allows for greater geographical diversity. This in turn allows wind, solar, and other variable sources to contribute to a greater share of the load because geographical diversity can be used to advantage. When the wind isn’t blowing in one location, it is blowing somewhere else. Currently in the United States, we have an eastern grid and a western grid. We should add DC interties and make it one grid. Peak loads occur at different times because of the different timezones, so full east-west connectivity would reduce the peak-to-average load ratio allowing us to use our generating capacity more effectively.

I know that I dwell on this particular subject a lot but it is of major importance and getting next to zero attention. The deregulation of the power industry has resulted in a situation where nobody wants to contribute the maintenance and upgrading of the power grid and this is absolutely critical towards the end of solving our nations energy issues and adopting renewable clean energy sources on a large scale. Our congressman appear to be completely ignorant of these issues, it’s up to you to educate them!

Fox News Bill O’Reilly Lies About Reverend Jeramiah Wright

Fox News has portrayed Reverend Write as a hateful, bigoted, and anti-American. They have used out of context sound bytes towards this end. In the interest of accuracy in journalism, I located this video recording of Reverend Writes sermon after 9/11 so that you can here the sound bytes in context.

Online Videos by Veoh.com

Now that you’ve heard it in context, I will add that I think his message, that hatred begets hatred, terrorism begets terrorism, is right on. I believe that the Bush administration has lead us down the wrong path, a path that leads only to misery, death, and destruction. You’ll note that I’m a white guy, this isn’t a black-vs-white thing that Fox is trying to make it out to be, it’s about a path of love and respect for life and God’s creations verses a path of hatred, death, and destruction.

Fox News

Personally, I am of the opinion that Fox News is evil; anything but fair and balanced, but this interview is worth seeing.

I wish there were more people with the intelligence and fortitude to do what this preacher did in this interview.

Don’t Eliminate Gas Tax

Eliminating the gas tax will not benefit consumers. Supply and demand sets the pump price, the gasoline tax only determines what percentage of that pump price goes to the oil companies.

I think what we ought to be doing is slapping a serious import duty on imported oil and distillates to encourage domestic production, balance our trade deficit, strengthen the dollar, and provide funding for clean renewable domestic energy alternatives.

Priorities

We’ve got a food emergency on this planet right now and it revolves around energy. The US produces a quarter of the worlds food and our ability to produce that food has been crippled by high energy costs and low availability. High energy costs have also diverted a portion of food production into biofuel production.

The value of the dollar has taken a large dive because of the high cost of the war in Iraq, and because of the huge amount of oil that we import without sufficient exports to balance those imports.

Because until recently the dollar was also to a large degree the worlds currency, many nations around the world held many dollars, and as they see the value falling they’ve looked for other places to invest, and commodities have been the big winner. Unfortunately, those commodities include things like corn, wheat, and rice, and the result has been a increase in the price of food above and beyond the energy costs involved in foods production.

World demand for oil has exceeded current production capacity. The price of oil now exceeds $100 / barrel and it appears to be headed towards $200 in the not too distant future.

While the high prices of oil has resulted in increased discovery activity and increased discovery, and now we know to look for oil in places we wouldn’t have considered in the past; and that very much oil remains, there are real problems with tapping that oil.

Specifically, abiotic oil exists and in large quantities. The larger of the two Brazilian super-giant fields recently discovered gives all indications of not being biotic in nature, based upon carbon isotope ratios. To those of us who have been paying attention this is not surprising. Most of the oil we’ve tapped to date has been biological in nature because we’ve drilled where we expect to find it, in sedimentary deposits.

But now we know, drill through the granite or basalt basement rock in locations where that rock forms a cap, and we will find oil that has seeped up from the Earth’s mantle. Generally on land, the crust is too thick, most of this oil is out of our reach with current drilling technology, but the crust is thinner in the oceans and there we can drill through and find this oil, and hence the most recent super giant fields in the Gulf of Mexico and off the coast of Brazil.

So that abiotic oil requires drilling in deep ocean, or very deep through land in a few locations where the crust is thin enough or where geological upheavals have allowed oil to get past that barrier and still be trapped by something above it, such as in over thrust zones.

There is a world-wide shortage of rigs capable of tapping these deposits and in the case of deep ocean deposits it will take 5-10 years from discovery to production.

Then we have heavy oil near the surface. Most of the oil near the surface is heavy crude because without non-porous material covering it, the lighter elements evaporate leaving only the heavier elements. We lack the refinery capacity to utilize this heavier oil. Getting at it is also often difficult because it’s high viscosity does not allow it to flow like lighter oils thus requiring technologies like steam injection or outright mining.

Ordinarily, if oil were to stay over $100 / barrel for any period of time, that would rapidly drive investments necessary to increase production. However, with the worlds eyes on global warming, investors are afraid that they will not be able to recoup their investments and thus we are not seeing the investments necessary to address this shortage.

Ideally, we’d all switch to renewable energy sources and be done with the whole oil and global warming issues, but this is not something that can happen immediately, infrastructure needs to be built and this takes time and capital investment.

Here in the United States, this is a big problem because with our economy already wrecked, the capital necessary to make this conversion, an estimated 200-400 trillion dollars, does not exist.

It is my belief that we need to do whatever we need to do to stop the outflow of capital from this country immediately. We have to stop importing oil and depend only upon our own resources, and we have large amounts of resources domestically.

T. Boone Pickens is investing up to 10 billion to build a 4000 megawatt wind farm in the Texas panhandle, not because he has gone green but because he expects to make money on it.

But we can only build wind farms and solar so fast and those will address much of our electricity needs, but until we have more electric vehicles, until we electrify our railways, and until we have some method of producing high-density liquid fuels from electricity or other energy sources, we will still need hydrocarbon fuels.

To that end, I think we should be depending upon our own resources instead of importing oil from Saudi Arabia or elsewhere. We have more coal than any other country in the world; at current usage enough for another 300-400 years. In my view, we should be building coal to liquids plants and using that rather than imported oil. The reason for this is that it removes the incentives for wars on foreign soil which are far more environmentally devastating than coal production and because it will keep the capital from flowing out of the country so that it will be available to invest in clean renewable technology.

I believe we should build wind and solar as absolutely fast as we can and we should put windmills and solar farms where they will produce the most energy first, and then as we displace the need for coal and natural gas fired plants, we should divert that coal and natural gas into liquid fuels for transportation.

I also believe we should be building at least a dozen or so forth generation helium cooled actinide burning fast flux nuclear fission plants with integral pyrolytic fuel reprocessing, and I believe we should put a complex of these plants in the area that is presently intended to be the Yucca mountain repository.

The reason is this; no civilization lasts the 50,000 to 100,000 years that is required for existing waste to decay. If we bury that stuff, we leave a huge burden for future human populations. We owe it to future generations not to do it. Further; in that existing waste, we’ve extracted less than 1% of natural uraniums energy capacity.

These 4th generation nuclear fission plants can burn those long lived actinides, extract 60x as much energy from them as the original nuclear reactors did producing them, and eliminate a 50,000 to 100,000 year storage problem, leaving waste that will only need to be stored for 300 years, which can reasonably be done at Yucca. By placing the reactors inside the repository, if any accident does happen, the radiation will be contained at least as good as the waste would have. And when the reactors have done their jobs and need to be decommissioned, they will already be in their final resting place.

Such a facility could contribute tens of gigawatts to the electrical grid and the electricity generated can pay for it’s operation rather than having waste disposal being a burden on tax payers. And with everything in that facility including integral reprocessing, the existing waste only needs to be shipped there and after that no waste will be transported providing no opportunities for terrorists. The pyrolytic recycling process does not separate the actinides from each other, so at no point is any material produced that would be useful for making bombs.

I think though right now, we need to pull all the stops out on domestic energy production and get completely free from any reliance on imported energy. A massive program to do this will create jobs and fix the economy. Discontinuing the importation of oil will do wonderful things for the value of the dollar. And ending our reliance upon middle eastern oil will eliminate our incentive for wars there.

Carbon Dioxide – The Real Carbon Danger

Most people believe that carbon dioxide is a serious threat to the future of the planet. I happen to share this belief, but for very different reasons than those which are predominate in the media.

I believe that carbon dioxide is not a direct thermal threat planet wide, the reason for this is that the predominate absorption line of carbon dioxide is at approximately 13-15 microns and the gas concentrations are already at the point where 99.99% of the radiation in this band is absorbed within ten meters at atmospheric pressure. Increases in carbon dioxide levels won’t change this appreciably but they will broaden the absorption line. The net result is that increased CO2 will warm the Earth but nowhere near at the rate suggested by many.

The Earth’s blackbody temperature is around 285°K but the absorption lines of carbon dioxide that are relevant peak between 193-220°K. The amount of radiation from Earth absorbed by carbon dioxide is thus going to be more significant in parts of the world that are very cold, and we do see significant warming in Alaska, but Antarctica is actually getting colder. But to the degree with carbon dioxide affects Earth’s temperature directly those are the places that are going to be affected directly.

I believe a larger concern are the chemical effects of carbon dioxide most notably on the worlds oceans. If you take a can of pop or beer, put it in the freezer, let it cool below freezing, and then pull it out and open it, initially it won’t be frozen but it will rapidly, in just seconds, freeze.

The reason for this is that carbon dioxide dissolved in water forms carbolic acid. This depresses the freezing point of water. That is, it allows water to be cooled below 32F and remain liquid. Now, just as it depresses the freezing point in soda or beer, it also depresses the freezing point of ocean water. That is, water will become liquid at a lower temperature. Presently, there is about 50 times as much carbon dioxide dissolved in the ocean as present in the air, so there is already significant carbon dioxide in the oceans.

At many locations on the ocean floor, particularly along continental shelves, there are methane hydride formations, this is basically methane molecules trapped in ice. The amount of these hydrides far exceeds the carbon that we’ve burned in our history. Methane is a far more potent greenhouse gas than carbon dioxide, perhaps two hundred times as potent, both because the absorption lines of methane aren’t yet saturated, and because they lie nearer the peak of the blackbody radiation from the Earth. All of that methane being released into the atmosphere would be a very bad thing.

A second issue is that increased carbon dioxide levels reduce the amount of oxygen that can be dissolved in the water. Most of the oxygen that is dissolved into the oceans is dissolved at the poles, because oxygen can dissolve more easily in cold water than warm, and then moved via the ocean currents. Those currents depend upon a salinity imbalance between high latitude and low latitude ocean water and as more fresh water enters the ocean diluting the salinity, those ocean currents are slowing. This is reducing the oxygen levels in the ocean water.

There are many forms of sea life that have carbonate shells that dissolve readily in carbolic acid; the raising of the acid levels in the ocean has the potential to kill coral reefs as well as all sorts of shell fish. As those shell-fish die-off they consume oxygen and again deplete the oxygen from the oceans.

And then we have the effect of nutrients entering the ocean, fertilizer run-off, sewage, animal waste. These things cause algae blooms near the surface which then blocks light from getting to deeper levels depriving deeper levels of oxygen. Further, the dying organisms near the surface sink, and then consume any remaining oxygen below. This is creating vast dead-zones in the ocean.

So we’ve got four big things driving lower oxygen levels lower in the oceans, three of which are completely carbon dioxide related, one of which is indirectly related. As the world demand for oil exceeds supply, and biofuels have been one place people have turned to resolve this; the increased use of fertilizers to grow these biofuels is contributing to the problem.

Now, there are a couple of reasons that oxygen levels in the ocean are very important. First, the worlds oceans make up 71% of the surface area of the planet. They supply 70% of our protein needs. If the oceans die, so does 70% of our food supply. So if you like to eat; healthy oceans are essential.

Where there is sufficient oxygen, bacteria in the ocean predominantly make their living by breaking down organic substances and oxidizing those substances. But where there is insufficient oxygen, near ocean thermal vents for example, bacteria have adapted to use sulfur instead of oxygen. Where as normal bacteria produce water and carbon dioxide, these sulfur loving bacteria produce hydrogen sulfide, which is deadly to humans and most life forms in concentrations of about 200 parts per million.

The largest extinction in the Earth’s history, the Permian extinction, may well have been caused by a build-up of hydrogen sulfide when the worlds oceans went through a period of low circulation and oxygenation. During this same time frame there was also a large release of methane.

In my opinion, these issues are far more threatening than carbon dioxide build-up in the atmosphere.

Nuclear Fission Plant Efficiency

Nuclear fission plants are currently enormously inefficient. At present, they extract only about .7% of natural uraniums thermal energy potential, and of that .7%, they convert less than 40% into electrical power.

In other words, their overall efficiency is only about .28%, less than 3 parts in 1000 of natural uraniums energy potential is utilized. This is actually a major reason that nuclear fission power plants produce so much long lived radioactive waste, because so much of that energy potential is not utilized.

Of that .28% that is successfully extracted, about 17% will be lost in transmission line loss, and about 50% will go unused because it will at a time when there is less demand than there is electricity produced and nuclear fission reactors can not be rapidly throttled.

So by the time all of these losses are concerned, perhaps .1% or 1/1000th of natural uraniums energy potential is actually utilized and a much greater quantity of waste is produced than need be produced.

Almost all of these losses can be eliminated, many of them with economic benefits.

One of the places that I can see a fairly economical improvement in efficiency is the heat dissipated in the cooling towers. Although the water entering these towers is not hot enough to recover additional mechanical energy via the Carnot cycle, it still can be used for things like space heating or driving some low temperature industrial processes. In countries like Sweden this is already done, waste heat from nuclear plants is piped to cities to provide residential and commercial space heating. Another potential use is for agriculture as a source of heat to prevent freezing or to grow in colder climates than otherwise be possible. The heat is going to end up in the atmosphere anyway so why not use it to displace some other heat source that would be heating the atmosphere in addition?

Approximately 17% of the energy put into the electricity transmission system never makes it to the consumer. The bulk of that energy is radiative losses. That is, the energy is radiated away from the long distance AC power transmission lines. Not only is this energy wasted, but there are also negative health effects, most notably leukemia, associated with AC electromagnetic fields.

For lines longer than 300km, converting those lines from AC transmission to DC transmission is economical. It frees up some of the right away because clearance is no longer required because of radiation concerns. DC lines do not radiate energy. DC lines can cut that average 17% loss into the low single digit area. DC lines also substantially upgrade the power line’s capacity because of two factors. First, the line can be run at the highest voltage the insulators are rated for as opposed to AC transmission where on average the voltage is only .707 that of the peak voltage. Second, on long AC transmission lines, heat causes mechanical sagging of the lines. This lengthens the lines and causes a phase shift over the length of the line which causes losses and additional heating. DC lines eliminate the phase issue allowing higher currents to be transmitted through the conductors. The combination of both higher average voltage and higher currents leads to substantially improved capacity over the same conductors with the same insulators. Lastly DC transmission eliminates susceptibility to either cascading power failures or space weather induced damage. Upgrading our transmission capacity this way would be the equivalent of adding about 15% more generating capacity to the nations electrical grids with no increases in pollution, thermal emissions, and improvements in reliability and health. It would also make it possible for intermittent renewable resources to provide a larger share of our energy needs.

A substantial portion of the energy produced by nuclear reactors at night and during low load times goes up the cooling towers because nuclear power plants, at least those of todays designs, can not readily be throttled up and down in power levels. There is enough surplus power at night to totally provide for all our daily commuting needs if that energy could be efficiently captured and used for that purpose. Doing that would eliminate our dependence upon foreign oil almost entirely because the percentage of oil used for our daily commute almost equals the two thirds that we import.

There are technologies available that would allow this. One technology is the plug-in hybrid and also all electric vehicles. The plug-in hybrid is a more practical alternative for many people because they’re not restricted to the short range provided by a relatively low capacity battery pack. For long trips, they can fill up and slurp gas the traditional way. But the majority of commutes are less than 20 miles and so can be completed entirely on electricity.

There are some people out there trying to suggest that this may result in an increase in air pollution because 50% of the electricity we generate comes from coal, but this is misinformation, and the reason for it is, that coal fired plants, like nuclear plants, can not be rapidly throttled and thus they burn coal at night but the energy is just wasted. Plug-in hybrids will simply be using energy that otherwise would have been dissipated in a cooling tower and will generate no more heat at the power plant but eliminate pollution from burning gasoline within the electric range of the vehicle. The one exception to this would be the evening or night shift commuter that recharges during the day.

There are other ways this energy could be harnessed, some of which are being used with solar and wind farms today. There is a battery technology that uses liquid electrodes and relies on changes to the oxidation state of vanadium often called a vanadium redox battery, that can be used to store electricity on an industrial or utility scale. The vanadium redox batterys’ capacity is limited only by the size of tanks used to hold the liquid electrode material. Vanadium redox batteries can be left in discharged states for long periods of time and don’t degrade with charge cycles to any appreciable degree. The downside of these batteries is that their energy / volume ratio is too low to make them practical for anything but fixed installations.

Another technology where geology makes it practical is hydro-storage where during times of surplus electrical generation, water is pumped up hill to a higher reservoir, and then during times of surplus it is allowed to run downhill through a turbine to generate electricity.

Then there are a few emerging technologies that could be used to turn surplus electricity into fuel. There are two technologies that can convert electricity, carbon dioxide, and water, into butynol, a 4-carbon alcohol that can be used as a replacement for gasoline in gasoline powered vehicles but provides better fuel mileage, power, and about 97% reduction in emissions. Although it’s energy content is slightly lower than gasoline, other factors make it burn more efficiently resulting in better mileage and power.

One technology uses a reverse fuel-cell device that uses a catalyst to convert electricity, water, and carbon dioxide directly into butynol. Butynol can also be used as a jet engine fuel and is being considered as a renewable replacement by Virgin Airlines and this reverse fuel cell technology was developed to that end. An alternate method involves electrolyzing carbon dioxide into carbon monoxide and oxygen. The carbon monoxide is then combined with steam to create a gas that can then be catalytically converted into any number of hydrocarbon products, including butynol.

These plants could be built close to coal plants and then the carbon dioxide from the coal plant turned into automotive fuel rather than being released into the atmosphere or geologically sequestered. If we actually got to the point where we were using all of the CO2 produced by coal and gas fired plants, we could sequester carbon dioxide directly from the atmosphere.

Greater improvements require more substantial economic investments, but making those investments would both improve globally our standard of living and reduce the burden of managing radioactive wastes that we will otherwise be leaving to future generations.

Most promising is a type of nuclear reactor that uses fast neutrons to fission not only U-235, but also U-238, thorium, and the transuranic elements produced in conventional fission reactors as well as those produced in these reactors. They would be combined with an integral pyrolytic fuel reprocessing facility to reprocess spent fuel on-site. The pyrolytic process does not separate plutonium from other transuranics and therefore does not at any point produce bomb-grade material. In addition, since the material would never leave the reactor site, there would be no opportunity for terrorists to intercept it during transit.

This type of plant uses a liquid metal such as sodium or lead, a liquid salt, or helium as a coolant. Helium has some significant advantages. It’s already a gas so an over-power situation isn’t going to turn the coolant into something not effective as such. These types of reactors automatically limit their reaction rate based on something known as Doppler spectrum broadening. Basically, to be absorbed efficiently and initiate another fission, a neutron must possess a certain energy level. As objects heat up, an atom may be moving either towards an approaching neutron, increasing the energy, or away from it, decreasing the energy, and in both cases the likelihood of an induced fission is reduced. So these reactors carry a negative thermal coefficient.

Helium allows operation at a high temperature which results in high thermal conversion efficiencies. Metal and salt cooled reactors operate at temperatures exceeding those of boiling water or pressurized water reactors, but less than those of helium gas cooled reactors. Other coolants are somewhat reactive, lead in particular is very reactive, and thus corrode plumbing, but helium is chemically inert. Sodium spontaneously combusts in the presence of air; so there are certain safety issues associated with it’s use as a coolant.

These reactors, through their high efficiency, can reduce waste volumes to about 1% of that produced by a conventional once-through boiling or pressurized water reactor. In addition, by burning the actinides, the waste they produce consists only of fission products which only require storage for about 300 years (assuming no further treatment) rather than 50,000 required for the waste produced by existing reactors. Further, these generation IV burning reactors can use the waste from conventional reactors as fuel eliminating the need for long term storage.

There are additional technologies which can turn the longest lived fission produces into products that decay very rapidly reducing the storage requirements to around 20 years, however these technologies do require energy and thus reduce slightly the overall energy efficiency.

France and Japan are both pouring money into research and implementing these types of reactors, we should be as well. Properly implemented nuclear fission can provide for our energy needs for millions of years.

Because so much more energy is recovered from uranium this way; uranium from sources such as extraction from seawater become economical. This is what extends the fuel supply for so long. Because thorium can also be used as a fuel and it is 3x more plentiful in the Earth’s crust than is uranium, this also extends the fuel supply considerably.

We do not have to have an energy crisis, nor do we need to have ever increasing levels of carbon dioxide in our atmosphere, and neither do we have to live in poverty and fight wars over oil. There is plenty of energy to go around if we produce, distribute, and utilize it wisely.

Baby Boomers

Without immigration, the population growth of the United States and every other industrialized nation of the world is negative. At the same time, people are living longer. People have this idea that they can still retire at 60, and then live on savings another 40 years.

If the social security fund hadn’t been robbed, and if people actually were saving at sufficient levels this still wouldn’t work! Why not you ask?

The reason is something that people just don’t get, MONEY IS NOT GOODS AND SERVICES. Money is ONLY a mechanism for facilitating the movement of goods and services. You can’t eat money, you can’t wear it, well not in practical terms, and you can’t use it for shelter. You can’t use it to cure your medical ailments. You can use it to trade for these things, but only to the degree these things actually exist!

If you’ve got fewer people producing and more people consuming, the amount of goods and services available to each person decreases. If social security was fully funded, if peoples savings were adequate; but people retire and people don’t enter the labor market to replace them, the amount of goods and services available will be less and as a result that money will simply become worth less, in other words, all you’d get is rampant inflation.

There are a number of potential solutions to this problem, allow more people to enter the labor market from foreign countries. This works as long as there are enough people who want to come here and we can successfully integrate them into our population. Or, become more efficient with our use of labor, produce more goods and services from less human effort. To do that, we need to rely to a greater degree on automation and reduce waste and inefficiency. For instance, eliminate the 3-1/2 trillion dollar war we’re waging in Iraq and wars that most likely will follow if we don’t make a severe course change. If we can’t do either of those the only other option is for people to delay retirement, even to bring some of the retired out of retirement back into the labor market.

People must start recognizing money for what it is; a means of exchanging goods and services, not a substitute or proxy for those goods or services. A shortage of money in the economy will prevent goods and services from moving and interfere with their production, but more money in the economy than necessary will not improve productivity, it only contributes to rampant inflation.

So we’re going to have to get smarter, automate to a greater degree, and that’s going to take more energy than combusting hydrocarbons, which isn’t sustainable even at present levels, can provide. We need to get solar, wind, geothermal, fast-flux integral pyrolytic reprocessing nuclear fission going, and fusion, fusion is really the ticket. But this won’t happen if we keep investing trillions in fighting over the easy to get at oil instead of developing these technologies.

We could have replaced the energy equivalent of all of Iraq’s oil production by spending the same amount of money we spent in the first year there on wind power, and we’d have that energy forever. All of Iraq’s oil represents only 5-6 years supply and we’ve squandered much of that in the war. What we are doing is so nonsensical in terms of what is good for the United States or the world.

Come on folks, let’s turn this ship around while there is still a smiggin’ of hope. Tell your congress critters we need to get out of Iraq, need to put a $20/barrel import duty on foreign hydrocarbons, and need to put the kind of money we put into the war instead on domestic renewable energy sources. If we’d done this instead of invading Iraq, we and the world would not have an energy crisis today; we’d have a substantially cleaner environment, and we’d have vastly better foreign relationships.